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1. Introduction

Singularly perturbed problems (SPPs) frequently appear in several fields of applied mathematics,
such as fluid dynamics [22], chemical reactor theory [26], etc. These problems are characterized
by the presence of a small positive parameter multiplying the highest-order derivative, but other
small parameters may appear affecting other terms. Depending on the parameter location and the
smoothness of the coefficients of the SPP, the solution shows steep gradients on the boundary and
interior parts of the domain, which are characterized as boundary and interior layers. The layer
occurrence causes several hurdles (which include huge computational costs in the case of uniform
meshes) in the numerical analysis, which is the reason to consider an adaptive mesh. The simplest
adaptive mesh in this context is due to Shishkin [9], who proposed a piecewise uniform mesh to capture
the layer behavior. In contemporary literature, numerical methods for SPPs (involving only a diffusion
parameter) with smooth data can be seen in [6,9,20], while for non-smooth data, the works [1,7,8,10]
considered Shishkin meshes.

Two-parameter problems involving convection (εc) and diffusion (εd) parameters extend the
convection and reaction-dominated models. In recent years, several higher-order accurate boundary
layer resolving numerical methods based on hybrid schemes, cubic spline schemes, asymptotic
expansion methods, etc., have been presented in [11, 12, 15, 24, 25, 27] for two-parameter problems
with smooth data. The non-smooth data produce interior layers in addition to the boundary layers,
whose sharpness depends on the sign of the convection coefficient and has been investigated by various
researchers for both singularly perturbed ordinary and partial differential equations (for instance,
see [2–4, 17, 19, 21]). The works [7, 10, 14] (involving only a diffusion parameter) are devoted to
the numerical analysis of interior layers due to the presence of a discontinuous convection coefficient.
A rigorous analysis of the effect of all possible subclasses of discontinuous convection coefficients can
be found in Riordan [14, 18]. These above works motivated us to develop a higher-order numerical
approximation for a two-parameter singularly perturbed problem where some of the coefficients have
jump discontinuities.

Motivated by the studies in [14, 18], we consider the following two-parameter singularly perturbed
problem with a discontinuous convection coefficient and a discontinuous source term:

Lu(x) ≡ εdu′′(x) + εca(x)u′(x) − b(x)u(x) = f (x) ∀ x ∈ (Γ− ∪ Γ+), (1.1)
u(0) = u0, u(1) = u1, (1.2)

where a(x) ≤ −α1 < 0 for x ∈ Γ− and a(x) ≥ α2 > 0 for x ∈ Γ+, (1.3)
| [a](d) |≤ C, | [ f ](d) |≤ C. (1.4)

Here εd and εc are known as singular perturbation parameters, where 0 < εd ≪ 1, 0 ≤ εc ≤ 1. For
simplicity, we consider the domain as Γ = [0, 1], with Γ = (0, 1), Γ− = (0, d) and Γ+ = (d, 1). Here
b(x) is assumed to be a sufficiently smooth function in Γ satisfying b(x) ≥ β > 0 and a(x), f (x) are
sufficiently smooth in (Γ− ∪ Γ+)∪ {0, 1}. Also, a(x) and f (x) have a jump discontinuity at d ∈ Γ, where
the jump of ω(x) at x = d is denoted as [ω](d) = ω(d+) − ω(d−). These assumptions ensure that the
SPP (1.1)-(1.2) has a solution u(x) ∈ C0(Γ) ∩C1(Γ) ∩C2(Γ− ∪ Γ+).

Note that εc = 1 reduces the general problem in (1.1) to a convection-diffusion problem [7], and
εc = 0 reduces (1.1) to a reaction-diffusion problem [8]. The nature of the solution behaves differently
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with respect to the ratio of the parameters εd/ε
2
c . The solution behaves similarly to a dissipative case,

when εd/ε
2
c → 0 as εc → 0, and it acts as in the dispersive case when ε2

c/εd → 0 as εd → 0 [16].
Hence, we consider the following two cases for the numerical analysis of (1.1):
Case (i):

√
αεc ≤

√
γεd,

Case (ii):
√
αεc ≥

√
γεd,

where γ = minΓ

{
b(x)
α(x)

}
, where α(x) = α1, x < d, and α(x) = α2, x > d.

Apart from the assumptions considered in (1.3), we have also noted the case when the sign of the
convection coefficient is reversed in Γ− and Γ+ (i.e., a(x) ≥ α1 > 0, x ∈ Γ− and a(x) ≤ −α2 < 0, x ∈ Γ+)
as a remark.

For two-parameter singularly perturbed problems with smooth data, Riordan et al. [15] analyzed the
upwind scheme on a Shishkin mesh and obtained a uniform accuracy of O(N−1 ln2 N), where N defines
the number of partitions in the domain. Later, Gracia et al. [11] established a higher-order numerical
method for this problem, which is based on the combination of upwind, central difference, and mid-
point schemes in various partitions of the domain. Their numerical method provided parameter-
uniform convergence of accuracy O(N−2 ln3 N), if

√
αεc ≤

√
γεd, and O(N−2 ln2 N), if

√
αεc ≥

√
γεd

on a Shishkin mesh. In [23], the authors introduced a discontinuity in the source term for this problem
and obtained O(N−1 ln2 N), for

√
αεc ≤

√
γεd and O(N−1 ln3 N), for

√
αεc ≥

√
γεd on a Shishkin

mesh. Several other adaptive meshes, based on arc-length equidistribution [13] and curvature-based
monitor functions [5], have also been considered to improve uniform accuracy up to the first-order.

The above articles motivated us to develop a higher-order numerical analysis for two-parameter
problems with a discontinuous convection coefficient and source term. The discontinuous data make
the numerical analysis different as it gives rise to the interior layer in addition to the boundary layer.
We consider the error analysis on the Shishkin mesh and show that the error is independent of the
convection and diffusion parameters.

Throughout this article, we denote C as a generic positive constant independent of the number of
nodal points and the perturbation parameters εd, εc. The convergence is estimated in the infinity norm,
which is denoted as ∥u∥Ω = maxx∈Ω |u(x)| for a function u(x) defined on a general domain Ω. We also
write ∥.∥ = ∥.∥Ω, if the norm and domain are obvious. Accordingly, the corresponding discrete norm is
denoted as ∥.∥ = ∥.∥ΩN . Without loss of generality, we assume that the number of mesh intervals N is
divisible by 2.

The paper is arranged as follows: In Section 2, we note the existence of the solution and derive
a minimum principle for (1.1)-(1.2), from which it follows the stability of the solution u(x). Some
estimates of the solution and its derivatives are also stated here. Section 3 presents a discrete problem
based on a hybrid finite difference scheme corresponding to the continuous problem. A decomposition
of the discrete solution is introduced in Section 4, which helps us evaluate the truncation error estimate.
In Section 5, we have shown that this estimate provides a higher-order εd-εc uniform numerical
approximation in the discrete maximum norm. Numerical examples, given in Section 6, validate the
theoretical findings. In the end, we draw a conclusion by highlighting the major contribution of the
paper.
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2. Derivative bounds of the continuous solution

In this section, we consider a few analytical properties of the solution of (1.1)-(1.2). The solution
is decomposed into regular and singular components, which describe the solution behavior at the outer
and inner regions of the boundary and interior layers, respectively. This decomposition will be used
in the subsequent sections to obtain a parameter-uniform error estimate. We begin this section with an
existence theorem.

Theorem 2.1. The SPP (1.1)-(1.2) has a solution u(x), which belongs to the class C0(Γ) ∩ C1(Γ) ∩
C2(Γ− ∪ Γ+).

Proof. By using the constructive method presented in [8, 10], a solution of the SPP (1.1)-(1.2) can be
obtained. □

The operator L at (1.1) satisfies the following minimum principle on Γ.

Lemma 2.1. If a function u(x) ∈ C0(Γ) ∩ C2(Γ− ∪ Γ+) satisfies u(0) ≥ 0, u(1) ≥ 0, Lu(x) ≤ 0 for all
x ∈ (Γ− ∪ Γ+) and [u′](d) ≤ 0, then u(x) ≥ 0 ∀ x ∈ Γ.

Proof. For the proof and the existence of the solution of the SPP (1.1)-(1.2), the reader is referred
to [18]. □

As a consequence, we get the following stability estimate:

Lemma 2.2. Let u(x) be a solution of (1.1)-(1.2), then

||u(x)||Γ ≤ max {|u(0)|, |u(1)|} +
1
β
|| f ||Γ\{d}.

One can also obtain the following bounds for the solution derivatives when a(x) and f (x) have a
jump discontinuity at x = d (see [18]).

Lemma 2.3. Let u(x) be the solution of problem (1.1)-(1.2), where |u(0)| ≤ C and |u(1)| ≤ C. Then, for
all 0 ≤ k ≤ 4, it holds

||u(k)(x)||Γ\{d} ≤
C

(
√
εd)k

1 +
(
εc
√
εd

)k
 .

Proof. Let us begin the discussion on the domainΩ−. Consider any point x ∈ (0, d) and a neighborhood
Np = (p, p + r), where r is positive, such that x ∈ Np ⊂ (0, d). Since u is differentiable in Np, the Mean
Value Theorem implies that there exists q ∈ Np such that u′(q) = u(p+r)−u(p)

r . Now, we obtain

|u′(q)| ≤
|u(p + r)| + |u(p)|

r
≤
∥u∥
r
.

We can define u′(x) as

u′(x) = u′(q) +
∫ x

q
u′′(η)dη

= u′(q) + ε−1
∫ x

q

(
f (η) + b(η)u(η) − εca(η)u′(η)

)
dη
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= u′(q) + ε−1
∫ x

q

(
f (η) + b(η)u(η) + εca′(η)u(η)dη −

εc

εd
(a(x)u(x) − a(q)u(q))

)
.

Further, the result for the first derivative can be deduced assuming that x − q ≤ r and r =
√
εd, from

which we obtain

|u′(x)| ≤ C
(
1
r
+

r
εd
+
εc

εd

)
max {||u||, || f ||}

≤
C
√
εd

(
1 +

(
εc
√
εd

))
max {||u||, || f ||} .

The bounds for the second derivative will be

u(2)(x) =
1
εd

(
f (x) + b(x)u(x) − εca(x)u′(x)

)
,

|u(2)(x)| ≤
1
εd

max (|| f || + ||b|| ||u||) +
εc

εd
||a||

(
C
√
εd

(
1 +

εc
√
εd

))
max {||u||, || f ||}

≤
C
εd

(
1 +

εc
√
εd
+
ε3

c

εd

)
max {||u||, || f ||} ,

∥u(2)(x)∥ ≤
C(√
εd

)2

1 + (
εc
√
εd

)2 max {||u||, || f ||} .

Now, we differentiate (1.1) to obtain the third derivative bounds, which result in

u(3)(x) =
1
εd

(
f ′(x) + (b(x)u(x) − εca(x)u′(x))′

)
,

||u(3)(x)|| ≤
C

εd
√
εd

(
1 + εc +

√
εd +

εd
√
εd
+

ε2
d
√
εd
+

ε3
d

εd
√
εd

)
max {||u||, || f ||, || f ′||} ,

||u(3)(x)|| ≤
C(√
εd

)3

1 + (
εc
√
εd

)3 max {||u||, || f ||, || f ′||} .

Finally, we derive the bounds for the fourth derivative as follows:

u(4)(x) =
1
εd

(
f ′′(x) + b′′(x)u(x) + b′(x)u′(x) + b(x)u′′(x) + b′(x)u′(x) − εca′(x)u′′(x)

−εca′′(x)u′(x) − εca′(x)u′′(x) − εca(x)u′′(x)
)
,

|u(4)(x)| ≤
C
εd

(
∥ f ′′∥ + ∥b′′∥ ∥u∥ + 2∥b′∥ ∥u′∥ + ∥b∥ ∥u′′∥ + 2εc∥a′∥ ∥y′′∥ + εc∥a′′∥ ∥u′∥ + εc∥a∥ ∥u′′′∥

)
.

After simplifying it, we can write the required result as

||u(4)(x)|| ≤
C(√
εd

)4

(
εd + 1 +

√
εd + εc + εc

√
εd +

εc
√
εd
+

ε2
c

(
√
εd)2

+
ε3

c

(
√
εd)2
+ ε2

c + +
ε4

c

(
√
εd)4

)
max {||u||, || f ||, || f ′||, || f ′′||} ,
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||u(4)(x)|| ≤
C(√
εd

)4

1 + (
εc
√
εd

)4 max {||u||, || f ||, || f ′||, || f ′′||} .

The proof for the domain Ω+ can be obtained using similar arguments. □

Before going into further details about the decomposition of u(x) into regular and singular
components, we will consider the following: Let F(x) be a smooth function in (Γ− ∪ Γ+), such that
F(x) and its derivatives have a jump discontinuity at d ∈ Γ. Consider u(x) ∈ C1(Γ) ∩ C2(Γ− ∪ Γ+), such
that Lu(x) = F(x), x ∈ (Γ− ∪ Γ+),

u(0) = p, u(1) = q.
(2.1)

It can be proven that problem (2.1) has a unique solution [7]. Let

F∗(k)(x) =

F(k)(x), x ∈ (0, d),
F(k)(d−), at x = d,

and further let u∗l (x) be the solution ofLu∗l (x) = F∗(x), x ∈ (0, d),
u∗l (0) = p, u∗l (d) = u(d).

Similarly, one can define u∗r(x) on the interval [d, 1]. Now

u(x) =


u∗l (x), x ∈ [0, d),
u∗l (d) = u∗r(d),
u∗r(x), x ∈ (d, 1].

To establish a sharper bound on the error analysis, the solution u(x) is decomposed into a regular
component v(x) and a singular component w(x) such that

v(x) =

v−(x), x ∈ Γ−,

v+(x), x ∈ Γ+,

and w(x) = wl(x) + wr(x) where

wl(x) =

w−l (x), x ∈ Γ−,

w+l (x), x ∈ Γ+,
and wr(x) =

w−r (x), x ∈ Γ−,

w+r (x), x ∈ Γ+.

We now define the regular and singular components as the solutions to the following problems,
respectively.

Lv = f , x ∈ (Γ− ∪ Γ+),
v(0) = u(0), v(1) = u(1), and v(d−), v(d+) are chosen suitably,
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and

Lwl(x) = 0, x ∈ (Γ− ∪ Γ+),
wl(0) = u(0) − v(0) − wr(0), wl(1) = 0,

Lwr(x) = 0, x ∈ (Γ− ∪ Γ+),
where wr(0) is suitably chosen, wr(1) = u(1) − v(1),

[wr](d) = −[v](d) − [wl](d), [w′r](d) = −[v′](d) − [w′l](d).

Now, let us consider the case (i):
√
αεc ≤

√
γεd.

We first define v0(x), v1(x) and v2(x) as the solutions to the following problems:

−b(x)v0(x) = f (x), x ∈ (Γ− ∪ Γ+),

b(x)v1(x) =
εc
√
εd

a(x)v′0(x) +
√
εdv′′0 (x), x ∈ (Γ− ∪ Γ+),

b(x)v2(x) =
εc
√
εd

a(x)v′1(x) +
√
εdv′′1 (x), x ∈ (Γ− ∪ Γ+).

Choose v3(x) ∈ C0(Γ) ∩C1(Γ) ∩C2(Γ− ∪ Γ+), such that

Lv3(x) =
−εc
√
εd

a(x)v′2(x) −
√
εdv′′2 (x), x ∈ (Γ− ∪ Γ+), v3(0) = v3(1) = 0.

Adopting the procedure from [11,18], we obtain the upper bounds of the derivatives of the regular and
the singular components given in the following Lemmas 2.4 and 2.5.

Lemma 2.4. When
√
αεc ≤

√
γεd, the regular component v(x) and its derivatives satisfy the following

bounds:

||v(k)(x)||Γ\{d} ≤ C
(
1 +

1
(
√
εd)k−3

)
, 0 ≤ k ≤ 4.

Lemma 2.5. When
√
αεc ≤

√
γεd, the singular components wl(x) and wr(x) and their derivatives

satisfy the bounds

|w(k)
l (x)|Γ\{d} ≤

C
(
√
εd)k

e−θ2 x, x ∈ Γ−,

e−θ1(x−d), x ∈ Γ+,
0 ≤ k ≤ 4,

|w(k)
r (x)|Γ\{d} ≤

C
(
√
εd)k

e−θ1(d−x), x ∈ Γ−,

e−θ2(1−x), x ∈ Γ+,
0 ≤ k ≤ 4,

where

θ1 =

√
γα
√
εd

and θ2 =

√
γα

2
√
εd
.
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Now consider the case (ii):
√
αεc ≥

√
γεd.

Let v0(x), v1(x), and v2(x) be the solutions of the following problems, respectively:

εcav′0(x) − bv0(x) = f (x), x ∈ (Γ− ∪ Γ+), v0(1, εc), is chosen,
εcav′1(x) − bv1(x) = −v′′0 (x), x ∈ (Γ− ∪ Γ+), v1(1, εc), is chosen,

and εcav′2(x) − bv2(x) = −v′′1 (x), x ∈ (Γ− ∪ Γ+), v2(1, εc), is chosen.

Choose v3(x) ∈ C0(Γ) ∩C1(Γ) ∩C2(Γ− ∪ Γ+) such that

Lv3(x) = −v′′2 (x), x ∈ (Γ− ∪ Γ+), v3(0) = v3(1) = 0.

Using the reasoning given in [11, 18], the following Lemmas 2.6 and 2.7 can be proved for the case
√
αεc ≥

√
γεd.

Lemma 2.6. When
√
αεc ≥

√
γεd, the regular component v(x) satisfies the following bounds

||v(k)(x)||Γ\{d} ≤ C
1 + (

εd

εc

)3−k , 0 ≤ k ≤ 4.

Lemma 2.7. When
√
αεc ≥

√
γεd the singular components wl(x) and wr(x) satisfy the bounds

|w(k)
l (x)|Γ\{d} ≤ C

(
εc

εd

)k
e−θ2 x, x ∈ Γ−,

e−θ1(x−d), x ∈ Γ+,
0 ≤ k ≤ 4,

|w(k)
r (x)|Γ\{d} ≤ C

(
1
εk

c

) e−θ1(d−x), x ∈ Γ−,

e−θ2(1−x), x ∈ Γ+,
0 ≤ k ≤ 4,

where

θ1 =
αεc

εd
and θ2 =

γ

2εc
.

It can be verified that v(x) + wl(x) + wr(x) satisfies the problem (1.1)-(1.2). Therefore, the unique
solution to the problem is

u(x) =


v−(x) + w−l (x) + w−r (x), x ∈ Γ−,

v−(d−) + w−l (d−) + w−r (d−) = v+(d+) + w+l (d+) + w+r (d+) at x = d,

v+(x) + w+l (x) + w+r (x), x ∈ Γ+.

3. Discretization of the problem using a Hybrid scheme

In this section, we introduce a difference scheme to discretize the continuous problem (1.1)-(1.2).
The discrete problem combines the standard upwind, mid-point, central difference, and five-point
difference schemes. The five-point difference scheme is applied at the point of discontinuity to ensure
higher-order (in this case, second-order) accuracy. This scheme is reduced to a three-point structure
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to preserve the monotonicity property with almost second-order accuracy. The numerical scheme,
obtained by combining all these operators, maintains the monotonicity property.

The discrete problem will be defined on an a priori adaptive piecewise uniform mesh, which is
dense inside the boundary and interior layer regions. To construct this mesh, we first divide the domain
Γ into six subintervals:

Γ = [0, τ1] ∪ [τ1, d − τ2] ∪ [d − τ2, d] ∪ [d, d + τ3] ∪ [d + τ3, 1 − τ4] ∪ [1 − τ4, 1],

for some τ1, τ2, τ3, and τ4. The mesh points are denoted as Γ
N
= {xi}

N
0 , where xN/2 denotes the point

of discontinuity, xN/2 = d. On these mesh points, we define the discrete solution as Ui. The transition
parameters τ1, τ2, τ3, and τ4 in Γ are chosen as follows:

τ1 = min
{

d
4
,

2
θ2

ln N
}
, τ2 = min

{
d
4
,

2
θ1

ln N
}
,

τ3 = min
{

1 − d
4

,
2
θ1

ln N
}
, τ4 = min

{
1 − d

4
,

2
θ2

ln N
}
,

(3.1)

where θ1 and θ2 are defined in the previous section. Now we construct a uniform mesh on each of
the subintervals [0, τ1], [d − τ2, d], [d, d + τ3] and [1 − τ4, 1], so that each one contains N/8 + 1
uniform mesh points, and the subintervals [τ1, d−τ2] and [d+τ3, 1−τ4] contain N/4+1 uniform mesh
points respectively. The mesh sizes in each of the subintervals from left to right of Γ are denoted as
h1 = 8τ1/N, h2 = 4(d−τ2−τ1)/N, h3 = 8τ2/N, h4 = 8τ3/N, h5 = 4(1−d−τ3−τ4)/N, and h6 = 8τ4/N.
On the above adaptive mesh Γ

N
, we discretize the BVP (1.1)-(1.2) as

LNUi ≡ εdδ
2Ui + εcaiD∗Ui − biUi = fi for i = 1, . . . ,N − 1,

D+UN/2 − D−UN/2 = 0 with U0 = u0, UN = u1.
(3.2)

The discretization (3.2), based on the upwind scheme, is almost first-order accurate [23] (see the
numerical Section 6). Hence, our goal is to improve the order of accuracy. Now, we construct an almost
second-order accurate hybrid scheme for (1.1)-(1.2) by combining the following central, upwind, and
mid-point difference schemes with a five-point scheme:

LN
c Ui ≡ εdδ

2Ui + εcaiD0Ui − biUi = fi,

LN
u Ui ≡ εdδ

2Ui + εcaiD∗Ui − biUi = fi,

LN
mUi ≡ εdδ

2Ui + εcaiD∗Ui − biUi = f i,

where, D0Ui =
Ui+1 − Ui−1

hi + hi+1
, D+Ui =

Ui+1 − Ui

hi+1
, D−Ui =

Ui − Ui−1

hi
, δ2Ui =

1

hi

(D+Ui − D−Ui), zi =

zi + zi+1

2
and D∗ =

D−, if i < N/2,
D+, if i > N/2.

At xN/2 = d, we use a five-point difference scheme by combining the second-order accurate one-
sided forward difference approximation u′(x) ≈ (−3U(x) + 4U(x + h3) − U(x + 2h3))/2h3 with the
backward difference approximation u′(x) ≈ (3U(x) − 4U(x − h4) + U(x − 2h4))/2h4. At the point of
discontinuity, we define the scheme as:

LN
t UN/2 ≡

−UN/2+2 + 4UN/2+1 − 3UN/2

2h
−

UN/2−2 − 4UN/2−1 + 3UN/2

2h
= 0, (3.3)
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where h = max{h3, h4}.
The finite difference scheme, which involves the central, upwind, mid-point, and five-band

difference schemes on the piecewise uniform mesh, will be written as

LNUi ≡ s−i Ui−1 + sc
i Ui + s+i Ui+1 = fi,

where LN is defined as follows:
When

√
αεc ≤

√
γεd,

LN ≡


LN

c , if xi ∈ (0, τ1) ∪ (d − τ2, d) ∪ (d, d + τ3) ∪ (1 − τ4, 1),
LN

c , if xi ∈ (τ1, d − τ2) ∪ (d + τ3, 1 − τ4), with 2εc∥a∥hk < εd, k = 2, 5,
LN

t , if xi = d,

and for
√
αεc ≥

√
γεd

LN ≡



LN
m, if xi ∈ (0, τ1) ∪ (1 − τ4, 1),

LN
m, if xi ∈ (τ1, d − τ2) ∪ (d + τ3, 1 − τ4), with

2εc∥a∥hk ≥ εd,

2∥b∥hk < εcα, k = 2, 5,

LN
u , if xi ∈ (τ1, d − τ2) ∪ (d + τ3, 1 − τ4), with

2εc∥a∥hk ≥ εd,

2∥b∥hk ≥ εcα, k = 2, 5,
LN

c , if xi ∈ (d − τ2, d) ∪ (d, d + τ3),
LN

t , if xi = d.

At the transition points τ1 and (d + τ3), the scheme is defined as

LN ≡



LN
c , if xi =


τ1 =

1
8
,

d + τ3 = d +
1
8
,

LN
m, if xi =


τ1, where τ1 <

1
8

for 2∥b∥h2 < εcα,

d + τ3, where d + τ3 < d +
1
8

for 2∥b∥h5 < εcα,

LN
u , otherwise.

At the transition points (d − τ2) and (1 − τ4), we define the scheme as

LN ≡



LN
c , if xi =


d − τ2 = d −

1
8

for 2εc∥a∥h3 < εd,

1 − τ4 = 1 −
1
8

for 2εc∥a∥h6 < εd,

LN
m, if xi =


d − τ2 = d −

1
8

for 2εc∥a∥h3 ≥ εd,

1 − τ4 = 1 −
1
8

for 2εc∥a∥h6 ≥ εd,

LN
m, if xi =


d − τ2, where d − τ2 > d −

1
8

for 2∥b∥h3 < εcα,

1 − τ4, where 1 − τ4 > 1 −
1
8

for 2∥b∥h6 < εcα,

LN
u , otherwise.
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Now, we define the discrete scheme as

LNUi = QN fi for i = 1, . . . ,N − 1, with U0 = u, UN = u1,

where, QN fi =


fi, if LN ≡ LN

c or LN
u ,

f i, if LN ≡ LN
m,

0, if LN ≡ LN
t .

(3.4)

The matrix associated with (3.4) does not satisfy the M-matrix condition at the point of discontinuity
xi = d. But, without loss of generality, we can convert this five-point difference scheme into a three-
point difference scheme (say, LN

T Ui) by estimating UN/2−2, UN/2+2 from LN
c Ui so that the new equations

have the monotonicity property. To do this, we take

UN/2−2 =
2h3

2εd − h3εcaN/2−1

[
h3 fN/2−1 +

(
2εd

h3
+ h3bN/2−1

)
UN/2−1

−

(
2εd + h3εcaN/2−1

2h3

)
UN/2

]
,

UN/2+2 =
2h4

2εd + h4εcaN/2+1

[
h4 fN/2+1 +

(
2εd

h4
+ h4bN/2+1

)
UN/2+1

−

(
2εd − h4εcaN/2+1

2h4

)
UN/2

]
.

Now we replace the above expressions of UN/2−2, UN/2+2 at the five-point difference scheme (LN
t UN/2)

to construct a three-point scheme (LN
T UN/2) that preserves the monotonicity property and leads to a

higher-order accuracy at the point of discontinuity, as given by

LN
T UN/2 ≡

(
2εd − h4εcaN/2+1

2εd + h4εcaN/2+1
− 6 +

2εd − h3εcaN/2−1

2εd + h3εcaN/2−1

)
UN/2

+

(
−4εd − 2h2

4bN/2+1

2εd + h4εcaN/2+1
+ 4

)
UN/2+1 +

(
−4εd − 2h2

3bN/2−1

2εd + h3εcaN/2−1
+ 4

)
UN/2−1

=
2h2

3 fN/2−1

2εd + h3εcaN/2−1
+

2h2
4 fN/2+1

2εd + h4εcaN/2+1
.

So, the reformulated discrete operator (say LN
∗ Ui) of (3.4) can be written as

LN
∗ Ui = QN

∗ fi for i = 1, . . . ,N − 1, with U0 = u0, UN = u1, (3.5)

where

LN
∗ Ui =

LN
T Ui for i = N/2,

LNUi for i , N/2,

and

QN
∗ fi =


2h2

3 fN/2−1

2εd + h3εcaN/2−1
+

2h2
4 fN/2+1

2εd + h4εcaN/2+1
for i = N/2,

QN fi for i , N/2.
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The entries of the stiffness matrix corresponding to LN
∗ are given by

s−i =
εd

hihi

−
εcai

2hi

, s+i =
εd

hi+1hi

+
εcai

2hi

, sc
i = −s+i − s−i − bi, if LN

∗ ≡ LN
c ,

s−i =
εd

hihi

−
εcai

hi
, s+i =

εd

hi+1hi

, sc
i = −s+i − s−i − bi, if LN

∗ ≡ LN
u and i < N/2,

s−i =
εd

hihi

, s+i =
εd

hi+1hi

+
εcai

hi+1
, sc

i = −s+i − s−i − bi, if LN
∗ ≡ LN

u and i > N/2,

s−i =
εd

hihi

−
εcai

hi
, s+i =

εd

hi+1hi

−
bi+1

2
, sc

i = −s+i − s−i − bi, if LN
∗ ≡ LN

m and i < N/2,

s−i =
εd

hihi

, s+i =
εd

hi+1hi

+
εcai

hi+1
−

bi

2
, sc

i = −s+i − s−i − bi, if LN
∗ ≡ LN

m and i > N/2,

s−N/2 =
−4εd − 2h2

3bN/2−1

2εd + h3εcaN/2−1
+ 4, s+N/2 =

−4εd − 2h2
4bN/2+1

2εd + h4εcaN/2+1
+ 4,

sc
N/2 = −s−N/2 − s+N/2 − 2bN/2−1

[
h2

3

2εd + εcaN/2−1h3
+

h2
4

2εd + εcaN/2+1h4

]
, if LN

∗ ≡ LN
T .

Now, we state a few conditions that are used to preserve the monotonic properties of the discrete
problem (3.5). In (0, τ1) and (d, d + τ3), note that

2εc||a||h1/εd = 16εc||a||τ1/εdN ≤ 64||a|| ln N/αN,

2εc||a||h4/εd = 16εc||a||τ3/εdN ≤ 64||a|| ln N/αN. (3.6)

For
√
αεc ≤

√
γεd in (d − τ2, d) and (1 − τ4, 1), we get

2εc||a||h3/εd = 16εc||a||τ2/εdN ≤ 64||a|| ln N/αN,

2εc||a||h6/εd = 16εc||a||τ4/εdN ≤ 64||a|| ln N/αN. (3.7)

For
√
αεc ≥

√
γεd in (d − τ2, d) and (1 − τ4, 1), we get

2||b||h3/αεc = 16||b||τ2/αεcN ≤ 64||b|| ln N/αγN,

2||b||h6/αεc = 16||b||τ4/αεcN ≤ 64||b|| ln N/αγN. (3.8)

At xi = d, we have

4∥b∥h2 < εd, 2εc∥a∥h < εd, if
√
αεc ≤

√
γεd and h = h3 = h4,

2∥b∥h3 < εcα, ∥b∥h4 < εd/4, if
√
αεc ≥

√
γεd. (3.9)

We note that in order to guarantee that the operator LN
∗ is monotone, it is necessary to impose the

following assumption:

N(ln N)−1 > 64 max
{
∥a∥
α
,
∥b∥
αγ

}
, (3.10)

which will be evident in the proof of the following lemma. Thus, the discrete problem is

LN
∗ Ui = QN

∗ fi for i = 1, . . . ,N − 1, with U0 = u0, UN = u1. (3.11)

The following lemma shows that the discrete operator LN
∗ has stability properties analogous to those of

the continuous operator L.
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Lemma 3.1. If a mesh function Ui satisfies U0 ≥ 0, UN ≥ 0, LN
∗ Ui ≤ 0 for all i = 1, 2, . . . ,N − 1 and

LN
T UN/2 ≤ 0, then Ui ≥ 0 for all i = 0, 1, . . . ,N.

Proof. The system LN
∗ Ui = QN

∗ fi for all 1 ≤ i ≤ N − 1 is a linear system of N − 1 equations. We show
that the corresponding matrix is diagonally dominant. To show this, it is sufficient to check that the
conditions

s−i > 0, s+i > 0, s−i + sc
i + s+i < 0, (3.12)

are fulfilled for the operators defined in (3.11).
For
√
αεc ≤

√
γεd, the central difference operator (LN

c ) is used in all the subintervals of Γ
N

.
Therefore, s−i > 0 is guaranteed in the subintervals (d − τ2, d) and (d, d + τ3) by the definition of h3 and
h4. In the remaining regions, the LN

c operator is used when εch1∥a∥, εch2∥a∥, εch5∥a∥, εch6∥a∥ < 2εd,
and thus, s−i > 0 is satisfied from (3.7), (3.8), and (3.10).

For
√
αεc ≥

√
γεd, the central difference operator is applied in (d − τ2, d) and (d, d + τ3). Here, h3

and h4 are given by s−i > 0 and s+i > 0. The mid-point operator is applied to the layer region (0, τ1).

Here, the inequalityhis−i =
εd

hi

− εcai > 0 is guaranteed since εch1∥a∥ <
εd

2
and s+i =

εd

hi+1hi

−
bi+1

2
> 0

is satisfied if ∥b∥h2
1 <

εd

4
. The inequalities (3.6) and (3.10) make it obvious. The sign pattern of

s+i + sc
i + s−i < 0 is direct using the condition sc

i = −s+i − s−i − bi. When the mid-point operator is used

for the interval (1 − τ4, 1) the condition (3.12) is satisfied if s+i =
εcai

hi+1
−

bi

2
> 0. This is guaranteed

since ∥b∥h6 < εcα/2.
In the coarse mesh region (τ1, d − τ2) and (d + τ3, 1 − τ4), s+i > 0 also follows from the mid-point

operator since 2∥b∥h2 < εcα and 2∥b∥h5 < εcα on each of the intervals. If 2∥b∥h2, 2∥b∥h5 ≥ εcα, the
upwind operator LN

u is used to preserve s+i > 0.
At the point of discontinuity, xN/2 = d, where

√
αεc ≤

√
γεd, s+N/2 = 2εd + 2h4εcaN/2 − bN/2h2

4 > 0 is
guaranteed since ∥b∥h4 ≤ 2εcα. For s−N/2 = 2εd − bh2

3 − 2εch3aN/2 > 0 is assured with ∥b∥h2
3 < εd/4 and

εch3∥a∥ < εd/2. Again, sc
N/2 = −s−N/2 − s+N/2 − 2bN/2−1

[
h2

3

2εd + εcaN/2−1h3
+

h2
4

2εd + εcaN/2+1h4

]
follows,

sc
N/2 < 0. For

√
αεc ≥

√
γεd, we have s+N/2 > 0 and s−N/2 > 0 since ∥b∥h2

4 < εd/4 and 2∥b∥h3 < εcα.
Similarly, we can show sc

N/2 < 0.
Hence, combining all the above relations defined at various mesh points, it can be noted that the

matrix corresponding to LN
∗ is an M-matrix, and hence it satisfies the discrete minimum principle. □

Lemma 3.2. If Ui is the solution to (3.11), then

|Ui| ≤ max {|U0| , |UN |} +
1
θ
∥QN
∗ f ∥,

where i = 0, 1, 2, . . . ,N and θ = min {α1/d, α2/(1 − d)}.

Proof. Let us define the mesh functions

Θ±i = M +
xi∥ fi∥

θd
± Ui ∀ 0 ≤ i ≤ N/2,

Θ±i = M +
(1 − xi)∥ fi∥

θ(1 − d)
± Ui ∀ N/2 + 1 ≤ i ≤ N,
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where M = max {|U0|, |UN |} +
1
θ
∥QN
∗ fi∥.

It is obvious, Θ±0 ≥ 0, Θ±N ≥ 0 and also

LN
c Θ
±
i ≤ −εcα1

hi∥ fi∥

θd
− bi

(
M +

xi∥ fi∥

θd

)
± LN

c Ui ≤ 0 ∀ 1 ≤ i ≤ N/2 − 1,

LN
c Θ
±
i ≤ εcα2

−hi∥ fi∥

θ(1 − d)
− bi

(
M +

(1 − xi)∥ fi∥

θ(1 − d)

)
± LN

c Ui ≤ 0 ∀ N/2 + 1 ≤ i ≤ N − 1.

Similarly, LN
mΘ
±
i ≤ 0 and LN

uΘ
±
i ≤ 0 for the above values of i.

At the point of discontinuity, it is

LN
TΘ
±
N/2 = LN

T

(
M + xN/2∥ fN/2∥

θd

)
± LN

T UN/2 ≤ 0.

Applying Lemma 3.1, it follows that

Θ±i ≥ 0 ∀ 0 ≤ i ≤ N,

which leads to the desired bound on Ui. □

4. Truncation error analysis

We address the error analysis in this section. The nodal error is denoted by ei = Ui − u(xi). To
bound the nodal error |ei|, we first decompose the discrete solution (in a similar manner, as was done
with the continuous solution) of (3.11) as Ui = Vi + Wl,i + Wr,i. The discrete regular component (Vi)
and singular components (Wl,i and Wr,i) are again decomposed to obtain sharper bounds. Let us define
the mesh functions V−i and V+i , which approximate Vi on either side of the point xi = d. In addition,
we construct the mesh functions W−

l,i, W+
l,i and W−

r,i, W+
r,i to approximate Wl,i and Wr,i on the left and

right sides of xi = d. Here, W−
l,i and W−

r,i correspond to the left boundary layer and right interior layer,
respectively. Similarly, W+

l,i and W+
r,i are the solutions of the left interior layer and right boundary layer.

These mesh functions are useful to show the convergence of the nodal error |ei| inside and outside the
layers.

Let the regular components V−i , V+i are the solutions to the following discrete problems:

LN
∗ V−i = fi ∀ 1 ≤ i ≤ N/2 − 1,

V−0 = v(0), V−N/2 = v(d−),
and

LN
∗ V+i = fi ∀ N/2 + 1 ≤ i ≤ N − 1,

V+N/2 = v(d+), V+N = v(1).

Similarly, the discrete problem corresponding to the left singular components W−
l,i and W+

l,i is defined
as follows:

LN
∗ W−

l,i = 0 on 1 ≤ i ≤ N/2 − 1, W−
l,0 = w−l (0), W−

l,N/2 = w−l (d),

LN
∗ W+

l,i = 0 on N/2 + 1 ≤ i ≤ N − 1, W+
l,N/2 = w+l (d), W+

l,N = 0.

The corresponding right singular components W−
r,i and W+

r,i can be described in a similar way.
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Consequently, the solution of the discrete problem (3.11) can be written as

Ui =


V−i +W−

l,i +W−
r,i ∀ 1 ≤ i ≤ N/2 − 1,

V−N/2 +W−
l,N/2 +W−

r,N/2 = V+N/2 +W+
l,N/2 +W+

r,N/2,

V+i +W+
l,i +W+

r,i ∀ N/2 + 1 ≤ i ≤ N − 1.

The following lemma provides the bounds for the singular components.

Lemma 4.1. The bounds of the left and right singular components W−
l,i, W+

l,i, W−
r,i and W+

r,i are as
follows:

| W−
l,i | ≤ C

k1∏
j=1

(1 + θ2h j)−1 = ψ−l,i, ψ
−
l,0 = C,

| W+
l,i | ≤ C

k2∏
j=N/2+1

(1 + θ1h j)−1 = ψ+l,i, ψ
+
l,N/2 = C,

| W−
r,i | ≤ C

N/2∏
j=k1+1

(1 + θ1h j)−1 = ψ−r,i, ψ
−
r,N/2 = C,

| W+
r,i | ≤ C

N∏
j=k2+1

(1 + θ2h j)−1 = ψ+r,i, ψ
+
r,N = C,

where k1 = i, k2 = N/2 + i, and C is a positive constant independent of εc, εd.

Proof. Define the barrier functions

ϕ−l,i = ψ
−
l,i ±W−

l,i and ϕ−r,i = ψ
−
r,i ±W−

r,i,

where

ψ−l,i =


k1∏
j=1

(
1 + θ2h j

)−1
, 1 ≤ k1 ≤ N/2,

1, k1 = 0,
and

ψ−r,i =


N/2∏

j=k1+1

(
1 + θ1h j

)−1
, 0 ≤ k1 < N/2,

1, k1 = N/2,

and also

θ1 =


√
γα

2
√
εd
, if

√
αεc ≤

√
γεd,

αεc

2εd
, if

√
αεc ≥

√
γεd,

and θ2 =


√
γα

2
√
εd
, if

√
αεc ≤

√
γεd,

γ

2εc
, if

√
αεc ≥

√
γεd.

(4.1)

Now we will prove that LN
∗ ψ
−
l,i ≤ 0, LN

∗ ψ
−
r,i ≤ 0. Applying the discrete operator (3.11) on ψ−l,i, we have

LN
∗ ψ
−
l,i = ψ

−
l,i

(
s−i + sc

i + s+i − θ2

(
his−i

1 + θ2hi
− hi+1s+i

))
.

Again, for the central difference operator, it follows that
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LN
c ψ
−
l,i =

ψ−l,i

1 + θ2hi

[
εdθ

2
2

(
hi

hi

− 2
)
+

(
2εdθ

2
2 + εcaiθ2 − 2bi

)
+ εcaiθ

2
2 − bihiθ2

]
≤

ψ−l,i

1 + θ2hi

(
2εdθ

2
2 + εcaiθ2 − bi

)
.

Applying (4.1) in the above equation for both the cases
√
αεc ≤

√
γεd and

√
αεc ≥

√
γεd, we obtain

LN
c ψ
−
l,i ≤

ψ−l,i

1 + θ2hi

(
γα

2
+
γai

2
− bi

)
≤

ψ−l,i

1 + θ2hi
(γai − bi)

≤
ψ−l,i

1 + θ2hi
ai

(
γ −

bi

ai

)
≤ 0.

In a similar way, the upwind and mid-point difference schemes on ψ−l,i lead to

LN
u ψ
−
l,i ≤

ψ−l,i

1 + θ2hi

[
εdθ

2
2

(
hi

hi

− 2
)
+

(
2εdθ

2
2 + εcaiθ2 − β

)
− 2εcaiθ2 − bihiθ2

]
≤

ψ−li
1 + θ2hi

(
εdθ

2
2 + εcaiθ2 − bi

)
≤ 0,

and

LN
mψ
−
l,i ≤

ψ−l,i

1 + θ2hi

(
2εdθ

2
2 + εcaiθ2 − bi

)
≤ 0.

Combining all the above inequalities, we can conclude that LN
∗ ψ
−
l,i ≤ 0. Now we find that, ϕ−l,0 >

0, ϕ−l,N/2 > 0 and LN
∗ ϕ
−
l,i < 0. Hence, by using Lemma 10 in [11], we can prove that ϕ−l,i ≥ 0. Therefore,

|W−
l,i| ≤ C

k1∏
j=1

(1 + θ2h j)−1.

Now consider the right layer barrier function ψ−r,i. Applying the discrete operator defined in (3.11)
over ψ−r,i, we obtain

LN
∗ ψ
−
r,i = ψ

−
r,i

[
s−i + sc

i + s+i − θ1

(
hi+1s+i

1 + θ1hi+1
− his−i

)]
.

Applying the central difference scheme in the place of LN
∗ , we get

LN
c ψ
−
r,i = ψ

−
r,i+1

[
2εdθ

2
1

(
hi+1

2hi

− 1
)
+ 2εdθ

2
1 − εcaiθ1 − 2bi

+εcaiθ1(1 − θ1hi)
hi+1

2hi

+ biθ1hi+1

]
≤ ψ−r,i+1

(
2εdθ

2
1 − εcaiθ1 − bi

)
.

Using (4.1) for both the cases
√
αεc ≤

√
γεd and

√
αεc ≥

√
γεd, we obtain

LN
c ψ
−
r,i ≤ ψ

−
r,i+1

(
γα

2
− 2bi

)
≤ 0.
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Similar arguments can be used to show that the upwind difference and mid-point difference satisfy

LN
u ψ
−
r,i ≤ ψ

−
r,i+1

(
εdθ

2
1 − εcaiθ1 − bi

)
≤ 0,

and

LN
mψ
−
r,i ≤ ψ

−
r,i+1

(
εdθ

2
1 − εcaiθ1 − bi

)
≤ 0.

Hence, it is clear that, ϕ−r,0 > 0, ϕ−r,N/2 > 0 and LN
∗ ϕ
−
r,i < 0. Therefore, applying Lemma 10 in [11], we

obtain ϕ−r,i ≥ 0 and hence |W−
r,i| ≤ C

N/2∏
j=k1+1

(1 + θ1h j)−1. Similarly, we can prove the bounds of W+
l,i and

W+
r,i as i varies from N/2 + 1 to N − 1. □

Now, we examine the truncation errors based on the three different operators. At the transition
points, the mid-point scheme provides better accuracy in the convective terms compared to the central
difference scheme on a non-uniform mesh. On a non-uniform mesh, we have

|LN
∗ ei| =


|(LN

c − L)u(xi)| ≤ εdhi∥u(3)∥ + εchi∥a∥ ∥u(2)∥,

|(LN
u − L)u(xi)| ≤ εdhi∥u(3)∥ + εchi+1∥a∥ ∥u(2)∥,

|(LN
m − L)u(xi)| ≤ εdhi∥u(3)∥ +Cεch2

i+1

(
∥u(3)∥ + ∥u(2)∥

)
,

where hi = (hi + hi+1)/2, and on a uniform mesh with step size h, we have

|LN
∗ ei| =


|(LN

c − L)u(xi)| ≤ εdh2∥u(4)∥ + εch2∥a∥ ∥u(3)∥,

|(LN
u − L)u(xi)| ≤ εdh2∥u(4)∥ + εch∥a∥ ∥u(2)∥,

|(LN
m − L)u(xi)| ≤ εdh∥u(3)∥ +Cεch2

(
∥u(3)∥ + ∥u(2)∥

)
.

In the following lemma, we present the local error of the regular component.

Lemma 4.2. The regular component of the truncation error satisfies the following estimate:

∥Vi − v(xi)∥ ≤ CN−2 ∀ 1 ≤ i ≤ N − 1.

Proof. For both the cases
√
αεc ≤

√
γεd and

√
αεc ≥

√
γεd, when the mesh is uniform, i.e., τ1 = τ2 =

τ3 = τ4 = 1/8, we have for 1 ≤ i ≤ N/2,

|LN
∗ (V−i − v−(xi))| = |LN

∗ V−i − QN fi|

≤

∣∣∣∣∣∣εd

(
δ2 −

d2

dx2

)
v−(xi)

∣∣∣∣∣∣ +
∣∣∣∣∣∣εca(xi)

(
D+ −

d
dx

)
v−(xi)

∣∣∣∣∣∣
≤ Cεd (xi+1 − xi)2

∥(v−)(4)∥ − εca(xi) (xi+1 − xi) ∥(v−)(2)∥

|LN
∗ (V−i − v−(xi))| ≤ CN−2.

Similarly, we obtain

|LN
∗ (V+i − v+(xi))| ≤ CN−2 ∀ N/2 + 1 ≤ i ≤ N − 1.
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When the mesh is non-uniform, we have

|LN
∗ (V−i − v−(xi))| ≤ CN−2 for xi ∈ (Γ− ∩ Γ)\{τ1, d − τ2},

|LN
∗ (V+i − v+(xi))| ≤ CN−2 for xi ∈ (Γ+ ∩ Γ)\{d + τ3, 1 − τ4}.

At the transition points, the upwind difference scheme is used if 2∥b∥hi ≥ εcα for i = 2, 3, 5, 6;
otherwise, the mid-point difference scheme will be used. For both of these schemes, we obtain

|LN
∗ (V+i − v+(xi))| ≤ CN−1(εd + N−1).

Define the barrier function ψi = CN−2ζ(xi) ± (Vi − v(xi)), where

ζ(xi) =



1, if 0 ≤ xi ≤ τ1,

1 −
(xi − τ1)

2(d − τ1 − τ2)
, if τ1 ≤ xi ≤ d − τ2,

1 −
(d − xi)

2τ2
, if d − τ2 ≤ xi ≤ d,

1 −
(xi − d)

2τ3
, if d ≤ xi ≤ d + τ3,

1 −
1 − τ4 − xi

2(1 − (d + τ3 + τ4))
, if d + τ3 ≤ xi ≤ 1 − τ4,

1 − xi

τ4
, if 1 − τ4 ≤ xi ≤ 1.

Then, ψi satisfies

εdδ
2ψi =

0 for xi , τ1, d − τ2, d + τ3 and 1 − τ4,

O(N−1εd), otherwise,

and D0ψi ≤ 0, D+ψi ≤ 0. Now, applying Lemma 3.1, we obtain

∥Vi − v(xi)∥ ≤ CN−2 ∀ 1 ≤ i ≤ N − 1.

Therefore, we get the required result. □

The subsequent lemma provides the local error of the left and right singular components Wl,i and
Wr,i associated with the boundary and interior layers.

Lemma 4.3. Let us assume (3.10). Then, the left and right singular components of the error satisfy the
following estimates:

∥Wl,i − wl(xi)∥ ≤

C(N−1 ln N)2, if
√
αεc ≤

√
γεd,

CN−2 ln3 N, if
√
αεc ≥

√
γεd,

∀ 1 ≤ i ≤ N − 1,

and

∥Wr,i − wr(xi)∥ ≤ C(N−1 ln N)2, if


√
αεc ≤

√
γεd,

√
αεc ≥

√
γεd

∀ 1 ≤ i ≤ N − 1.
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Proof. Firstly, consider the uniform mesh, i.e., τ1 = τ2 = τ3 = τ4 = 1/8, and for
√
αεc ≤

√
γεd for

i = 1, · · · ,N/2 − 1, we have

|LN
∗ (W−

l,i − w−l (xi))| = |LN
c W−

l − Lw−l |

≤
∣∣∣Ch2εd(w−l )(4)

∣∣∣ + ∣∣∣Ch2εc(w−l )(3)
∣∣∣

≤ CN−2
(
εd∥(w−l )(4)∥ + εc∥(w−l )(3)∥

)
≤ CN−2/εd,

|LN
∗ (W−

l,i − w−l (xi))| ≤ C(N−1 ln N)2.

Similarly, |LN
∗ (W+

l,i − w+l (xi))| ≤ C(N−1 ln N)2 ∀ N/2 + 1 ≤ i ≤ N − 1.
Again when

√
αεc ≥

√
γεd, the above inequalities lead to

|LN
∗ (W−

l,i − w−l (xi))| = |LN
c W−

l − Lw−l |

≤ CN−2
(
εd∥(w−l )(4)∥ + εc∥(w−l )(3)∥

)
< CN−2ε4

c/ε
3
d,

|LN
∗ (W−

l,i − w−l (xi))| ≤ CεcN−2 ln3 N.

Similarly, |LN
∗ (W+

l,i − w+l )(xi)| ≤ CεcN−2 ln3 N.
Now, we consider the error analysis on the non-uniform mesh. In the left boundary layer region

(0, τ1), the truncation error is

|LN
∗ (W−

l,i − w−l (xi))| ≤ |LN
c (W−

l,i − w−l (xi))|
≤ |εdw−l

′′
+ aiεcw−l

′
− biw−l − (εdδ

2 + aiεcD0 − bi)W−
l |

≤
∣∣∣Ch2

1εd(w−l )(4)
∣∣∣ + ∣∣∣Ch2

1εc(w−l )(3)
∣∣∣ ,

|LN
∗ (W−

l,i − w−l (xi))| ≤ CN−2
(
εdτ

2
1∥(w

−
l )(4)∥ + εcτ

2
1∥(w

−
l )(3)∥

)
. (4.2)

If
√
αεc ≤

√
γεd, from (4.2) we obtain

|LN
∗ (W−

l,i − w−l (xi))| ≤ C(N−1 ln N)2
(
1 +

εc
√
εd

)
≤ C(N−1 ln N)2.

Similarly, we can obtain the result |LN
∗ (W+

l,i − w+l (xi))| ≤ C(N−1 ln N)2 on the left interior layer region
(d, d + τ3).

If
√
αεc ≥

√
γεd, we obtain from (4.2),

|LN
∗ (W−

l,i − w−l (xi))| ≤ C
ε2

c

εd
(N−1 ln N)2.

Now consider the barrier function on [0, τ1], see [11]

Ψi = C
(
N−2 + (N−1 ln N)2(τ1 − xi)

εc

εd

)
.
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It is easy to check that the barrier function Ψi is non-negative at the boundary points of [0, τ1] and
LN

c Ψi < 0. Hence, from Lemma 10 of [11], it follows Ψi ≥ 0 for all [0, τ1]. Therefore

|W−
l,i − w−l (xi)| ≤ Ψi ≤ C

(
N−2 + (N−1 ln N)2τ1

εc

εd

)
≤ CN−2 ln3 N.

Similarly, we obtain |W+
l,i − w+l (xi)| ≤ CN−2 ln3 N for xi ∈ (d, d + τ3).

When xi ∈ [τ1, d) for
√
αεd ≤

√
γεd and

√
αεd ≥

√
γεd we obtain the truncation error

|LN
∗ (W−

l,i − w−l (xi))| ≤ |w−l (xi)| + |W−
l,i|

≤ C
(
e−θ1 xi + N−2

)
≤ C

(
e−θ1τ1 + N−2

)
,

|LN
∗ (W−

l,i − w−l (xi))| ≤ CN−2.

Similarly, we have |LN
∗ (W+

l,i − w+l (xi))| ≤ CN−2 for xi ∈ [d + τ3, 1). Following the above procedures, we
can prove the bound for the right singular components. □

The above estimates provide the truncation errors at the boundary and interior layer regions
(Γ− ∪ Γ+) except at the point of discontinuity. Estimating the error at the point of discontinuity is not
straightforward. The following lemma gives an estimate for the local error at the point of discontinuity.

Lemma 4.4. At the point of discontinuity xN/2 = d, the error ed satisfies the following estimate:

∣∣∣LN
∗ (UN/2 − u(xN/2))

∣∣∣ ≤ Ch2/ε3/2
d , if

√
αεc ≤

√
γεd,

Ch2ε3
c/ε

3
d, if

√
αεc ≥

√
γεd.

Proof. Consider the case
√
αεc ≤

√
γεd. Then

∣∣∣LN
∗ (UN/2 − u(xN/2))

∣∣∣ = ∣∣∣∣∣∣LN
∗ UN/2 −

2h2
3 f (xN/2−1)

2εd − h3εca(xN/2−1)
−

2h2
4 f (xN/2+1)

2εd + h4εca(xN/2+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣LN
T UN/2 −

2h2
3 f (xN/2−1)

2εd − h3εca(xN/2−1)
−

2h2
4 f (xN/2+1)

2εd + h4εca(xN/2+1)

∣∣∣∣∣∣ ,∣∣∣LN
∗ (UN/2 − u(xN/2))

∣∣∣ ≤ Ch2/ε3/2
d .

For
√
αεc ≥

√
γεd, we have

∣∣∣LN
∗ (UN/2 − u(xN/2))

∣∣∣ = ∣∣∣∣∣∣LN
∗ UN/2 −

2h2
3 f (xN/2−1)

2εd − h3εca(xN/2−1)
−

2h2
4 f (xN/2+1)

2εd + h4εca(xN/2+1)

∣∣∣∣∣∣
=

∣∣∣∣∣∣LN
t UN/2 −

2h2
3 f (xN/2−1)

2εd − h3εca(xN/2−1)
−

2h2
4 f (xN/2+1)

2εd + h4εca(xN/2+1)

∣∣∣∣∣∣
+C

∣∣∣L UN/2−1 − LN
mUN/2−1

∣∣∣ +C
∣∣∣L UN/2+1 − LN

c UN/2+1

∣∣∣
≤

∣∣∣LN
t UN/2 +

[
u′(d)

]∣∣∣ + 2h2

2εd − h3εca(xN/2−1)

∣∣∣LN
c UN/2−1 − fN/2−1

∣∣∣
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+
2h2

2εd + h4εca(xN/2+1)

∣∣∣LN
c UN/2+1 − fN/2+1

∣∣∣
≤

∣∣∣∣∣UN/2+2 + 4UN/2+1 − 3UN/2

2h
− u′(xN/2)

∣∣∣∣∣
+

∣∣∣∣∣UN/2−2 − 4UN/2−1 + 3UN/2

2h
− u′(xN/2)

∣∣∣∣∣
+C

∣∣∣Lu(xN/2−1) − LN
c UN/2−1

∣∣∣ +C
∣∣∣Lu(xN/2+1) − LN

c UN/2+1

∣∣∣ ,∣∣∣LN
∗ (UN/2 − u(xN/2))

∣∣∣ ≤ Ch2ε3
c/ε

3
d,

where we have used Lemma 2.3 and a similar procedure adopted in [1]. □

Remark. When the sign of the discontinuous convection coefficient a(x) is reversed, the above
result at the point of discontinuity xi = d takes the form

∣∣∣LN
∗ (UN/2 − u(xN/2))

∣∣∣ ≤ Ch2/ε3/2
d , if

√
αεc ≤

√
γεd,

Ch2/ε3
c , if

√
αεc ≥

√
γεd.

5. Error estimate

This section presents the main contribution of the paper. The following theorem provides the εd–εc

uniform higher-order error estimate of the computed solution.

Theorem 5.1. Let u(xi) be the solution of the continuous problem (1.1)-(1.2) and Ui be the solution
of the discrete problem (3.11) at x = xi. Then, for sufficiently large N satisfying the stability
condition (3.10), we have

∥Ui − u(xi)∥ ≤


C(N−1 ln N)2, if

√
αεc ≤

√
γεd,

CN−2(ln N)3, if
√
αεc ≥

√
γεd,

∀ 0 ≤ i ≤ N.

Proof. From the results of Lemmas 2.3, 4.2, 4.3 and using the procedure adopted in [11], it follows
that

|ei| ≤

CN−2 ln2 N, if
√
αεc ≤

√
γεd,

CN−2 ln3 N, if
√
αεc ≥

√
γεd,

∀ xi ∈ Γ
N
\{d}. (5.1)

The presence of the discontinuity leads to the interior layers in a neighborhood of point d. We consider
the following two cases to prove the error at the discontinuity point:

Case (i):
√
αεc ≤

√
γεd, define the discrete barrier function Φi to be the solution of the problem

εdδ
2Φi + εcα

∗D∗Φi − βΦi = 0 ∀ 1 ≤ i ≤ N − 1,
Φ0 = 0, Φd = 1, ΦN = 0,

where

α∗ =

−α∗1, if xi < d,

α∗2, if xi > d.
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A straight-forward application of the discrete minimum principle on the intervals [0, d] and [d, 1] leads
to 0 ≤ Φi ≤ 1. Also

LN
∗ Φi = (α∗ + ai)εcD∗Φi +

[
β − bi

]
Φi ≤ 0 ∀ 1 ≤ i ≤ N − 1.

Now, define the ancillary continuous functions u1(x) and u2(x) by

εdu′′1 (x) − εcα
∗u′1(x) − βu1(x) = 0, u1(0) = 0, u1(d) = 1, if x ∈ Γ−,

εdu′′2 (x) + εcα
∗u′2(x) − βu2(x) = 0, u2(d) = 1, u2(1) = 0, if x ∈ Γ+.

It is to be observed that the solutions of the above equations are

u1(x) = eη(d−x)
(
sinh λx
sinh λd

)
and u2(x) = eη(d−x)

(
sinh λ(1 − x)
sinh λ(1 − d)

)
,

where

η =
α∗εc

2εd
and λ =


√

(α∗εc)2 + 4εdβ

2εd

 .
Define

ũ(x) =

u1(x), if x ∈ (0, d),
u2(x), if x ∈ (d, 1).

Now

LN
T ũN/2 =

−8εd − 8hεcα
∗

2εd + hεcα∗
ũ(xN/2) +

4εd + hεcα
∗ − 2h2β

2εd + hεcα∗
[̃
u(d + h) + ũ(d − h)

]
=
−8εd − 8hεcα

∗

2εd + hεcα∗
ũ(xN/2) +

4εd + hεcα
∗ − 2h2β

2εd + hεcα∗

×

[
e−ηh

(
sinh (λ(1 − d − h))

sinh (λ(1 − d))

)
+ e−ηh

(
sinh (λ(d − h))

sinh (λd)

)]
≥ C1 +C2

[(
e−(η+λ)h

1 − e−2λ(1−d)

) (
1 − e−2λ(1−d−h)

)
+

(
e−(η+λ)h

1 − e−2λd

) (
1 − e−2λ(d−h)

)]
≥ C

[(
1 − e−2λ(1−d−h)

) (
1 − e−2λ(d−h)

)]
,

LN
T ũN/2 ≥

C
√
εd
.

Hence, following the analysis given in [8] on the interval [0, d] and [d, 1], we obtain

|Φi − u1(xi)| ≤ C(N−1 ln N)2, if i ≤ N/2,
|Φi − u2(xi)| ≤ C(N−1 ln N)2, if i ≥ N/2,
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and at the point of discontinuity, i.e., for i = N/2,

LN
TΦi ≥

C
√
εd
.

Now, define the mesh function

y1(xi) = CN−2 ln2 N +
Ch2

εd
Φi ± ei ∀ 1 ≤ i ≤ N − 1.

It can be clearly checked that y1(0), y1(1) ≥ 0, LN
∗ y1(xi) ≤ 0 ∀ xi ∈ Γ

N
and LN

t y1(xN/2) ≤ 0. Hence,
Lemma 3.1 implies that y1(xi) ≥ 0 ∀ xi ∈ Γ

N
. Therefore

|ei| ≤ CN−2 ln2 N. (5.2)

Case (ii):
√
αεc ≥

√
γεd. To show the error on the discontinuity point, we define the mesh function

y2(xi) = W̃i ± ei on the mesh points in (d − τ2, d + τ3) where,

W̃i =


CN−2 ln3 N +

Ch2ε3
c

N2ε3
d

(xi − (d − τ2)), if xi ∈ (d − τ2, d],

CN−2 ln3 N +
Ch2ε3

c

N2ε3
d

(d + τ3 − xi), if xi ∈ [d, d + τ3).

Applying the central difference operator inside the domains (d − τ2, d] and [d, d + τ3), we obtain

εdδ
2W̃i = 0, D0W̃i < 0, and LN

c W̃i < 0.

Also,
W̃N/2+1 < 0, W̃N/2−1 < 0 and LN

T W̃N/2 < 0.

Hence, we have
LN
∗ W̃i < 0 for xi ∈ (d − τ2, d + τ3).

Now, y2(d − τ2) ≥ 0, y2(d + τ3) ≥ 0, and LN
∗ y2(xi) ≤ 0 for xi ∈ (d − τ2, d + τ3). Applying Lemma 3.1 to

y2(xi) in the above domain, we get

|ei| ≤
Ch2

4τ3ε
3
c

ε3
d

≤
CN−2τ3

3ε
3
c

ε3
d

≤ CN−2 ln3 N for xi ∈ (d − τ2, d + τ3). (5.3)

Hence, combining (5.1)–(5.3), we obtain the desired result. □

6. Numerical examples

This section experimentally demonstrates the applicability of the hybrid scheme (3.11) and
compares it with the existing upwind scheme (3.2) for two test problems. These problems have a
jump discontinuity in the convective coefficient and source term. For these problems, the signs of the
convection coefficients are different to show different boundary and interior layers. The numerical
experiments are conducted on piecewise uniform Shishkin mesh, which changes with the various
convection coefficients.
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Example 6.1. Consider the two-parameter problem (1.1)-(1.2) with the following discontinuous
convection coefficient and source term:

a(x) =
{
−(1 + x(1 − x)) for 0 ≤ x ≤ 0.5,
(1 + x(1 − x)) for 0.5 < x ≤ 1,

b(x) = 1,

f (x) =
{
−2(1 + x2) for 0 ≤ x ≤ 0.5,
3(1 + x2) for 0.5 < x ≤ 1,

and u(0) = u(1) = 0.

Example 6.2. Consider the singularly perturbed two-parameter BVP (1.1)-(1.2) with the following
discontinuous convection coefficient and source term:

a(x) =
{

x + 2 for 0 ≤ x ≤ 0.5,
−(2x + 3) for 0.5 < x ≤ 1,

b(x) = 1,

f (x) =
{

2x + 1 for 0 ≤ x ≤ 0.5,
−(3x + 4) for 0.5 < x ≤ 1,

and u(0) = u(1) = 0.

As the exact solutions of Examples 6.1 and 6.2 are unknown, we use the double mesh principle [5]
to calculate the maximum pointwise error and the corresponding order of convergence of the numerical
solution provided by the scheme (3.11). The error EN

εd ,εc
and corresponding order of convergence ρN

εd ,εc

are computed as follows:

EN
εd ,εc
= max

0≤i≤N
|UN

i − U2N
i | and ρN

εd ,εc
= log2

EN
εd ,εc

E2N
εd ,εc

 .
Here UN

i denotes the numerical solution obtained with N number of mesh intervals, and U2N
i denotes

the solution on 2N number of mesh intervals obtained by bisecting the previous original mesh.
Similarly, we find the error EN and order of convergence ρN of the existing upwind scheme (3.2)
for a fixed value of εc and various values of εd, taken from the set S = {εd|εd = 10−2, 10−4, · · · , 10−14}:

EN = max
εd∈S

EN
εd ,εc

and ρN = log2

(
EN

E2N

)
.

Here, the numerical experiments are performed by choosing the constant values α=1.25, β=1.0 and
γ=0.8 for Example 6.1 and α=2.0, β=1.0, and γ=0.5 for Example 6.2.

We present the maximum pointwise errors EN
εd ,εc

for Examples 6.1 and 6.2 in Tables 1 and 2,
respectively. The corresponding orders of convergence ρN

εd ,εc
for Examples 6.1 and 6.2 are shown

in Tables 3 and 4, respectively. These tables show that the order of convergence is almost second-
order O(N−2 ln2 N) when

√
αεc ≤

√
γεd and O(N−2 ln3 N) when

√
αεc ≥

√
γεd for the above two

examples. Table 5 presents the maximum error EN and order of convergence ρN using the standard
upwind scheme (3.2). This table shows that the existing scheme gives first-order parameter uniform
convergence, while Tables 3 and 4 show almost second-order convergence using the hybrid difference
scheme. Note that the errors are also lower in Tables 1 or 2 compared to Table 5.

Furthermore, we have plotted the numerical solution and the corresponding error for Example 6.1 in
Figures 1 and 2. This shows that the interior layer (due to the discontinuity of the convection coefficient
and source term) becomes sharper as εc decreases from 10−2 to 10−4 for fixed εd = 10−6 (i.e., the case
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√
αεc ≤

√
γεd and

√
αεc ≥

√
γεd). Similar behavior can be observed for Example 6.2, whose solution

and error graph are depicted in Figures 3 and 4. The Loglog plot of the maximum pointwise error for
these problems in Figure 5 also demonstrates the uniform convergence of the numerical solution. From
this figure we observe that the numerical (hybrid) method provides parameter-uniform convergence of
O(N−2 ln3 N), if

√
αεc ≤

√
γεd and O(N−2 ln2 N), if

√
αεc ≥

√
γεd on Shishkin mesh.

Table 1. Maximum pointwise errors EN
εd ,εc

for εc = 10−4 for Example 6.1.

εd Number of mesh points N
128 256 512 1024 2048

10−2 3.01720E-05 7.03000E-06 1.21160E-06 1.77190E-07 2.39400E-08
10−4 1.55370E-03 7.67900E-04 2.02340E-04 5.52550E-05 1.32040E-05
10−6 1.30140E-03 6.03150E-04 2.63820E-04 1.09680E-04 3.83720E-05
10−8 1.45400E-03 3.22960E-04 1.05520E-04 2.74780E-05 8.60100E-06
10−10 4.45260E-03 2.01520E-03 7.84000E-04 2.43460E-04 7.18400E-05
10−12 4.48230E-03 2.03110E-03 7.90700E-04 2.45440E-04 7.25100E-05
10−14 4.48260E-03 2.03130E-03 7.90800E-04 2.45460E-04 7.25150E-05

Table 2. Maximum pointwise errors EN
εd ,εc

for εc = 10−4 for Example 6.2.

εd Number of mesh points N
128 256 512 1024 2048

10−2 2.16050E-05 3.74720E-06 5.75700E-07 8.04480E-08 1.06510E-08
10−4 7.06770E-04 2.80330E-04 7.20170E-05 1.80630E-05 4.33770E-06
10−6 1.05360E-03 4.48120E-04 1.83550E-04 7.82630E-05 2.75830E-05
10−8 2.48800E-03 8.44720E-04 3.04080E-04 9.67350E-05 3.07670E-05
10−10 2.32030E-03 8.00430E-04 2.58070E-04 7.99000E-05 2.37830E-05
10−12 2.31830E-03 7.99880E-04 2.57530E-04 7.97050E-05 2.37520E-05
10−14 2.31830E-03 7.99880E-04 2.57530E-04 7.97030E-05 2.37520E-05

Table 3. Orders of convergence ρN
εd ,εc

for εc = 10−4 for Example 6.1.

εd Number of mesh points N
128 256 512 1024 2048

10−2 2.101589829 2.536670744 2.773525566 2.887791549 2.944105039
10−4 1.016671183 1.924101248 1.872640276 2.065184608 2.476653267
10−6 1.109475717 1.192935556 1.266280804 1.515174609 1.550321966
10−8 2.170649483 1.613839022 1.941167564 1.675700690 1.594048784
10−10 1.143741186 1.361997468 1.687198524 1.760795875 2.076963082
10−12 1.141926332 1.361094457 1.687760037 1.759118509 2.075855289
10−14 1.141916350 1.361018549 1.687824928 1.759136585 2.075787013
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Table 4. Orders of Convergence ρN
εd ,εc

for εc = 10−4 for Example 6.2.

εd Number of mesh points N
128 256 512 1024 2048

10−2 2.527493178 2.702411030 2.839182775 2.917005920 2.957896449
10−4 1.334090700 1.960740570 1.995266679 2.058073050 2.466032116
10−6 1.233358139 1.287701271 1.229764652 1.504539747 1.532088543
10−8 1.558447064 1.474000771 1.652356870 1.652669823 1.741087508
10−10 1.535478921 1.633037441 1.691476399 1.748244574 1.746602194
10−12 1.535226517 1.635030415 1.692017043 1.746641478 1.748178614
10−14 1.535226517 1.635030415 1.692047210 1.746611310 1.748212622

Table 5. Maximum errors EN and orders of convergence ρN for Examples 6.1 & 6.2.

εd ∈ S , εc = 10−4 Number of mesh points N
Example 6.1 128 256 512 1024 2048

EN 1.16250E-01 1.00500E-01 7.58210E-02 5.27330E-02 3.30160E-02
ρN 0.210035215 0.406526112 0.523891410 0.675540731 0.748636031

Example 6.2 128 256 512 1024 2048
EN 8.51980E-02 6.88640E-02 4.79440E-02 3.11440E-02 1.81550E-02
ρN 0.307069581 0.522399704 0.622396029 0.778587320 0.802674063
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Figure 1. Numerical solution and pointwise errors for εd = 10−6, εc = 10−4 with N = 256
of Example 6.1.
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Figure 2. Numerical solution and pointwise errors for εd = 10−6, εc = 10−2 with N = 256
of Example 6.1.
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Figure 3. Numerical solution and pointwise errors for εd = 10−6, εc = 10−4 with N = 256
of Example 6.2.
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Figure 4. Numerical solution and pointwise errors for εd = 10−6, εc = 10−2 with N = 256
of Example 6.2.
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Figure 5. Loglog plot of maximum errors for Examples 6.1 and 6.2, respectively.

7. Conclusions

In this paper, an almost second-order uniformly convergent numerical solution is obtained for a two-
parameter singularly perturbed problem where the convection coefficient and source term have a jump
discontinuity at an interior point of the domain. The present hybrid difference scheme is a combination
of upwind, mid-point, and central difference schemes at the interior points with a five-point scheme
at the point of discontinuity so that it preserves the monotonicity property on the Shishkin mesh.
Both theoretical and computational results based on this scheme produce almost second-order uniform
convergence in the discrete maximum norm. Numerical experiments for the test problems validate the
theoretical results. As an extension of this work, in the future, we aim to solve the proposed problem
by considering a hybrid difference scheme using a Shishkin-Bakhvalov mesh.
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