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1. Introduction

Many real-world problems occurring in various disciplines of study exhibit nonlinear
characteristics; see, for example, the identification of nonlinear biological systems [1], fresh breath [2],
and some nonlinear challenges in biology [3]. Many researchers from various backgrounds have
expressed an interest in modeling these processes. Nonlinear ordinary differential equations, in
particular, have been utilized by mathematicians to recreate such tendencies. Indeed, order exists
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beneath the diversity of life and the complexity of ecology, reflecting the operation of fundamental
physical and biological processes. Power laws are emergent quantitative aspects of biodiversity that
represent empirical scaling connections; see, for instance, power law and the Pareto distribution [4],
Fechner’s and Steven’s law [5], and the theory of behavioral power function [5]. These characteristics
are structural or dynamic patterns that are self-similar or fractal-like over many orders of magnitude.
We can list the scaling of tropical cyclone dissipation [6]. Extrapolation and prediction over a
wide range of scales are possible with power laws. Some appear to be ubiquitous, appearing in
almost all taxa of creatures and situations. They provide insights into the underlying mechanisms
that powerfully and nonlinearly restrict biodiversity. We outline recent accomplishments and future
prospects for understanding the mechanisms that generate these power laws, as well as for explaining
species variety and ecosystem complexity in terms of fundamental nonlinear physics and nonlinear
biological science principles; see, for instance, the power law of dust devil diameters on earth and
mars [7], the gene family [8], decreasing failure rates [9], and polymetric damping materials [10].
While many natural processes exhibit nonlinearities approximating power-law-like tendencies [11],
many also exhibit crossover patterns. The transition from stretched exponential to power law is a
good example. This means that after a certain amount of time, the process exhibits behaviors such as
stretched exponential, after which power-law behaviors are noticed [12,13]. Modeling fractional-order
viscoelastic materials is one application of the Mittag-Leffler function [13]. Experiments on the time-
dependent relaxation behavior of viscoelastic materials reveal a very fast decrease in stress at the start
of the relaxation process and an exceedingly sluggish decay for long timeframes. It may even take a
long time to obtain a constant asymptotic value. The Caputo and Riemann-Liouville derivatives are
differential operators based on the power law in the realm of fractional differentiation, making them
good candidates for modeling processes with similar power-law behavior. The Atangana-Baleanu
derivative, on the other hand, is based on the generalized Mittag-Leffler kernel, which has the property
of crossing from the stretched exponential to the power law [12,13]. As a result, it is the best contender
for modeling processes that follow these difficulties. While nonlinear ordinary differential equations
with the Caputo and Atangana-Baleanu fractional derivatives are essential classes for modeling power
law and crossover processes, there are no analytical methods for solving these equations. To solve these
equations, researchers primarily employ numerical methods [14]. But first, it is a good idea to research
the existence and originality of their solutions [15,16]. There are numerous methods for investigating
the existence and uniqueness of nonlinear classical ordinary differential equations. The maximal-
minimal principle and the Chaplygin approach [17,18] were two ideas that piqued our interest [15-18],
as was the Perron method for global existence and uniqueness [19,20]. To highlight the importance
of the Mittag-Lefller kernel used to obtain the Atangana-Baleanu fractional derivative, we ask the
readers to see the following reference: [21] In this work, the authors presented a detailed analysis of
the properties of the power law kernel that is used in the Caputo and the Riemann-Liouville fractional
derivatives, the Mittag-Leffler kernel that is used in the Atangana-Baleanu fractional derivative, and
the exponential decay function used in the Caputo-Fabrizio derivative. They have also highlighted
the possible applications of these kernels in modeling complex real-world problems. Beside these
outstanding results, different authors have also presented the importance of the Mittag-Leffler used in
the Atangana-Baleanu in Caputo sense (ABC) derivative; see, for instance, this paper [22]. While these
papers have been recognized as outstanding results within the field of fractional calculus, an argument
about the initial condition for differential equations with the ABC derivative was raised; however,
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the following paper [23] showed that this argument was not mathematically correct. The fundamental
theorem between the differential and integral operators for the ABC case was presented in many papers.
These results then show that there is equivalence between fractional ordinary differential equations with
the ABC derivative and their component with the AB integral [24]. In this paper, these results will not
be repeated as they have been well-established and are very well-known. The first strategy requires
finding maximal and minimal solutions to the equations, while the second requires constructing rising
and decreasing sequences that bound the solution, and these two converge as n approaches infinity.
This will be the focus of this project.

2. Global existence and uniqueness via Tychonoff’s fixed-point and Perron principle

In this part, we will show how to use Tychonoff’s fixed-point and the Perron principle to prove the
global existence of a fractional Cauchy problem using the Caputo and Atangana-Baleanu differential
operators. Because of the features of fractional differential operators, this will be accomplished with
additional conditions.

2.1. Global existence and uniqueness for fractional differential equations with Caputo derivative

In this work, we shall consider the following general Caputo fractional differential equations:

D) = £ (6,y0), 0<a<]1 ift>1, 2.1)
¥(t) = Yo, it t = 1.

2.1.1. Global existence

We shall make use of the Tychonoff’s fixed-point which uses the locally convex linear spaces to
demonstrate the global existence of the solution of the fractional differential equations with the Caputo
derivative. We shall note that f € C[I X R, R], where indeed I = [ty, 00).

Theorem 2.1. Let A be a complete locally convex, linear space and Ay is a closed convex subset of A.
Let I" be a mapping continuous and I" (Ag) C Ao. If T (Ay) is compact, then T has a fixed point in A,.

Theorem 2.2. Let f € C[I XR,R]and V¥ (t,y) € [ X R,

lf @&yl <g@hl. (2.2)

Here, if f € C[I X R, R] and the function g (t,y) is monotonic nondecreasing in y, ¥t € I, let us assume
that Vxy > 0, the differential equation

CDIx(t) = g (t.x(1), O<a <1 ifte€ ty o), 2.3)
X(t()) = Xo, lf‘t =1,

has a solution x(t) = x(t,ty, xo) when t > ty. Then Yyy € R, such that |yo| < xo, and there exists a
solution y(t) = y(t, 1, yo) of the fractional differential equations with Caputo derivative for t > t, that
satisfies

@] < |x(D], 1> 10. (2.4)
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Proof. We consider A the space of all continuous functions from [#y, c0) — R, with the topology of A
equipped with norm

IVl = sup |y@)I. (2.5)

fh<t<oco

A fundamental neighborhood is given by
Ag={yeA:p(y <1} (2.6)

Of course, within the defined topology, the set A is a complete, locally convex, linear space and p is a
defined norm. Let Ay C A defined as

Ag={yeA: @l <x®], Vi > 1o}, 2.7)

where x(7) is the same as defined before. From [15], we have that Ay C A is a closed set, convex, and
bounded. We now consider the mapping

Ty (1) = y°+m f (t =D f (5, (7)) d, 2.8)

T'y(7) = y(¢) is the solution of the fractional differential equations with the Caputo fractional derivative.
It is clear that for any bounded sequence (y,), € Ay, the sequence (l"yn)neN contains a converging

subsequenge, therefore T is compact; thus, 1:(A0) in the view of the boundness of Ay. We shall now
show that I" (Ag) C Ap, lety € A and

t

Ty(t) = yo + m -0 f(r,y(1)dr, (2.9)

fo

— 1
3] = po + f (t =0 f (ry(@) dr
1 t
<ol + o f (6= I oy dr

1 t
< lyol + @ f(l -1 g (x, (@) dr.

By definition, g is monotone in y, the formula of A, and the solution x(7) such that |yy| < x, leads to

i
|l_“y(t)| < xo+ m f(t - 1) g (1, x(1)) dt = x(1). (2.10)
Therefore,
IDy(0)] < x(0), (2.11)
which completes the proof. That is to say,
T (Ag) C Ay. (2.12)
m]
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2.1.2. Uniqueness

We shall borrow the Perron’s criteria to show the uniqueness of the equation under

investigation [19].

Theorem 2.3. Let us assume that the defined function g (t, x) is continuous forty < t < toy+c, 0 < x < 2d
and that for ty < t; <ty + ¢, x(t) = 0 is the only differentiable function on ty < t < t; that satisfies

“Dix(t) =g (1, x(1), 0 <@ <1, x(ty) =0, V1 € [to, 11].
Let feC [I_QO,R] where we define
Ro={(t,y) 1 tg <t <ty+c, ly—yol <2d},
Y(t,y,) € Ry and V(t,y,) € Ry,

I y1) = ft,y)l < gy —yal).

Then, fD;’y(t) = f (¢, y(t)) has one unique solution in [ty,ty + c] .

0

Proof. Let y,(t) and y,(¢) be two different solutions V¢ € [#y, g + c] with

yi(to) = ya(to) = x(2p) = 0.
We let
() = y1(8) — y2(0),

1

D=

f (=" (F (51 (D) = f (5 ya()) d,
1 t
20l = i f (t =" (F (11 () - f (5 ya(D)) d

1 t
*Tw@ f (=0 f (@yi(0) = f (T ya(7)l dr.

By hypothesis, we have that

1 t
()] < mf(t—f)“_lg(t, ly1 = y2D) dr,

but note that
2(to) = y1(to) — y2(t0).

Since the initial condition is unique, therefore

z(ty) = 0.

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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For any #; such that 7y < #; < 1y + ¢, we have that
2 <Q@), 10 <t <1, (2.21)

where Q (¢) is the maximum solution of Eq (2.13). From the first hypothesis of the theorem, we have
that z(#) = O in [7y, #;] is to say
yi(8) =y (1), Vt € [1o, 1], (2.22)

which completes the proof. O

2.2. Global existence and uniqueness for fractional differential equations with the Atangana-Baleanu
fractional derivative

In this section, using the Tychonoft’s fixed-point and the Perron principle with some extra
conditions, we shall investigate the existence and the uniqueness of a general Cauchy problem with
the Atangana-Baleanu fractional differential operator.

In this section, we shall consider the following fractional differential equations with

ABEDIY(D) = f(t,y(0), 0<a<lift> 1, (2.23)
y(t()) = Yo, ifr= 1o.

2.2.1. Existence

We shall assume that all the conditions prescribed before hold. We also assume that the defined sets
A and Ay hold here, too. Here, we shall define the following mapping

AY(D) = y(to) + (1 = @) £ (1, (1)) + % f (t -1 f(r.y()) dr. (2.24)

Ay(t) = y(¢) is indeed the solution of the fractional differential equations with the Atangana-Baleanu
fractional derivative. Clearly, A is a linear mapping if f is linear with respect to y. Let (y,),cny € Ao be
bounded, and we have that

Aya(®) = y(to) + (1 — @) f (1, yu(t)) + m f t -0 f(r,y.(0)dr, (2.25)
IAYL(D)] = ol + (1 = @) |f (&, ya(£))] + m f -0 (1, y.(0)ldr
< Iyol + (1 — @) g (¢, ya]) + m (t—1)"" g (1, y.(v)) dr.

fo

Since (y,),,cy 18 bounded in Ay, AN such that Vn > N, |y,| < M with M > 0, therefore

IAYR (O] < lyol + (1 —a) g (£, M) + m f(t—T)“_lg(T, M) dr (2.26)
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t
a _
< Ivol + (1 = @) sup g (1, M)| + =2 f (t =0 suplg (r, M) dr
rel r(a/) Tel
fo

< ol + (1 — ) My + =22y — e

+(1- + ——— (- < 0.
= o e T+
Therefore, (Ay,),cy is bounded. Since (Ay,),.y is bounded in real space, we have that there exists a
subsequence of (Ay,),cny of (Ay,) that converges. Therefore, the mapping is compact in the topology
of A and thus A (Ap) is compact because of the boundness of A;. We shall now show that

A (A()) C A(), (227)
Vy € Ay, and we have
IAY(D)| = [y(to) + (1 — @) £ (£, 5()) + % f (-0 f(ry@)dr (2.28)

< (o)l + (1= @) |f (1, y(0)] + Fi f (t -7 f (,y(@)l dr
(@)

t

< )l + (1 —a) g () + FL -7 gz, Iy dr
(@)

to

< Iy(to)] + (1 = @) g (1, x(1)) + =2 f (t =D g (r, x(0)) dr

I'(a)
= x(1).
Therefore,
IAY(D)] < x(2), (2.29)
which shows
A (Ag) C Ay, (2.30)

and the proof is completed.

2.2.2. Uniqueness

For the uniqueness, we set all the hypotheses as before, then let y;(¢) and y,(¢) be different solutions
in R, Vt € [ty, fp + ¢] with
vi(to) = y2(ty) = x(ty) = 0.

We let

(1) = i) = y20)l, (2.31)
20 < (I =a)|f (6, y1(0) = f (5 y2()) (2.32)
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et f (t =D | (11 (1) = f (1, oD dr
<(-a)gt |y1—yz|>+ri f (t =1 g (1, Iy, — yal) dt
@

<(1-a)g(tzt)+ m f(t — ! g (1, z(1r)) dr.

Noting z(ty) = 0 by the theorem hypothesis, and V¢, such that #y < #; < ) + ¢, we have that
2 <r@®, th<t<t. (2.33)
Assuming r () is the maximal solution, we shall have
72() =0, Vtety<t<t, (2.34)

which completes the proof.
3. Existence of maximal and minimal solution

In this section, we shall present the existence of the maximal and minimal solution of the fractional
differential equations with the ABC and Caputo fractional derivative [15]. We shall start with the
Caputo case.

Theorem 3.1. Let f € C[Ry, R], where Ry is defined as
Ry ={(t,y)|to <t <to+a, [y—yol <b}, (3.1)

and we assume that f (t,y(t)) is bounded for any fixed t and y in Ry. Then there exist a maximal and
minimal solution of

DI = f(t,y(@), 0<a<l, ift>1, 3.2)
y(tO) = Yo, {ft =1,

1
on [ty, to + B8], B = min {a, (bgl(lﬁll:bl))n}'
b

Proof. We shall prove maximal first since minimal will be deduced similary. Let 0 < § < 3. Let us
consider

CDIY(1) = £ (t, (D) + £ Ye (t0) = yo + &. (3.3)
We can define

Je@y) = f(ty) +&. (3.4)

Since f € C[Ro, R], clearly f; is continous on

Re:ty <t <ty+a, 3.5

NI@‘
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Then, let (E, y) € R, and indeed 1 € [fy, 1y + a],

t

_ 1 _ a-1 _
y:)’§(f0)+mf(f—7) fe(r,y)dr,

4}

1 t_ a-
F-yew) < s [ ((-0)7 f@plar

1 t _ a- _
Smf(t—r) 1|f(7',y)+§|d‘r

o)

1 — a—1 _
Smf(t—r) f @IdT + ot

< M(Z— t())a N (; - t())(l
IN'a+1) T'(a+1)

é.

Since f(¢,y) is bounded,

_ t— t())a
|y—y§(t0)| < Ta+D {M+¢}
(04 a(l
< m{M'hf} < m{2M+b}-
Therefore,
Ré: C Ry.

In Peano’s existence theorem, there exists a solution to the initial value problem,

CDey(t) = f (YD) + £,

1
say ¥ (1,8 on [, + 5] where § = min {a, (4L}’

We proceed with & and &, such that 0 < & < & < £. We shall have that

Ve, (to) <y, (to) < yelto),

therefore

1 t
Ve, (D) = yg (o) + ) ffgz (r,y)(t - 1) d,

1 t
Ve (0] < bgz(hﬂ|4-i:a;sLfﬁLﬁa(T;yﬂ(t-7)“_ldT

AIMS Mathematics Volume 9, Issue 10,
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1 t
ﬂmUM+FGl[V@w+&W—ﬂ*%r

zﬂ%xmﬂ+f%5jﬂfwyno—fw‘dr+573j}aa—ff‘dr
(t—1)"& N (t—10)"M
F( +1) F(a+1)
F( +1) I‘(a+1)

< |)’§2 (l0)| +

|y§2 (t0)| |)’§1 (t)|

This can also be demonstrated by simple evaluating
1 t
D= y5(0| =& — & + —— - &1t -1 dr. 3.13
e = o) =16~ &1+ = [ 161 =&l dr (313
To

Noting 3¢ = & — &, > 0, we have that

(i =)' ¢ ‘( P ) (3.14)

|y§1(f) yfz(t)|_§+ T+ 1) ¢ [(a+1)

— a®
:f(l+m)>0

Then, again R, < R;, < R < Ry. We can indeed conclude that the functions y (¢, §) are equi-continuous
and uniformly bounded on [#y, 7y + 8] . Therefore, we can find a decreasing sequence (£,) such that
&, — 0 and the uniform limit n — oo

y(®) = limy &), (3.15)

exists on [#, to + ] ,; for a start, see y(ty) = yo

1 t
y(t.é&)=yo+ & + o) ff(f,y(f, ) (-1 dr, (3.16)
(@)

y(t) = hmy (t, &) = hm [yo + &, + m ff(r,y (1,&)) (t — N ldr (3.17)

_y0+11m§n+hmmff(ry(Tfn))(t— ) dr.

However, we have f being a uniform continuous function on [, fy + 8], therefore

lim £ (1, (1,€,)) =  (5,5(1), (3.18)
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) = 0+mff(?’,y(7'))(l‘—‘r)a_ld’r.

Therefore, y() is a solution of

— _ a1
y(1) = yo + e )ff(Ty(T))(t 7)" d,

Yy (¢) solution of
WD) = f,y(@), ift> 1,
y(t) = Yo, ift =1y,

on [ty, ty + B], then

Yto) =yo <yo+&=y(,8),
CDIy(1) <C DIy(t, ),

=t

for t € [ty, 1o + 8] and £ < 2, and we surely have that

s 2,
y(t) < }’(t’f) Vit € [thtO +ﬁ] :

The uniqueness of the maximal solution shows that
limy(1,) = 5(0).
uniformly. The proof is therefore completed. For minimal, it is only to consider

Ye(to) = yo — €.

We assume that all the conditions of the theorem above holds only with the adjustment that

b+(a—1)(M+3)C(@+1) :

B = min{a, ,
M+

WD) = f (1, y(0)) + &, if 1> 1,
(l()) =Y +§, ifr = to.

We shall put

Ve (1) = ye () + %

ffg (7, y() (1 = )" dr + (1 = @) fe (8, 3(2)) .

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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We have that R; C R, since Y(7,y) € R;, and we have

t

b (0.8) = ye (1) < (1 — ) {M + &) + — F( ) (M+& -1 "dr (3.29)
a(t—to)o‘
S(l—a’){M'Fé‘:}'Fm{M'Ff}

<1 Mb aa® Mb
oM 2 rean M2

a® b
((l—a/)+r( )){M+§}.

Therefore, Rs C Ry. We can also deduce that from the Peano’s existence theorem, the equation

YO =y(to) + &+ (fLy0) +H (1 —a) + f (f (@y@) +&) (1 =) dr, (3.30)

@
I'(a)

has a solution on [, fy + 8], where

b+ (a - 1)(M+ )F(a))
(3.31)

= min«a,
g ( M+3

Again, we want to construct a decreasing sequence that converges toward zero when n — oo as
done before. We proceed with &, and &, such that 0 < &, < &, < &, then we have that

V(8.6 = Yt &) = 1€ — & + (1 — @) |§1—§2|+% f €& — & (- dr
@)

_ s ) o (t—1)"
=o+(-ap+— T
_ ( —19)"
= ( T ) > 0.
Therefore,
Y(t, 1) > y(t,6), Yt € [to, 10 + ] - (3.32)
We can repeat this until we reach
y(t’f) >}’(1,§:1), (333)
where
&, <€ <...<é&, (3.34)
y(@) < y(t,&) < y(8,6). (3.35)
Taking
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¥ = limy(t,£,), 3t0) = yo, (336)

with f uniformly continuous, we have that

Y, &6) =yo+ &+ (1 —a)f (6, y(t,6)) + m ff(T’y(T’fn)) (t—7)""dr, (3.37)

Yo +§n +(1—a)f (1, y(1,&))

y(1) = 11my(t &) = r}l_)r{)lo s ff(T Y@E) (-1 dr | (3.38)
y(1) = hmy(t &) =yo+(-a)f (Y1) + m ff(T,y(T)) (-7 dr.
Let y() be any solution to our equation on [#y, fy + 3], then
(o) = yo < yo + & = ye(to), (3.39)
YO <yto)+&+ (1 —a)f 1,y (1,0) + m ff(T,)’(T,f)) (t—-7)dnr, (3.40)

y(6,6) <y((1,6),6),
fort € [to, to+B], £ <&
3.1. Extension of the Chaplygin’s existence and uniqueness approach to fractional differential
equations with singular and nonsingular kernel

In this section, we will apply Chaplygin’s strategy, which consists of constructing two convergent
sequences, one growing and serving as the solution’s low bound and the other decreasing and serving
as the solution’s upper bound [18]. Both sequences converge toward the solution of the nonlinear
equations as n approaches infinity. To fit the content of nonlinear fractional differential equations with
the Atangana-Baleanu and Caputo derivatives, we shall add more conditions to this technique.

Theorem 3.2. Extension of Chaplygin’s method: Let f € C [Ry, R], where R is defined as

Ro A6, ) It =1l < a, ly—yol <b}. (3.41)
We assume that f (t,y(t)) is bounded for any fixed t and y in Ry and

B = min {a, (W)} (3.42)

in case of Caputo, and in case of the Atangana-Baleanu,

5 min{a ((b +(@— I)M)F(a))‘l’}'

M
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We assume that f., f:. exist and f,. > 0 on Ry. Let uy = uo(t), vo = vo(t), be differentiable for ty < t <
to + B such that (t, uy(t)), (t,vo(t)) € Ry, and

1D uo(r) < f (8, uo(0))
{ uo(fo) = Yo ’ (3:43)
r D?vo(1) > f(f Vo(f))
{ Vo(to) = (3.44)
Then, we can find a fractional Chaplygin sequence (un(t), v, (1)) such that
Up(1) < U1 (1) <y (1) < Va1 () < vu(0) 1 € (0,10 + 1, (3.45)
un(to) = yo = valto),
where y (1) is the unique solution of
W DIy(t) = f(5,y(1), t € (to, 10 + B, (3.46)
y(to) = yo, t=1ty. '

Also, u,(t) and v,(t) — y(t) uniformly on [ty, ty + B] as n — oo. If in addition, for an adequate A,

0 <vo(®) — up(r) < A (3.47)
Then
24
lu, (1) — v, ()] < > t € [to,t0 +B]. (3.48)
Case with the Caputo fractional derivative:
Proof.
1
) bI'(a+1)\*
= J—] 3, 3.49
S = min {a ( 7 ) } ( )
since indeed
y(#) = yol < b, ¥t € [to, 10 + a] . (3.50)

If indeed u(?), vo(¢), and y(r) satisfy the hypothesis of this theorem, then the principle is

uo(t) < y(t) < vo(t) Vt € (1o, to + BI. (3.51)

Since

M0(1)<M0(10)+m f (6= f (2, uo(r)) dr (3.52)

a—1
—Y(fo)+m f (t =" f (ry(x) dr

= y(0).
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Similary, we have
y(#) < vo(D).
We define the function

F (3310, v0) = f (t,u(D) + £ (8, ug(1)) (¥(t) — uo(9))

7 . _ f (& up(®) — f (£, vo(1)
fl (t’ Y; Uop, VO) - f (t, I/l()(t)) + I/t()(t) — Vo(l')

When ¢t = 1,
1 (o, s up, vo) = f (20, y; uo, vo) -

We now have u,(¢) and v,(¢) as the linear differential fractional equations,
“Dfuy(f) = f (t,ui (£); o, vo) » ui(to) = yo,
CDM(t) = fi (t,vi(8); o, vo) » Vi(to) = Yo,
which exist on [, fy + ] since

lur () — uy(fo)| < mf(t )" l|f(T i (7); o, vo)| d,

M(t—to) Ma®
T T'(a+1) — F(a/+ 1)

We have that

Mo(l)<YO+m f (t =) f(r,up(r)) dr

1 _
=Yo + @ f(l‘ — )" £ (7, u0(7); 1o, vo) dt

= up(fy) + m f(f — 1) f (3, up(1); o, vo) dt

< up(fp) + m f( Y f (4, un (7); ug, vo) dT

= u(fp) + =—— f (t — 1) f (1, u1(7); ug, vo) dT = i (2).

['(a)

That is to say,
up(t) < uy (1), vt € (to, 1o + Bl,

(1) = up(0)) .

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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1 t —
wm:vmw+5—1fa—ﬂ”vﬂnmvxwmmm
@

t

1 _
=w(to) + =—— | ¢ =1 £, (x,vi(7); up, vo) dr

I'(a)

fo

<Vo(f0)+mf( — 1) f, (7, vo(1); g, vo) dT

= V()(l).
Thus,
vi(t) < vo(t), YVt € (ty, ty + BI.

We note that

(. uo3 19, v0) = f(t,u0(D)),

fituo) = ft,u(0) = f (t,u0; uo, vo)

J_C(t, Uo; Ug, Vo) = f(t,up) = ?1 (2, up; up, vo) .
We shall show that

CDYui(t) < f (tun(t)),
EDvi(1) > f (1, vi(0)).

We have in principle that f(z, y) increases with respect to y,

ui () = u(to) + mf(f—T)a ' i (7, ui (1); o, vo) dt

=uww+F%L[V@mﬁﬁ+ﬁ@mﬁ»@—wﬁﬂ0—ﬂwﬁr

= u(to) + ﬁfﬂﬂuo(ﬂ)(l‘—?’)“_l dr

| t
+ m f[f;’(T, MO(T)) (y - l/to(T))] (I _ T)oz—] dr.

Using the fact that f,(z, y) increases with respect to y, we have

t

mm<——j}mmmxwﬂ“wﬂ~—— | A @ @) 0 = uo@)| ¢ = 1) dr

I'(@) I'(a)

fo

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)
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< ﬁ f?(f, uy (7); g, vo) (t — 7)* " dr + uy (to).

Therefore,
CDY(t) < fi (2w (1); ug, Vo) - (3.66)
On the other hand, we have that

up(t) < up(t) + m ff(‘l’ up(1) (t — 1) Hdr (3.67)

1 _
= up(t) + m ffl (1, uo(7); U, vo) (t — 7)* ! d.

Then, we have that
up(t) < vi(), vt € (to, to + Bl (3.68)

Nevertheless,

[ @ up®) — f (@, vo(1)

Syt up(1) < uo(t) — vo(2)

(3.69)

1
f@&vi@) = f @ uo(0) + (8, uo(?) [vi(2) — uo()] + Efyy (t,8) [vi(0) — up()]*, (3.70)
uo(t) < é': < vi(1).

With the Taylor series expansion, repeating the mean value theorem, and using the fact that f,(z,&) > 0,
we get

vi(t) = vi(ty) + m f?l('r, vi(1), ug, vo) (t — T)C'_1 dr (3.71)

>V1(to)+r( )ff(T vi(0) (1 — 1) dr.

Therefore,
CD{vi(0) > f(t,vi(D), V1 € [t 10 + B]. (3.72)

Note that v;(?), y(¢), and u,(¢) verify the under and over function with respect to the initial condition
vi(to) =y (f0) = ui(to), (3.73)
within V¢ € [ty, o + 8] . Then,
ui (1) < y(t) < vi(t), Yt € (to, to + Bl (3.74)
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This is to say,
uo(t) < u (t) < y(t) < vi(t) < vo(t), vVt € (tp, ty + 1. (3.75)

We can repeat this process by defining a transformation A such that

(u1,v1) = A [(uo, vo)], (3.76)
(2, v2) = A [(ur, v,

(i1, Vus1) = A [, V)],

of functions that meet the following conditions,

u, (1) < un(ty) + m ff(‘r, un(7) (t — 1) d, (3.77)

u,(fo) = Yo,

V(1) > vu(to) + m f f@vu(m) (t = 1) dr,

va(to) = Yo

(1) < U1 () < Y(O) < Vi1 (1) < (1), V1 € (t, 1o + B, (3.78)

Mn+1(t) < I/ln+1(t0) + m f‘?(T’ un+1(7); l/tn(T), Vn(T)) (l _ T)(t—l dT,

Vi1 (1) < Vi1 (fo) + m fﬁ(ﬁ Va1 (13 (1), (D)) (1 = 7)° 7' dz.

(U (D)) pen> (Va(1)),ey are monotonic uniformly bounded on |7y, to + 8] . They are also equi-continuous
for each fixed n, and u,, v, are solutions of linear fractional equations. The uniform convergence leads

us to
limu, (1) = limv,(t) = y(t). (3.79)

Let

(3.80)

Q= sup |fy
up(t) <y < (1)
th<t<t)y+p

sup £y @& @)
uo(t) < y < vo(t)
h<t<th+p

ol
I
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Following the discussion presented above, we have that ¥z € [ty, 1y + B],

[vo() — ug(®)| < [vo(2) — YO + [y(£) — uo()]

< sup o) = YOl + |y(@) — uo()]
te[ to,t0+8]

< A+ 1y(@) — up(n)]
a—1
<A+ m flf(T (@) = f(rup(m) -t —1)* dr

t

1
<A+ m |f> (1, )’(T))| V(T) — uo(D)| (¢ = )V dr

1
SA+ = sup |fy (T, y(T))| V(1) = uo(0)] (1 — 1) dr

I'(@)

w uo(t) <y < (1)

<1<t

) f () = (@] (1 = 1) dr

t

<A+ % vo(T) = up(T)| (t = )" dr.

We put
20(1) = vo(t) — u(1).

Then, we get

t

Z20(H) <A+ % 20(1) (t = 1) dr.

fo

The Gronwall inequality teaches us that

Qp*
Z()(t) < Aexp [m] .

Therefore, VYt € [ty, ty + B8], we will have

Q 4
0 < vo(t) — uo(f) < Aexp [r(a—ﬁﬂ)] =2

Then,
vo(?) — ug(t) < A.

We now assume that Vn

24
|Mn(t) Vn(t)l < ﬁ

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)

(3.86)
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We want to verify this forn + 1,

1 t
Va1 (1) — Upi1 (1) = mf(f— )

Applying the mean value theorem, 3¢ € [u,,(f) — v,(¢)] . We shall have

1 [ Va1 (T) = 1ty (7)) L=/ Crn(0)
= [Up1(7) — u, (O] £, (7, 1, (7))

@8 = f (tun(0) = fiy 0,1 (6 = un(1)),  un(t) < <§&.

5 @8 a1 () = i1 (7))

= = [y
Vst (£) = U1 (1) = @ f (t—1) [ + (un+1(T)_un(T))(fy(T,§)— (T u, (T))) ldr,

a1 (1) = 1 ()] < % f (=D o1 (7) = s (D) T

T )f@—un(T)) (t = ) ityi1 (7) = (7).

Additionally, we have
1€ = up (D] < un(1) = v (DI,

and

Vi1 () = up (O] < [va(0) — un (D)1,

Q
Vi1 (8) = tpe1 (D] < m f(f - T)OZ_l Vi1 (T) = tp (D) dT

i % f(’ — )" () = u, (1)l dr

Q 21\
F( )f(t )" |Vn+1(T)_Mn+1(T)|dT+F() (ﬁ

Q - ﬁ 2/1 2 104
T f(t = e ()~ thn @l dr + o (27) B

22 /12

1_,( )f(f—T) Vi1 (T) =ty (D) dT + —— T(a+1) 22n+1

=2 g

Put

Mn(T)_Vn (T) dT.

) (t-7)""dr

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)
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m(1) = Vi1 (1) = U1 (1),

QB 2222 Q -
m(t) < T(at )22 + r@ fm(t) (t—1)" " dr.

The Gronwall inequality helps us to obtain

® < QB*2222 QB°
m — €X _—
ST+ 2 TP T+ 1)
22
< -
- 22n+] ?

b

5[80 gzﬁa
T(a+t 1)eXp(r(a+ 1))ﬂ

which is true for all n consequently,

(@) — u,()l < 55,

Y@ = v < 555

Case with the Atangana-Baleanu fractional derivative:

Proof. For the case of Atangana-Baleanu as presented before, we shall also have that

uo(t) < upto) + (1 — ) f (1, up(1)) + m f (t =) f(r,up(7)) dr

<30 + (1= ) f (30) + o f (t =" f (ry(@) dr

<volto) + (1 — @) f (£, vo(2)) + m f (t—7)*" f(r,w(1)) dr,

therefore
up(1) < y(t) < vo(t), Yt € (1, 1o + BI.

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

The functions fi(t,y, ug, vo) and f>(t,y, ug, vo) are the same like before. At the initial time, we have
that f; and f> coincide. We now consider u(¢) and v,(#). To be the solutions of the fractional linear

differential equation with the Atangana-Baleanu derivative,

BEDYu (1) = fi (6, ur (); uo, vo) » ur(fo) = Yo,

(3.97)
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ABEDIVI(1) = fo (1, v1(1); 10, v0) , Vi(to) = Yo.

Indeed,

wi(8) = (1) + (1 — @) fi (t 101 (2): g, vo) + % f (t =0 fi (1, 11 (1); g, vo) d, (3.98)

vi(0) = vi(0) + (1 = @) fo (£, v1(0): g, vo) + % f (t =" 5 (.v1(7); tg, vo) d,

which exist on [fo, to + 8] . However, we note that

t

uo(t) < uo(D) + (1 — @) f (L uo(0) + —— | (1 =) £ (r. up(r)) d

I'(@)
fo
t
a _
= uy(ty) + (1 — @) fi (t, up(t); ug, vo) + m f(t -7 ! i (1, up(7); ug, vo) dr. (3.99)
4]
We shall then obtain
MQ(I) < ul(t); 1t e (l(), 1y +ﬁ] (3100)
In a similar way, we shall have
vi(t) < vo(t); t € (ty, 1o + S]. (3.101)

We will now show that the function u;(r) and v;(¢) satisfy the inequalities with the property of f,
together with the mean square value, we have

t

i () = uy(to) + (1 — @) fi (8, uy(0): g, vo) + % (t =" fi (r, w1 (1); g, vo) dt
<u(to) + (1 —a) fi (¢, u1 (1)) + %a) f(t — ) £ (1, ui (7)) dr, (3.102)

Yt € [to, 1o + B] .

We also have

t

uo(t) < uo(r) + (1 — @) f (t, u(1)) + % (t = 1) f (7, up()) d,
Q)

fo

= ug(to) + (1 = @) fi (£, uo(0); o, vo) + % f (-1 f (ruo(Diupvo)dr. (3.103)
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Therefore, we shall have
vo(1) < vi(1); t € (fo, to + Bl
Additionally, we have
J (t,up(0) — f (&, vo(D))
uo(t) — vo(?) '
Due to the value of f (¢, v,(t)), fix (t,&) > 0, and the mean value theorem, we have

St uo(0)) <

vi() = vi(to) + (1 — @) fo (£, vi(2); up, vo) + =—— f(f - T)a_1 o (@vi(7); ug, vo) dt

I'(a)

> vi(to) + (1 —a) 2, vi(D) + m t -7 fH (T vi()dr,

fo

Yt € [to, 20 + ] -

Therefore, we have
uo(t) < uy(t) < y(1) <vi(t) < vo(t), Yt € (ty, 1o + Bl

We shall again consider the mapping

(un+17 Vn+1) = K [(un’ Vn)] s

of functions that hold the following inequalities:

un(1) < uy(to) + (1 = @) f (1, un(1) + —— f(t - f(ru(0) dr,

I'(a)

V(1) > va(to) + (1 — @) f (1, va(0)) + m f( f (@v(1)dr,

Up(1) < U1 (1) < Y(£) < V1 (1) < vu(2), V1 € [t0, 19 + ] .
un+l(t) = un+l(t0) + (1 - a’) fl (t9 un+l(t); un(t)» Vn(t))
+ % f (t = D" fi (7 e (0): 10, (7), V(7)) T,
Vn+1(t) = Vn+l(t0) + (1 - a) fl (l, Vn+1(t); un(t)’ vn(t))

+ %{) f (t =1 £ (7, Vpet (0 (), V(D)) diT.

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)

{u,, v,} are indeed monotonic and uniformly bounded on [fy,#y + B]. Since they are linear, they are

equi-continuous, therefore u, () and v, (f) converges when n — oo.
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Q and Q are the same as before. Note that

0 < vo(1) = y(1) < vo(t) — ug(),
[vo() — up(0)| < |vo(2) — y(O| + |[y(£) — uo(1)|

< sup |vo(1) =yl + [y(®) — uo(®)
te[to.to+5]

< A+ |y(t) — up(0)|
- @) (f(t,y(2) = f(t, up(1))

o f(f(T y(1) = f(1,up(7))) — (t —

IA
l>|

)a—l dr

(1 — @) |f(t,y() = f(t, uo(t))
r(a)f (T, (T) = f(r, up())| = (¢ = 7)

IA
l>|

aldT.

(3.111)

Since f, (¢, (1)) exists by hypothesis, we can find by the mean of the well-known mean value theorem

y <& < up,

such that
F&y) = f(tuo) = £ (6,6 (5 — o).

Therefore,

(1-a) sup |f @O0~ uo()
vo(?) — up(t) < A+ t€[ 10, to+ﬁ]
+@ sup
te[to.to+8]

£ @8 f (1) = up(1)) = (t — 1) dr,

having that YV € [z, ty + f3]
up(1) < y(2) < vo(2).
We will have

Vo) = uo() < A+ (1 = @) Qlvo(t) — up(t)| + m f(t — 1) (o(7) = up(7)) d.

We need, in addition,
l+(@-1)Q >0,

such that
t 1) < A af t a-1 J
vo(f) — up(t) < 1+(a/—1)Q+F(a){1+(a—1)§2}f(t_T) (vo(T) — up(7)) dr.
We put

m(r) = vo(t) — uo(?).

(3.112)

(3.113)

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)
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Thus, by the Gronwall inequality, we have

m(t) <

Qp*
exp .
l+(@-1)Q Fr'ao{l+(@-1)Q}
Therefore, we assume that
Vo(f) - Mo(t) <A

The formula is true when n = 0, and we assume that Yn > 0

24
|Vn(t) un(t)l < ﬁ

We want to verify the above formula when we reach n + 1.

(D) — e () = (1 — a)[ St v (03 ua(0), v (1)) ]

— F(t, 1 (£); tn(2), v, (0))

e f[ FoE v (03 (0, v, (0) ]_(I_T)a_l "
T@ J | = (00,00, v

S @un(0)—f(t,va(t))
—(1-a) [ Lt D) (1) - 1, (1)) ]

— (8, un(1)) V(1) — u, (1))

S@un(0))—f(T,va (7))
(y(T) un(T)) a—1
1, (T)—v,(7) _ d
T f [ — 1,1, (1)) ((T) = 10a(T)) ](I o

f(tu )~ ftva(®) _
< (1 _ a)[ Un (D= (D) (Vn+1(t) un(t)) ]

= (8 un (1) (a1 (1) = un (1))

f(Tu ()= f(T,vu(1)) (V (T) u (T))
U (T) = (T) n+l1 n _ a1
F (a) f [ ] (r—1)" " dr.

(@ un(7) (1 (T) = un (7))
Using the mean value theorem 3¢ such that
un(1) < & < (1),
then

V,H.l(t) _ I/ln+1(t) < (1 _ a) { f;)(t’ 'f) [Vn+1(t) - un+1(t)] }

+ [t (1) = (O] [ £,(8,€) = £,(8, )

e f { A Wt (1) =ty (7)] }(I_T)a_l .
L@ J |+t (@) = @18 - fiT,u)] '

Also, we have
L6 — [t u) = £yt ) [€ —u,(D)],
with

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)
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u,(t) <n<é&.

Then, we will have

Vn+1(t) - un+l(l) < (1 - Q){ f;)(t’ 6) [Vn+l(t) - un+l(t)] }

+ [t () — un(0)] fiy(2,1) [€ — ua(D)]

@ t f?(T’ f) [vn+l(T) - un+l(T)] a—1
+ m f{ y }(t - T) dr.

+ [un+l(T) - un(T)] fyy(T, 77) [é: - un(T)]
We have as before that

& = un(D] < () — un(0)],
|t 1 (1) = un(D)] < |vi(2) — (0] .

Therefore, we have

Vet () = sy (1) < (1= @) {Q 1 (1) = sty (0] + B [v(0) = w, (O]
¢ [ QDner(0) = thper (0] -
+mf { +Q (1) = un(OP }“‘T) an

I+(@-1)Q >0,

under the condition that

then
(1 — @) Q[vu(0) — uu(0)]?
l+(a@-1)Q
. aQ
T+@-1DT (@)

vn+l(t) - un+l(t) <

f (t =) [va(7) — un (1) d7

aQ ’ -
* 1+ @@= (a) f[vnH(T) — Uy (D] (=) dr
< M(2)2+ aQ) 22 zﬁ_“
T l+@-DQ\2*] A+ (@-DYT (@ \2*] «a
aQ ’ -
T+ @- DT @ f a1 (7) = i (D] (¢ = 1) d
< (1-2)Q N QB” 21\2
N1+ @-1DQ d+(@-1DD)TI (@) ﬁ

. aQ
(1+(@-DYT (@)

f[vnH(T) - un+1(T)] (l - T)a_l dT-

(3.125)

(3.126)

(3.127)

(3.128)

(3.129)
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By the Gronwall inequality, we have

(1-2)Q 2 =
24 BQ
1 (6) =ty (£) < 1+(a/:10)§2 e ‘
(1+(a-DQ)T(a)
We will need
Q) l-a)Q QB”
4.2 €Xp ﬁ ( a) + ﬁ = 1’
T+@-1DDI' |\ l+@-1HQ d+(@-1)DTI'(a)
such that

24
Va1 (£) = 1 (D] < GYIIE

which completes the proof.

4. Numerical solution

(3.130)

(3.131)

(3.132)

O

We shall adopt the midpoint approximation to derive a numerical solution to the Caputo fractional

differential equations

D) = f(6,y1), O<a <1,
¥(fo) = Yo.

4.1)

We impose that f satisfies the criteria described in the previous section, such that the existence of a

unique solution could be observed. From [20], we have that

15

1
y(t,) = y(to) + Qo t,— 0" f(r,y@)dr

To

ha n—1 h yj+))j+l
= -, 1~ j A~ - - -Jj- 1 ¢ 5
y(t) + Fa+D jzof(j > > {(n-7)"-m—-j-D%
n-2
“ h yji1ty; ) .
— v L _ona —i-1)
o =y (f) + Fa+l) jzof(tj 5T ){(n Di=m—j-1%
h® h y,+ Yo
+r(a+1)f(t”‘l+2’ 2 )

a n—1

_ h . o
y,,=y(ro>+m;f(tj,yj){<n—1> —(n=j- 1),

which is of order O(h®*!). The high order here is when @ = 1, and we have O(h?).
In the case of the ABC derivative, we have

n—2
_ ah® h yj+yj+1
n = Iy 1- t,, _— E ti+ —,
Yy y(0)+( (I)f( yn)+l—~(a+1)j:0f(]+2 2 )

4.2)

4.3)

4.4)
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x{n=pN"-m-j-D"%+

b

h yn+yn1
['(a +1)f( )

a

,_.

Ftiy) i =" == j— 1)

J=0

Vo =y{o)+ U —a) f(tue1,yp-1) + m

The above can be used to solve any nonlinear equation. The stability and convergence analysis of the
above is the same with that of the fractional Euler but the order here is O(h®*!) if @ = 1. We have
O(h?).

4.1. Application to fractional Bernoulli and Abel nonlinear differential equations

In this section, we shall consider the well-known Abel equation of the first kind and

WD) = [0y + L0y + 0y + folo), (4.5)
and the Bernoulli equation
WD) + P(n)y(1) = Q()y™. (4.6)
We choose P(t), Q(1), f3(1), f>(t), f1(¢) and fy(¢) such that if

F,y0) = HOY + L0y + fild)y + fold), 4.7)
and
fi @, y(0) = Q@)y" — P(t)y(1), (4.8)

are continuous and obey the criteria described in the theorem, or at least that these functions satisfy
the condition under which the midpoint is derived. In the case of the Abel equation, we evaluate the
function f(z,y)

[@,y) = L@ + L@y + fi(0)y + foo). 4.9)
We chose f3(t), f2(1), fi(t), and fy(?) to be smooth functions.

H6y) =36+ 26y + fi, (4.10)
Fo(ty) = 6f3y +25.

Indeed, f(f,y) and f,,(#,y) exist and are continuous on y for each fixed r. To satisfy the condition
fw(t,y) > 0, we impose f3 and f, to be positive within the chosen interval. Thus, by the fractional
Chaplygin uniqueness theorem, the fractional Abel admits a unique solution. In the case of the
Bernoulli equation, we have that

Silt,y) = Q0)y™ = P@)y(0). (4.11)

We chose suitable Q(¢) and P(r) that will help satisfy the conditions requested.

fiy(t,y) = my"™' Q1) = P(1), (4.12)
fiy(t,y) = m(n = 1)y"2Q(1), ¥Ym > 2.
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fiy(t,y) > 0 for each fixed 7 if Q(¢) is positive. Therefore, we have that f, and f;,, exist and, in
addition, f;,,(¢,y) > 0. With the Chaplygin for fractional differential equations, the Bernoulli equation
admits a unique solution in a suitable chosen interval. For the Abel equation of the first kind, we have

L] ) ()
Y (tn) =y (o) + ( h+ 5 Z +15 (1) (25 )2 (4.13)
j=0 +f1 ( )(>,+y,+1) + fO (l‘j)
X{n-n*-m-j-1%

£ ) (232’
h* Ynt¥n-1 2

+ F(CY + 1) +f2 (fn) (T) s

+i (6 (25=) + fo (1)

In the case of the ABC derivative, we have

i () (2222 + o (6)
Z f32( )(y/erﬁl) ]
F(a/+ 1) +f2 y]+y,+1) +f1( )(yﬁym)_l_fo( )
X{(n—-j* —(n—J—l)}

o’ {ﬁmww%$+ﬁmxw%#}

"T@rD| A (22=) + f

Yo =0+ (1 —a {‘ﬁ(””(h+ﬁl) +”ﬁ(”)(&%%if } 4.14)

where

— 5 (0) (252 |
w S e )60 o

In Figure 1, we present the numerical simulation of the Abel equation with the Caputo derivative
for different values of alphas. Here, we chose the following equation:

CDy(1) = ¥ (1) = 3021 + 2y(t) + 0.1, y(0) = 0.1. (4.16)
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Figure 1. Numerical solution of the Caputo fractional Abel equation with different values of
fractional orders.

5. Conclusions

Fractional ordinary differential equations with singular and nonsingular kernels are powerful
mathematical tools used to model real-world problems. They have been applied in many fields of
science, technology, and engineering in the last decades. However, due to the complexities associated
with these equations, it is sometimes not evident to obtain their exact solutions; thus, many researchers
rely on numerical schemes for this purpose. However, it is mathematically important to at least show
that they have exact solutions and that those solutions are unique. Some important theories on existence
and uniqueness have been developed within the scope of classical differentiation and conditions. In this
paper, we have extended some of these conditions within the scope of fractional differentiation with
power law and the Mittag-Leffler kernels. In particular, the maximal and minimal techniques with
additional conditions for these equations are presented. To establish the existence and uniqueness of
solutions for these equations, the Chaplygin approach, which consists of generating two increasing
and decreasing sequences surrounding the solution, was presented with additional conditions. For an
illustrative example, the Bernoulli and Abel equations were considered.
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