Research article Special Issues

An almost second order uniformly convergent method for a two-parameter singularly perturbed problem with a discontinuous convection coefficient and source term

  • Received: 01 July 2024 Revised: 07 August 2024 Accepted: 15 August 2024 Published: 27 August 2024
  • MSC : 65L10

  • In this paper, we discuss a higher-order convergent numerical method for a two-parameter singularly perturbed differential equation with a discontinuous convection coefficient and a discontinuous source term. The presence of perturbation parameters generates boundary layers, and the discontinuous terms produce interior layers on both sides of the discontinuity. In order to obtain a higher-order convergent solution, a hybrid monotone finite difference scheme is constructed on a piecewise uniform Shishkin mesh, which is adapted inside the boundary and interior layers. On this mesh (including the point of discontinuity), the present method is almost second-order parameter-uniform convergent. The current scheme is compared with the standard upwind scheme, which is used at the point of discontinuity. The numerical experiments based on the proposed scheme show higher-order (almost second-order) accuracy compared to the standard upwind scheme, which provides almost first-order parameter-uniform convergence.

    Citation: M. Chandru, T. Prabha, V. Shanthi, H. Ramos. An almost second order uniformly convergent method for a two-parameter singularly perturbed problem with a discontinuous convection coefficient and source term[J]. AIMS Mathematics, 2024, 9(9): 24998-25027. doi: 10.3934/math.20241219

    Related Papers:

  • In this paper, we discuss a higher-order convergent numerical method for a two-parameter singularly perturbed differential equation with a discontinuous convection coefficient and a discontinuous source term. The presence of perturbation parameters generates boundary layers, and the discontinuous terms produce interior layers on both sides of the discontinuity. In order to obtain a higher-order convergent solution, a hybrid monotone finite difference scheme is constructed on a piecewise uniform Shishkin mesh, which is adapted inside the boundary and interior layers. On this mesh (including the point of discontinuity), the present method is almost second-order parameter-uniform convergent. The current scheme is compared with the standard upwind scheme, which is used at the point of discontinuity. The numerical experiments based on the proposed scheme show higher-order (almost second-order) accuracy compared to the standard upwind scheme, which provides almost first-order parameter-uniform convergence.



    加载中


    [1] Z. Cen, A hybrid difference scheme for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient, Appl. Math. Comput., 169 (2005), 689–699. https://doi.org/10.1016/j.amc.2004.08.051 doi: 10.1016/j.amc.2004.08.051
    [2] M. Chandru, P. Das, H. Ramos, Numerical treatment of two-parameter singularly perturbed parabolic convection diffusion problems with non-smooth data, Math. Methods Appl. Sci., 41 (2018), 5359–5387. https://doi.org/10.1002/mma.5067 doi: 10.1002/mma.5067
    [3] M. Chandru, T. Prabha, P. Das, V. Shanthi, A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms, Differ. Equ. Dyn. Syst., 27 (2019), 91–112. https://doi.org/10.1007/s12591-017-0385-3 doi: 10.1007/s12591-017-0385-3
    [4] M. Chandru, T. Prabha, V. Shanthi, A parameter robust higher order numerical method for singularly perturbed two parameter problems with non-smooth data, J. Comput. Appl. Math., 309 (2017), 11–27. https://doi.org/10.1016/j.cam.2016.06.009 doi: 10.1016/j.cam.2016.06.009
    [5] P. Das, V. Mehrmann, Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters, BIT Numer. Math., 56 (2016), 51–76. https://doi.org/10.1007/s10543-015-0559-8 doi: 10.1007/s10543-015-0559-8
    [6] E. P. Doolan, J. J. H. Miller, W. H. Schilders, Uniform numerical methods for problems with initial and boundary layers, Vol. 1, Boole Press, 1980.
    [7] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Singularly perturbed convection–diffusion problems with boundary and weak interior layers, J. Comput. Appl. Math., 166 (2004), 133–151. https://doi.org/10.1016/j.cam.2003.09.033 doi: 10.1016/j.cam.2003.09.033
    [8] P. A. Farrell, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Singularly perturbed differential equations with discontinuous source terms, In: Analytical and numerical methods for convection-dominated and singularly perturbed problems, Nova Publishers, 2000.
    [9] P. A. Farrell, A. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Robust computational techniques for boundary layers, CRC Press, 2000. https://doi.org/10.1201/9781482285727
    [10] P. A. Farrell, A. F. Hegarty, J. J. H. Miller, E. O'Riordan, G. I. Shishkin, Global maximum norm parameter-uniform numerical method for a singularly perturbed convection-diffusion problem with discontinuous convection coefficient, Math. Comput. Model., 40 (2004), 1375–1392. https://doi.org/10.1016/j.mcm.2005.01.025 doi: 10.1016/j.mcm.2005.01.025
    [11] J. L. Gracia, E. O'Riordan, M. L. Pickett, A parameter robust second order numerical method for a singularly perturbed two-parameter problem, Appl. Numer. Math., 56 (2006), 962–980. https://doi.org/10.1016/j.apnum.2005.08.002 doi: 10.1016/j.apnum.2005.08.002
    [12] N. Kumari, S. Gowrisankar, A robust B-spline method for two parameter singularly perturbed parabolic differential equations with discontinuous initial condition, J. Appl. Math. Comput., 2024, 1–25. https://doi.org/10.1007/s12190-024-02168-3
    [13] J. Mohapatra, Equidistribution grids for two-parameter convection–diffusion boundary-value problems, J. Math. Model., 2 (2014), 1–21.
    [14] E. O'Riordan, Opposing flows in a one dimensional convection-diffusion problem, Centr. Eur. J. Math., 10 (2012), 85–100. https://doi.org/10.2478/s11533-011-0121-0 doi: 10.2478/s11533-011-0121-0
    [15] E. O'Riordan, M. L. Pickett, G. I. Shishkin, Singularly perturbed problems modeling reaction-convection-diffusion processes, Comput. Methods Appl. Math., 3 (2003), 424–442. https://doi.org/10.2478/cmam-2003-0028 doi: 10.2478/cmam-2003-0028
    [16] K. C. Patidar, A robust fitted operator finite difference method for a two-parameter singular perturbation problem, J. Differ. Equ. Appl., 14 (2008), 1197–1214. https://doi.org/10.1080/10236190701817383 doi: 10.1080/10236190701817383
    [17] T. Prabha, M. Chandru, V. Shanthi, Hybrid difference scheme for singularly perturbed reaction-convection-diffusion problem with boundary and interior layers, Appl. Math. Comput., 314 (2017), 237–256. https://doi.org/10.1016/j.amc.2017.06.029 doi: 10.1016/j.amc.2017.06.029
    [18] T. Prabha, M. Chandru, V. Shanthi, H. Ramos, Discrete approximation for a two-parameter singularly perturbed boundary value problem having discontinuity in convection coefficient and source term, J. Comput. Appl. Math., 359 (2019), 102–118. https://doi.org/10.1016/j.cam.2019.03.040 doi: 10.1016/j.cam.2019.03.040
    [19] S. C. S. Rao, A. K. Chaturvedi, Parameter-uniform numerical method for a two-dimensional singularly perturbed convection–reaction–diffusion problem with interior and boundary layers, Math. Comput. Simul., 187 (2021), 656–686. https://doi.org/10.1016/j.matcom.2021.03.016 doi: 10.1016/j.matcom.2021.03.016
    [20] H. G. Roos, M. Stynes, L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer, 1996.
    [21] N. Roy, A. Jha, A parameter uniform method for two-parameter singularly perturbed boundary value problems with discontinuous data, MethodsX, 10 (2023), 102004. https://doi.org/10.1016/j.mex.2023.102004 doi: 10.1016/j.mex.2023.102004
    [22] H. Schlichting, K. Gersten, Boundary-layer theory, Springer Science & Business Media, 2003.
    [23] V. Shanthi, N. Ramanujam, S. Natesan, Fitted mesh method for singularly perturbed reaction-convection-diffusion problems with boundary and interior layers, J. Appl. Math. Comput., 22 (2006), 49–65. https://doi.org/10.1007/BF02896460 doi: 10.1007/BF02896460
    [24] M. Shivhare, P. Pramod Chakravarthy, D. Kumar, Quadratic B-spline collocation method for two-parameter singularly perturbed problem on exponentially graded mesh, Int. J. Comput. Math., 98 (2021), 2461–2481. https://doi.org/10.1080/00207160.2021.1901277 doi: 10.1080/00207160.2021.1901277
    [25] G. Singh, S. Natesan, Study of the nipg method for two–parameter singular perturbation problems on several layer adapted grids, J. Appl. Math. Comput., 63 (2020), 683–705. https://doi.org/10.1007/s12190-020-01334-7 doi: 10.1007/s12190-020-01334-7
    [26] A. Vasil'Eva, Asymptotic methods in the theory of ordinary differential equations containing small parameters in front of the higher derivatives, USSR Comput. Math. Math. Phys., 3 (1963), 823–863.
    [27] R. Vulanovi$\acute{c}$, A higher-order scheme for quasilinear boundary value problems with two small parameters, Computing, 67 (2001), 287–303.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(395) PDF downloads(55) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog