Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Global stability of the interior equilibrium and the stability of Hopf bifurcating limit cycle in a model for crop pest control

  • Received: 23 June 2024 Revised: 31 July 2024 Accepted: 09 August 2024 Published: 16 August 2024
  • Mathematical modeling and analysis of a crop-pest interacting system helps us to understand the dynamical properties of the system such as stability, bifurcations and chaos. In this article, a predator-prey type mathematical model for pest control using bio-pesticides has been analysed to study the global stability property of the interior equilibrium point. Moreover, the occurrence and orbital stability of Hopf bifurcating limit cycle solutions have been studied using ref30's conditions. Analytical and numerical results show that the interior equilibrium of the pest control model is globally asymptotically stable. Also, Hopf bifurcating occurs when the bifurcation parameter crosses the critical value, and the bifurcating periodic solution is found to be stable.

    Citation: Aeshah A. Raezah, Jahangir Chowdhury, Fahad Al Basir. Global stability of the interior equilibrium and the stability of Hopf bifurcating limit cycle in a model for crop pest control[J]. AIMS Mathematics, 2024, 9(9): 24229-24246. doi: 10.3934/math.20241179

    Related Papers:

    [1] Fahad Alsharari, Ahmed O. M. Abubaker, Islam M. Taha . On r-fuzzy soft γ-open sets and fuzzy soft γ-continuous functions with some applications. AIMS Mathematics, 2025, 10(3): 5285-5306. doi: 10.3934/math.2025244
    [2] Dina Abuzaid, Samer Al-Ghour . Supra soft Omega-open sets and supra soft Omega-regularity. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303
    [3] Rui Gao, Jianrong Wu . Filter with its applications in fuzzy soft topological spaces. AIMS Mathematics, 2021, 6(3): 2359-2368. doi: 10.3934/math.2021143
    [4] Arife Atay . Disjoint union of fuzzy soft topological spaces. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535
    [5] Ibtesam Alshammari, Islam M. Taha . On fuzzy soft β-continuity and β-irresoluteness: some new results. AIMS Mathematics, 2024, 9(5): 11304-11319. doi: 10.3934/math.2024554
    [6] Orhan Göçür . Amply soft set and its topologies: AS and PAS topologies. AIMS Mathematics, 2021, 6(4): 3121-3141. doi: 10.3934/math.2021189
    [7] Rehab Alharbi, S. E. Abbas, E. El-Sanowsy, H. M. Khiamy, Ismail Ibedou . Soft closure spaces via soft ideals. AIMS Mathematics, 2024, 9(3): 6379-6410. doi: 10.3934/math.2024311
    [8] Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei . Soft separation axioms via soft topological operators. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828
    [9] G. Şenel, J. I. Baek, S. H. Han, M. Cheong, K. Hur . Compactness and axioms of countability in soft hyperspaces. AIMS Mathematics, 2025, 10(1): 72-96. doi: 10.3934/math.2025005
    [10] Dina Abuzaid, Samer Al Ghour . Three new soft separation axioms in soft topological spaces. AIMS Mathematics, 2024, 9(2): 4632-4648. doi: 10.3934/math.2024223
  • Mathematical modeling and analysis of a crop-pest interacting system helps us to understand the dynamical properties of the system such as stability, bifurcations and chaos. In this article, a predator-prey type mathematical model for pest control using bio-pesticides has been analysed to study the global stability property of the interior equilibrium point. Moreover, the occurrence and orbital stability of Hopf bifurcating limit cycle solutions have been studied using ref30's conditions. Analytical and numerical results show that the interior equilibrium of the pest control model is globally asymptotically stable. Also, Hopf bifurcating occurs when the bifurcation parameter crosses the critical value, and the bifurcating periodic solution is found to be stable.



    In this paper, we consider the following Rao-Nakra sandwich beam with time-varying weights and frictional dampings in (x,t)(0,L)×(0,),

    ρ1h1uttE1h1uxxk(u+v+αwx)+α1(t)f1(ut)=0,ρ3h3vttE3h3vxx+k(u+v+αwx)+α2(t)f2(vt)=0,ρhwtt+EIwxxxxαk(u+v+αwx)x+α3(t)f3(wt)=0, (1.1)

    in which u and v denote the longitudinal displacement and shear angle of the bottom and top layers, and w represents the transverse displacement of the beam. The positive constants ρi, hi, and Ei (i=1,3) are physical parameters representing, respectively, density, thickness, and Young's modulus of the i-th layer for i=1,2,3 and ρh=ρ1h1+ρ2h2+ρ3h3. EI=E1I1+E3I3, α=h2+(h1+h32), k=1h2(E22(1+μ)), where μ is the Poisson ratio 1<μ<12. The functions α1(t), α2(t), α3(t) are the time dependent of the nonlinear frictional dampings f1(ut), f2(vt), f3(wt), respectively. For the system (1.1), we consider the following Dirichlet-Neumann boundary conditions

    u(0,t)=u(L,t)=0,t(0,),v(0,t)=v(L,t)=0,t(0,),w(0,t)=wx(0,t)=0,t(0,),w(L,t)=wx(L,t)=0,t(0,), (1.2)

    and the initial conditions

    u(x,0)=u0,ut(x,0)=u1in (0,L),v(x,0)=v0,vt(x,0)=v1in (0,L),w(x,0)=w0,wt(x,0)=w1in (0,L). (1.3)

    The system (1.1)–(1.3) consists of one Euler-Bernoulli beam equation for the transversal displacement, and two wave equations for the longitudinal displacements of the top and bottom layers.

    Our aim is to investigate the asymptotic behavior of solutions for the system (1.1)–(1.3). We study the effect of the three nonlinear dampings on the asymptotic behavior of the energy function. Under nonrestrictive on the growth assumption on the frictional damping terms, we establish exponential and general energy decay rates for this system by using the multiplier approach. The results generalize some earlier decay results on the Rao-Nakra sandwich beam equation.

    First, let's review some previous findings about multilayered sandwich beam models. By applying the Riesz basis approach, Wang et al. [1] studied a sandwich beam system with a boundary control and established the exponential stability as well as the exact controllability and observability of the system. The author of [2] employed the multiplier approach to determine the precise controllability of a Rao-Nakra sandwich beam with boundary controls rather than the Riesz basis approach. Hansen and Imanuvilov [3,4] investigated a multilayer plate system with locally distributed control in the boundary and used Carleman estimations to determine the precise controllability results. Özer and Hansen [5,6] succeeded in obtaining, for a multilayer Rao-Nakra sandwich beam, boundary feedback stabilization and perfect controllability. One viscous damping effect on either the beam equation or one of the wave equations was all that was taken into account by Liu et al. [7] when they established the polynomial decay rate using the frequency domain technique. The semigroup created by the system is polynomially stable of order 1/2, according to Wang [8], who analyzed a Rao-Nakra beam with boundary damping only on one end for two displacements using the same methodology. One can find additional results on the multilayer beam in [9,10,11,12,13,14,15].

    In this paper, we consider a Rao-Nakra sandwich beam with time-varying weights and frictional dampings, i.e., system (1.1)–(1.3). The main results are twofold:

    (I) We establish an exponential decay of the system in the case of linear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi.

    (II) We establish more general decay of the system in the case of nonlinear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi and the frictional dampings fi. To the best of our knowledge, there is no stability results on the Rao-Nakra sandwich beam with nonlinear frictional dampings. The remainder of the paper is as follows. In Section 2, we introduce some notations and preliminary results. In Section 3, we state the theorem of the stability and give a detailed proof.

    In this section, we present some materials needed in the proof of our results. Throughout this paper, c and ε are used to denote generic positive constants. We consider the following assumptions:

    (H1) For (i=1,2,3), the functions fi:RR are C0 nondecreasing satisfying, for c1,c2>0,

    s2+f2i(s)|F1i(sfi(s))for all|s|ri,c1|s||fi(s)|c2|s|for all|s|ri, (2.1)

    where Fi:(0,)(0,) (i=1,2,3) are C1 functions, which are linear or strictly increasing and strictly convex C2 functions on (0,ri] with Fi(0)=Fi(0)=0.

    (H2) For (i=1,2,3), the time dependent functions αi:[0,)(0,) are C1 functions satisfying 0αi(t)dt=.

    Remark 2.1. (1) Hypothesis (H1) implies that sfi(s)>0, for all s0. This condition (H1) was introduced and employed by Lasiecka and Tataru [16]. It was shown there that the monotonicity and continuity of fi guarantee the existence of the function Fi with the properties stated in (H1).

    (2) For more results on the convexity properties on the nonlinear frictional dampings and sharp energy decay rates, we refer to the works by Boussouira and her co-authors [17,18,19].

    The following lemmas will be of essential use in establishing our main results.

    Lemma 3.1. [20] Let E:R+R+ be a nonincreasing function and γ:R+R+ be a strictly increasing C1-function, with γ(t)+ as t+. Assume that there exists c>0 such that

    Sγ(t)E(t)dtcE(S),1S<+,

    then there exist positive constants k and ω such that

    E(t)keωγ(t).

    Lemma 3.2. Let E:R+R+ be a differentiable and nonincreasing function and let χ:R+R+ be a convex and increasing function such that χ(0)=0. Assume that

    +sχ(E(t))dtE(s),s0, (3.1)

    then E satisfies the estimate

    E(t)ψ1(h(t)+ψ(E(0))),t0, (3.2)

    where ψ(t)=1t1χ(s)ds for t>0, and

    {h(t)=0,0tE(0)χ(E(0)),h1(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0)))),t>0.

    Proof. Since E(t)0, this implies E(0)E(t0) for all tt00. If E(t0)=0 for t00, then E(t)=0 for all tt00, and there is nothing to prove in this case. As in [21], we assume that E(t)>0 for t0 without loss of generality. Let

    L(s)=sχ(E(t))dt,s0.

    We have L(s)E(s),s0. The functional L is positive, decreasing, and of class C1(0,) satisfying

    L(s)=χ(E(s))χ(L(s)),s0.

    Since the functional χ is decreasing, we have

    χ(L(s))=L(s)χ(L(s))1,s0.

    Integrating this differential equation over (0,t), we get

    χ(L(t))t+ψ(E(0)),t0. (3.3)

    Since χ is convex and χ(0)=0, we have

    χ(s)sχ(1),s[0,1]andχ(s)sχ(1),s1.

    We find limt0ψ(t)= and [ψ(E(0)),))Image(ψ), then (3.3) imply that

    L(t)ψ1(t+ψ(E(0))),t0. (3.4)

    Now, using the properties of χ and E, we have

    L(s)tsχ(E(τ))dτ(ts)χ(E(t)),ts0. (3.5)

    Since limt0χ(t)=,χ(0)=0, and χ is increasing, (3.4) and (3.5) imply that

    E(t)χ1(infs[0,t)ψ1(t+ψ(E(0)))ts),t>0. (3.6)

    Now, let t>E(0)χ(E(0)) and J(s)=ψ1(t+ψ(E(0)))ts,s[0,t).

    The function J is differentiable, then we have

    J(s)=(ts)2[ψ1(s+ψ(E(0)))(ts)χ(ψ1(s+ψ(E(0))))]. (3.7)

    Thus, J(s)=0K(s)=t and J(s)<0K(s)<t, where

    K(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0)))).

    Since K(0)=E(0)χ(E(0)) and K is increasing (because ψ1 is decreasing and ssχ(s),s>0 is nonincreasing thanks to the fact χ is convex), for t>E(0)χ(E(0)), we have

    infs[0,t)J(K1(t))=J(h(t)).

    Since h satisfies J(h(t))=0, we conclude from (3.6) our desired estimate (3.2).

    We define the energy associated to the problem (1.1)–(1.3) by the following formula

    E(t)=12[ρ1h1L0u2tdx+E1h1L0u2xdx+ρ3h3L0v2tdx+E3h3L0v2xdx+ρhL0w2tdx+EIL0w2xxdx+kL0(u+v+αwx)2dx]. (3.8)

    Lemma 3.3. The energy E(t) satisfies

    E(t)α1(t)L0utf1(ut)dxα2(t)L0vtf2(vt)dxα3(t)L0wtf3(wt)dx0. (3.9)

    Proof. Multiplying (1.1)1 by ut, (1.1)2 by vt, (1.1)3 by wt and integrating each of them by parts over (0,L), we get the desired result.

    In this section, we state and prove our main result. For this purpose, we establish some lemmas. From now on, we denote by c various positive constants, which may be different at different occurrences. For simplicity, we consider the case α(t)=α1(t)=α2(t)=α3(t).

    Lemma 4.1. (Case: Fi is linear) For T>S0, the energy functional of the system (1.1)–(1.3) satisfies

    TSα(t)E(t)dtcE(S). (4.1)

    Proof. Multiplying (1.1)1 by αu and integrating over (S,T)×(0,L), we obtain

    TSα(t)L0u[ρ1h1uttE1h1uxxk(u+v+αwx)+α(t)f1(ut)]dxdt=0.

    Notice that

    uttu=(utu)tu2t.

    Using integration by parts and the boundary conditions, we get

    TSα(t)L0ρ1h1u2tdxdt+TSα(t)L0E1h1u2xdxdtTSα(t)L0ku(u+v+αwx)dxdt=ρ1h1[α(t)L0uutdx]TSTSα2(t)L0uf1(ut)dxdt. (4.2)

    Adding 2TSα(t)L0ρ1h1u2tdxdt to both sides of the above equation, we have

    TSα(t)L0ρ1h1u2tdxdt+TSα(t)L0E1h1u2xdxdtTSα(t)L0ku(u+v+αwx)dxdt=ρ1h1[α(t)L0uutdx]TSTSα2(t)L0uf1(ut)dxdt+2TSα(t)L0ρ1h1u2tdxdt. (4.3)

    Similarly, multiplying (1.1)2 by α(t)v and (1.1)3 by α(t)w, and integrating each of them over (S,T)×(0,L), we obtain

    TSα(t)L0ρ3h3v2tdxdt+TSα(t)L0E3h3v2xdxdt+TSα(t)L0kv(u+v+αwx)dxdt=ρ3h3[L0α(t)vvtdx]TSTSα2(t)L0vf2(vt)dxdt+2TSα(t)L0ρ3h3v2tdxdt, (4.4)

    and

    TSα(t)L0ρhw2tdxdt+TSα(t)L0EIw2xxdxdtTSα(t)L0kαw(u+v+αwx)xdxdt=ρh[L0α(t)wwtdx]TSTSα2(t)L0wf3(wt)dxdt+2TSα(t)L0ρhw2tdxdt. (4.5)

    Recalling the definition of E, and from (4.2)–(4.5), we get

    2TSα(t)E(t)dtρ1h1[α(t)L0uutdx]TSρ3h3[α(t)L0vvtdx]TSρh[α(t)L0wwtdx]TSTSα2(t)L0uf1(ut)dxdtTSα2(t)L0vf2(vt)dxdtTSα2(t)L0wf3(wt)dxdt+2TSα(t)L0ρ1h1u2tdxdt+2TSα(t)L0ρ3h3v2tdxdt+2TSα(t)L0ρhw2tdxdt. (4.6)

    Now, using Young's and Poincaré inequalities, we get for any εi>0(i=1,2,3),

    L0uutdxε1L0u2dx+14ε1L0u2tdxcpε1L0u2xdx+14ε1L0u2tdxcE(t),L0zztdxε2L0z2dx+14ε2L0z2tdxcpε2L0z2dx+14ε2L0z2tdxcE(t),L0wwtdxε3L0w2dx+14ε3L0w2tdxcpε3L0w2dx+14ε3L0w2tdxcE(t), (4.7)

    which implies that

    [α(t)L0uutdx]TScα(S)E(S)cα(S)E(T)cE(S),
    [α(t)L0vvtdx]TScE(S),

    and

    [α(t)L0wwtdx]TScE(S).

    Using (H1), the fact that F1 is linear, Hölder and Poincaré inequalities, we obtain

    α2(t)L0uf1(ut)dxα2(t)(L0|u|2dx)12(L0|f1(ut)|2dx)12α32||u||2(αL0utf1(ut)dx)12cE12(t)(E(t))12. (4.8)

    Applying Young's inequality on the term E12(t)(E(t))12, we obtain for ε>0

    α2(t)L0uf1(ut)dxcα(t)(εE(t)CεE(t))cεα(t)E(t)CεE(t), (4.9)

    which implies that

    TSα2(t)(L0(uf1(ut))dx)dtcεTSα(t)E(t)dt+CεE(S). (4.10)

    In the same way, we have

    TSα2(t)(L0(vf2(vt))dx)dtcεTSα(t)E(t)dt+CεE(S), (4.11)

    and

    TSα2(t)(L0(wf3(wt))dx)dtcεTSα(t)E(t)dt+CεE(S). (4.12)

    Finally, using (H1), and the fact that F1 is linear, we find that

    2TSα(t)L0ρ1h1u2tdxdtcTSα(t)L0utf1(ut)dxdtcTS(E(t))dtcE(S). (4.13)

    Similarly, we get

    2TSα(t)L0ρ3h3v2tdxdtcE(S),and2TSα(t)L0ρhw2tdxdtcE(S). (4.14)

    We combine the above estimates and take ε small enough to get the estimate (4.1).

    Lemma 4.2. (Case: Fi are nonlinear) For T>S0, the energy functional of the system (1.1)–(1.3) satisfies

    TSα(t)Λ(E(t))dtcΛ(E(S))+cTSα(t)Λ(E)EL0(|ut|2+|uf1(ut)|)dxdt+cTSα(t)Λ(E)EL0(|vt|2+|vf2(vt)|)dxdt+cTSα(t)Λ(E)EL0(|vt|2+|vf3(wt)|)dxdt, (4.15)

    where Λ is convex, increasing, and of class C1[0,) such that Λ(0)=0.

    Proof. We multiply (1.1)1 by α(t)Λ(E)Eu and integrate over (0,L)×(S,T) to get

    ρ1h1TSα(t)Λ(E)EL0u2tdxdt+E1h1TSα(t)Λ(E)EL0u2xdxdtkTSα(t)Λ(E)EL0u(u+v+αwx)dxdt=ρ1h1TSα(t)Λ(E)EL0(uut)tdxdtTSα2(t)Λ(E)EL0uf1(ut)dxdt+2ρ1h1TSα(t)Λ(E)EL0u2tdxdt. (4.16)

    Also, we multiply (1.1)2 by α(t)Λ(E)Ev and integrate over (0,L)×(S,T) to get

    ρ3h3TSα(t)Λ(E)EL0v2tdxdt+E3h3TSα(t)Λ(E)EL0v2xdxdt+kTSα(t)Λ(E)EL0v(u+v+αwx)dxdt=ρ3h3TSα(t)Λ(E)EL0(vvt)tdxdtTSα2(t)Λ(E)EL0vf2(vt)dxdt+2ρ3h3TSα(t)Λ(E)EL0v2tdxdt. (4.17)

    Similarly, we multiply (1.1)3 by α(t)Λ(E)Ew and integrate over (0,L)×(S,T) to get

    ρhTSα(t)Λ(E)EL0w2tdxdt+EhTSα(t)Λ(E)EL0w2xxdxdt+αkTSα(t)Λ(E)EL0wx(u+v+αwx)dxdt=ρhTSα(t)Λ(E)EL0(wwt)tdxdtTSα2(t)Λ(E)EL0wf3(wt)dxdt+2ρhTSα(t)Λ(E)EL0w2tdxdt. (4.18)

    Integrating by parts in the first term of the righthand side of the Eq (4.16), we find that Eq (4.16) becomes

    ρ1h1TSα(t)Λ(E)EL0u2tdxdt+E1h1TSα(t)Λ(E)EL0u2xdxdtkTSα(t)Λ(E)EL0u(u+v+αwx)dxdt=ρ1h1[α(t)Λ(E)EL0uutdx]TS+ρ1h1TSL0ut(α(t)Λ(E)Eu+α(t)(Λ(E)E)u)dxdt+2ρ1h1TSα(t)Λ(E)EL0u2tdxdtTSα2(t)Λ(E)EL0uf1(ut)dxdt.

    Using the fact that L0uutdxcE(t), the properties of α(t), and the facts that the function sΛ(s)s is nondecreasing and E is nonincreasing, we have

    TSα(t)Λ(E)EL0uutdxdtcTSα(t)Λ(E)EE(t)dtcΛ(E(S))TSα(t)dtcΛ(E(S)). (4.19)

    Similarly, we get

    TSα(t)(Λ(E)E)L0uutdxdtE(S)TSα(t)(Λ(E)E)dtE(S)[α(t)Λ(E)E]TSE(S)TSα(t)Λ(E)EdtE(S)(α(T)Λ(E(T))E(T)α(S)Λ(E(S))E(S))E(S)Λ(E(S))E(S)TSα(t)dtE(S)α(T)Λ(E(T))E(T)Λ(E(S))(α(T)α(S))E(S)α(S)Λ(E(S))E(S)+Λ(E(S))α(S)cΛ(E(S)). (4.20)

    Combining (4.19)–(4.20), we have

    ρ1h1TSα(t)Λ(E)EL0u2tdxdt+E1h1TSα(t)Λ(E)EL0u2xdxdtkTSα(t)Λ(E)EL0u(u+v+αwx)dxdtcΛ(E(S))+2ρ1h1TSα(t)Λ(E)EL0u2tdxdtTSα2(t)Λ(E)EL0uf1(ut)dxdt.

    Similarly, we have

    ρ3h3TSα(t)Λ(E)EL0v2tdxdt+E3h3TSα(t)Λ(E)EL0v2xdxdt+kTSα(t)Λ(E)EL0v(u+v+αwx)dxdtcΛ(E(S))+2ρ3h3TSα(t)Λ(E)EL0v2tdxdtTSα2(t)Λ(E)EL0vf2(vt)dxdt,

    and

    ρhTSα(t)Λ(E)EL0w2tdxdt+EhTSα(t)Λ(E)EL0w2xxdxdt+αkTSα(t)Λ(E)EL0wx(u+v+αwx)dxdtcΛ(E(S))+2ρhTSα(t)Λ(E)EL0w2tdxdtTSα2(t)Λ(E)EL0wf3(wt)dxdt.

    Gathering all the above estimations by using (3.8), we obtain

    TSα(t)Λ(E(t))dtcΛ(E(S))+cTSα2(t)Λ(E)EL0(|ut|2+|uf1(ut)|)dxdt+cTSα2(t)Λ(E)EL0(|vt|2+|vf2(vt)|)dxdt+cTSα2(t)Λ(E)EL0(|wt|2+|wf3(wt)|)dxdt. (4.21)

    This completes the proof of the estimate (4.15).

    In order to finalize the proof of our result, we let

    Λ(s)=2ε0sFi(ε20s), Ψi(s)=Fi(s2),

    where Fi and Ψi denote the dual functions of the convex functions Fi and Ψi, respectively, in the sense of Young (see Arnold [22], pp. 64).

    Lemma 4.3. Suppose Fi(i=1,2,3) are nonlinear, then the following estimates

    Fi(Λ(s)s)Λ(s)s(Fi)1(Λ(s)s) (4.22)

    and

    Ψi(Λ(s)s)ε0Λ(s), (4.23)

    hold.

    Proof. We prove for i=1, and the remaining are similar. Since F1 and Ψ1 are the dual functions of the convex functions F1 and Ψ1, respectively, then

    F1(s)=s(F1)1(s)F1[(F1)1(s)]s(F1)1(s) (4.24)

    and

    Ψ1(s)=s(Ψ1)1(s)Ψ1[(Ψ1)1(s)]s(Ψ1)1(s). (4.25)

    Using (4.24) and the definition of Λ, we obtain (4.22).

    For the proof of (4.23), we use (4.25) and the definitions of Ψ1 and Λ to obtain

    Λ(s)s(Ψ1)1(Λ(s)s)2ε0sF1(ε20s)(Ψ1)1(2ε0sF1(ε20s))=2ε0sF1(ε20s)(Ψ1)1(Ψ1(ε0s))=2ε20sF1(ε20s)=ε0Λ(s). (4.26)

    Now, we state and prove our main decay results.

    Theorem 4.4. Let (u0,u1)×(z0,z1)[H20(0,L)×L2(0,L)]2. Assume that (H1) and (H2) hold, then there exist positive constants k and c such that, for t large, the solution of the system (1.1)–(1.3) satisfies

    E(t)kect0α(s)ds,if Fi is linear,  (4.27)
    E(t)ψ1(h(˜α(t))+ψ(E(0))),t0,if Fi are nonlinear,  (4.28)

    where ˜α(t)=t0α(t)dt, ψ(t)=1t1χ(s)ds, χ(t)=cΛ(t), and

    {h(t)=0,0tE(0)χ(E(0)),h1(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0)))),t>0.

    Proof. To establish (4.27), we use (4.1), and Lemma 3.1 for γ(t)=t0α(s)ds. Consequently, the result follows.

    For the proof of (4.28), we re-estimate the terms of (4.15) as follows:

    We consider the following partition of the domain (0,L):

    Ω1={x(0,L):|ut|ε1},Ω2={x(0,L):|ut|ε1}.

    So,

    TSα(t)Λ(E)EΩ1(|ut|2+|uf1(ut)|)dxdt=TSα(t)Λ(E)EΩ1|ut|2dxdt+TSα(t)Λ(E)EΩ1|uf1(ut)|dxdt:=I1+I2.

    Using the definition of Ω1, condition (H1), and (3.9), we have

    I1cTSα(t)Λ(E)EΩ1utf1(ut)dxdtcTSΛ(E)E(E(t))dtcΛ(E(S)). (4.29)

    After applying Young's inequality, and the condition (H1), we obtain

    I2εTSα(t)Λ2(E)Edt+c(ε)TSα(t)Ω1|f1(ut)|2dt. (4.30)

    The definition of Ω1, the condition (H1), (3.8), (3.9), and (4.30) lead to

    I2εTSα(t)Λ2(E)Edt+c(ε)TSα(t)Ω1utf1(ut)dxdtεTSα(t)Λ2(E)Edt+c(ε)E(S). (4.31)

    Using the definition of Λ, and the convexity of F1, (4.31) becomes

    I2εTSα(t)Λ2(E)Edt+cεE(S)=2εε0TSα(t)Λ(E)F1(ε20E(t))dt+cεE(S)2εε0TSα(t)Λ(E)F1(ε20E(0))dt+cεE(S)2cεε0TSα(t)Λ(E)dt+cεE(S). (4.32)

    Using Young's inequality, Jensen's inequality, condition (H1), and (3.8), we get

    TSα(t)Λ(E)EΩ2(|ut|2+|uf1(ut)|)dxdtTSα(t)Λ(E)EΩ2F11(utf1(ut))dxdt+TSα(t)Λ(E)E (4.33)

    We apply the generalized Young inequality

    \begin{equation*} AB\le F^*(A)+F(B) \end{equation*}

    to the first term of (4.33) with A = \frac{\Lambda(E)}{E} and B = F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right) to get

    \begin{equation} \begin{aligned} \frac{\Lambda(E)}{E}F_1^{-1}\left(\frac{1}{L}\int_0^L u_tf_1(u_t)dx\right)\le F_1^*\left(\frac{\Lambda(E)}{E}\right)+ \frac{1}{L}\int_0^L u_t f_1(u_t)dx. \end{aligned} \end{equation} (4.34)

    We then apply it to the second term of (4.33) with A = \frac{\Lambda(E)}{E} \sqrt{E} and

    B = \sqrt{L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right)} to obtain

    \begin{equation} \begin{aligned} \frac{\Lambda(E)}{E} \sqrt{E}\; \sqrt{L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right)}\le F_1^*\left( \frac{\Lambda(E)}{E} \sqrt{E} \right) +L F_1^{-1}\left(\frac{1}{L}\int_0^L u_t f_1(u_t)dx\right). \end{aligned} \end{equation} (4.35)

    Combining (4.33)–(4.35), using (4.22), and (4.23), we arrive at

    \begin{equation} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\; \int_{\Omega_2}\left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\\ &\le c \int_{S}^{T} \alpha(t) \left( F_1^*\left(\frac{\Lambda(E)}{E} \sqrt{E}\right)+F_1^*\left( \frac{\Lambda(E)}{E}\right)\right)dt+c\int_{S}^{T}\alpha(t)\int_{\Omega}u_t f_1(u_t)dxdt\\ &\le c \int_{S}^{T} \alpha(t) \left(\varepsilon_0+\frac{(F_1^{\prime})^{-1}\left(\frac{\Lambda(E)}{E}\right)}{E}\right)\Lambda(E)dt+cE(S). \end{aligned} \end{equation} (4.36)

    Using the fact that s \to (F_1^{\prime})^{-1}(s) is nondecreasing, we deduce that, for 0 < \varepsilon_0\le \sqrt{E(0)} ,

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_{\Omega_2}\left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\le c\varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt+cE(S). \end{aligned} \end{equation*}

    Therefore, combining (4.15), (4.29), and (4.32), we find that

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert u_t\vert^2+\vert u f_1(u_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*}

    and similarly,

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert v_t\vert^2+\vert v f_2(v_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) &\frac{\Lambda(E)}{E}\int_0^L \left(\vert w_t\vert^2+\vert w f_3(w_t)\vert\right)dxdt\le c \Lambda\left(E(S)\right)+ c \varepsilon \varepsilon_0 \int_{S}^{T}\alpha(t) \Lambda(E)dt + c \varepsilon E(S), \end{aligned} \end{equation*}

    Combining all the above estimations with choosing \varepsilon and \varepsilon_0 small enough, we arrive at

    \begin{equation*} \begin{aligned} \int_{S}^{T}\alpha(t) \Lambda(E(t))dt\le c \left( 1+\frac{\Lambda(E(S))}{E(S)}\right)E(S). \end{aligned} \end{equation*}

    Using the facts that E is nonincreasing and s \to \frac{\Lambda(s)}{s} is nondecareasing, we can deduce that

    \begin{equation*} \int_{S}^{+\infty}\alpha(t) \Lambda(E(t))dt \le cE(S). \end{equation*}

    Now, let \tilde{E} = E\circ \tilde{\alpha}^{-1} , where \tilde{\alpha}(t) = \int_{0}^{t}\alpha(s)ds , then we deduce from this inequality that

    \begin{equation*} \begin{aligned} \int_{S}^{\infty} \Lambda(\tilde{E}(t))dt& = \int_{S}^{\infty} \Lambda(E(\tilde{\alpha}^{-1}(t)))dt\\ & = \int_{\tilde{\alpha}^{-1}(S)}^{\infty} \alpha(\eta)\Lambda(E(\eta))d\eta\\ &\le cE\left(\tilde{\alpha}^{-1}(S) \right)\\ &\le c \tilde{E}(S). \end{aligned} \end{equation*}

    Using Lemma 3.1 for \tilde{E} and \chi(s) = c \Lambda(s) , we deduce from (3.1) the following estimate

    \begin{equation*} \tilde{E}(t)\le \psi^{-1}\left(h(t)+\psi\left(E(0)\right)\right) \end{equation*}

    which, using the definition of \tilde{E} and the change of variables, gives (4.28).

    Remark 4.1. The stability result (4.28) is a decay result. Indeed,

    \begin{equation*} \begin{aligned} h^{-1}(t)& = t+\frac{\psi^{-1}\left(t+\psi(E(0))\right)}{\chi\left(\psi^{-1}(t+\psi(E(0)))\right)}\\ & = t+\frac{c}{2\varepsilon_0 c F^{\prime}\left(\varepsilon_0^2 \psi^{-1}(t+r) \right)}\\ &\ge t+\frac{c}{2\varepsilon_0 c F^{\prime}\left(\varepsilon_0^2 \psi^{-1}(r) \right)}\\ &\ge t+\tilde{c}, \end{aligned} \end{equation*}

    where F = \min \{ F_i \} and i = 1, 2, 3. Hence, \lim_{t\to\infty}h^{-1}(t) = \infty , which implies that \lim_{t \to\infty}h(t) = \infty . Using the convexity of F , we have

    \begin{equation*} \begin{aligned} \psi(t)& = \int_{t}^{1}\frac{1}{\chi(s)}ds = \int_{t}^{1}\frac{c}{2\varepsilon_0 sF^{\prime}\left(\varepsilon_0^2s\right)}\ge \int_{t}^{1}\frac{c}{sF^{\prime}\left(\varepsilon_0^2\right)}\ge c \left[\ln{\vert s\vert}\right]_{t}^{1} = -c\ln{t}, \end{aligned} \end{equation*}

    where F = \min \{ F_i \} and i = 1, 2, 3. Therefore, \lim_{t\to 0^+}\psi(t) = \infty , which leads to \lim_{t\to \infty}\psi^{-1}(t) = 0 .

    Example 1. Let f_i(s) = s^m , (i = 1, 2, 3) , where m\ge 1 , then the function F ( F = \min \{ F_i \} ) is defined in the neighborhood of zero by

    F(s) = c s^{\frac{m+1}{2}}

    which gives, near zero,

    \chi(s) = \frac{c(m+1)}{2} s^{\frac{m+1}{2}}.

    So,

    \begin{equation*} \psi(t) = c \int_{t}^{1}\frac{2}{(m+1)s^{\frac{m+1}{2}}}ds = \left\{ \begin{array}{ll} \frac{c}{t^{\frac{m-1}{2}}}, & if ~~~ {m > 1 ;} \\ \\ -c\ln{t}, & if ~~~ {m = 1 , } \end{array} \right. \end{equation*}

    then in the neighborhood of \infty ,

    \begin{equation*} \psi^{-1}(t) = \left\{ \begin{array}{ll} c t^{-\frac{2}{m-1}}, & if ~~~ {m > 1 ;} \\ c e^{-t}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*}

    Using the fact that h(t) = t as t goes to infinity, we obtain from (4.27) and (4.28):

    \begin{equation*} E(t)\le \left\{ \begin{array}{ll} c \left(\int_{0}^{t}\alpha(s)ds\right)^{-\frac{2}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{-{\int_{0}^{t}\alpha(s)ds}}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*}

    Example 2. Let f_i(s) = s^m \sqrt{-\ln{s}} , (i = 1, 2, 3) , where m\ge 1 , then the function F is defined in the neighborhood of zero by

    F(s) = c s^{\frac{m+1}{2}} \sqrt{-\ln{\sqrt{s}}},

    which gives, near zero,

    \chi(s) = cs^{\frac{m+1}{2}}\left(-\ln{\sqrt{s}}\right)^{-\frac{1}{2}}\left(\frac{m+1}{2}\left(-\ln{\sqrt{s}}\right)-\frac{1}{4}\right).

    Therefore,

    \begin{equation*} \begin{aligned} \psi(t) = &c \int_{t}^{1}\frac{1}{ s^{\frac{m+1}{2}}\left(-\ln{\sqrt{s}}\right)^{-\frac{1}{2}}\left(\frac{m+1}{2}\left(-\ln{\sqrt{s}}\right)-\frac{1}{4}\right)}ds\\ = &c\int_{1}^{\frac{1}{\sqrt{t}}}\frac{\tau^{m-2}}{(\ln{\tau})^{-\frac{1}{2}} \left(\frac{m+1}{2}\ln{\tau}-\frac{1}{4} \right)}d\tau\\ = &\left\{ \begin{array}{ll} \frac{c}{t^{\frac{m-1}{2}}\sqrt{-\ln{t} }}, & if ~~~ {m > 1 ;} \\ \\ c\sqrt{-\ln{t}}, & if ~~~ {m = 1 , } \end{array} \right. \end{aligned} \end{equation*}

    then in the neighborhood of \infty ,

    \begin{equation*} \psi^{-1}(t) = \left\{ \begin{array}{ll} c t^{-\frac{2}{m-1}}\left( \ln{t} \right)^{-\frac{1}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{-t^2}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*}

    Using the fact that h(t) = t as t goes to infinity, we obtain

    \begin{equation*} E(t)\le \left\{ \begin{array}{ll} c \left(\int_{0}^{t}\alpha(s)ds\right)^{-\frac{2}{m-1}} \left(\ln{\left(\int_{0}^{t}\alpha(s)ds\right)}\right)^{-\frac{1}{m-1}}, & if ~~~ {m > 1 ;} \\ \\ c e^{- \left(\int_{0}^{t}\alpha(s)ds\right)^2}, & if ~~~ {m = 1 .} \end{array} \right. \end{equation*}

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2402, is also greatly acknowledged.

    The authors declare that there is no conflict of interest.



    [1] S. Gupta, A. K. Dikshit, Biopesticides: An ecofriendly approach for pest control, J. Biopest, (2010), 186.
    [2] W. J. Lewis, J. C. Van Lenteren, S. C. Phatak, J. H. Tumlinson, A total system approach to sustainable pest management, Proc. Natl. Acad. Sci., 94, (1997), 12243–12248. https://doi.org/10.1073/pnas.94.23.1224 doi: 10.1073/pnas.94.23.1224
    [3] M. L. Flint, R. Van den Bosch, Introduction to integrated pest management, Springer Science & Business Media, (2012).
    [4] E. Beltrami, Mathematics for dynamic modeling, Academic press, (2014).
    [5] R. M. May, Stability and complexity in model ecosystems, Princeton university press, (2019).
    [6] L. F. Cavalieri, H. Koçak, Chaos in biological control systems, J. Theoret. Biol., 169 (1994), 179–187. https://doi.org/10.1006/jtbi.1994.1139 doi: 10.1006/jtbi.1994.1139
    [7] W. L. Keith, R. H. Rand, Dynamics of a system exhibiting the global bifurcation of a limit cycle at infinity, Int. J. Non-Lin. Mech., 20 (1985), 325–338. https://doi.org/10.1016/0020-7462(85)90040-X doi: 10.1016/0020-7462(85)90040-X
    [8] S. Sastry, Nonlinear systems: Analysis, stability, and control, Springer Science, Business Media, 10 (2013).
    [9] R. Seydel, Practical bifurcation and stability analysis, Springer Science & Business Media, (2009).
    [10] Z. He, X. Lai, Bifurcation and chaotic behavior of a discrete-time predator–prey system, Nonlinear Anal. Real. World Appl., 12 (2019), 403–417. https://doi.org/10.1016/j.nonrwa.2010.06.026 doi: 10.1016/j.nonrwa.2010.06.026
    [11] S. H. Strogatz, Nonlinear dynamics and chaos with student solutions manual: With applications to physics, biology, chemistry, and engineering, CRC press, (2018).
    [12] V. Kumar, J. Dhar, H. S. Bhatti, Stability and Hopf bifurcation dynamics of a food chain system: plant–pest–natural enemy with dual gestation delay as a biological control strategy, Model. Earth Syst. Environ., 4 (2018), 881–889. https://doi.org/10.1007/s40808-018-0417-1 doi: 10.1007/s40808-018-0417-1
    [13] F. A. Basir, A multi-delay model for pest control with awareness induced interventions—Hopf bifurcation and optimal control analysis, Int. J. Biomath., 13 (2020), 2050047. https://doi.org/10.1142/S1793524520500473 doi: 10.1142/S1793524520500473
    [14] T. Abraha, F. Al Basir, L. L. Obsu, D. F. M. Torres, Farming awareness based optimum interventions for crop pest control, Math. Biosci. Eng., 18 (2021), 5364–5391. https://doi.org/10.3934/mbe.2021272 doi: 10.3934/mbe.2021272
    [15] W. Costello, H. Taylor, Mathematical models of the sterile male technique of insect control, in: Mathematical Analysis of Decision Problems in Ecology, Springer, Berlin, Heidelberg, (1975), 318–359. https://doi.org/10.1007/978-3-642-80924-8_12
    [16] T. L. Vincent, Pest management programs via optimal control theory, Biometrics, 31 (1975), 1–10. https://doi.org/10.2307/2529704 doi: 10.2307/2529704
    [17] Y. Liu, Y. Yang, B. Wang, Entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae play roles of maize (Zea mays) growth promoter, Sci. Rep., 12 (2022), 15706. https://doi.org/10.1038/s41598-022-19899-7 doi: 10.1038/s41598-022-19899-7
    [18] F. A. Basir, S. Samanta, P. K. Tiwari, Bistability, generalized and zero-hopf bifurcations in a pest control model with farming awareness, J. Biol. Syst., 31 (2023), 115–140. https://doi.org/10.1142/S0218339023500079 doi: 10.1142/S0218339023500079
    [19] G. Seo, G. S. Wolkowicz, Pest control by generalist parasitoids: A bifurcation theory approach. Discrete Cont. Dyn. S., 31 (2020), 3157–3187. https://doi.org/10.3934/dcdss.2020163 doi: 10.3934/dcdss.2020163
    [20] D. K. Bhattacharya, S. Karan, On bionomic model of integrated pest management of a single pest population, J. Differ. Equat. Dyn. Syst., 12 (2004), 301–330.
    [21] S. Ghosh, D. K. Bhattacharyya, Optimization in microbial pest control: An integrated approach, Appl. Math. Model., 34 (2010), 1382–1395. https://doi.org/10.1016/j.apm.2009.08.026 doi: 10.1016/j.apm.2009.08.026
    [22] F. A. Basir, A. Banerjee, S. Ray, Role of farming awareness in crop pest management—a mathematical model, J. Theoret. Biol., 461 (2019), 59–67.
    [23] E. Kurstak, Microbial and Viral Pesticide, Marcel and Dekker, Inc., New York, Bessel, (1982).
    [24] S. Bhattacharyya, D. K. Bhattacharyya, An improved integrated pest management model under 2-control parameters (sterile male and pesticide), Math. Biosci., 209, (2007), 256–281. https://doi.org/10.1016/j.mbs.2006.08.003 doi: 10.1016/j.mbs.2006.08.003
    [25] J. Chowdhury, F. Al Basir, J. Pal, P. K. Roy, Pest control for Jatropha curcas plant through viral disease: a mathematical approach, Nonlinear Stud., 23 (2016), 517–532.
    [26] T. Abraha, F. A. Basir, L. L. Obsu, D. F. M. Torres, Pest control using farming awareness: Impact of time delays and optimal use of biopesticides, Chaos Soliton. Fract., 146 (2021), 110869. https://doi.org/10.1016/j.chaos.2021.110869 doi: 10.1016/j.chaos.2021.110869
    [27] S. Ghosh, S. Bhattacharyya, D.K. Bhattacharyya, The Role of Viral infection in Pest Control: A Mathematical Study, Bull. Math. Biol., 69 (2007), 2649–2691. https://doi.org/10.1007/s11538-007-9235-8 doi: 10.1007/s11538-007-9235-8
    [28] J. Chowdhury, F. A. Basir, Y. Takeuchi, M. Ghosh, P. K. Roy, A mathematical model for pest management in Jatropha curcas with integrated pesticides–an optimal control approach, Ecol. Complex., 37 (2019), 24–31. https://doi.org/10.1016/j.ecocom.2018.12.004 doi: 10.1016/j.ecocom.2018.12.004
    [29] A. B. Poore, On the theory and application of the Hopf-Friedrichs bifurcation theory, Arch. Rat. Mech. Anal., 60 (1976), 371–393. https://doi.org/10.1007/BF00248886 doi: 10.1007/BF00248886
  • This article has been cited by:

    1. Mohammed Abu Saleem, On soft covering spaces in soft topological spaces, 2024, 9, 2473-6988, 18134, 10.3934/math.2024885
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(905) PDF downloads(53) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog