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Abstract: Mathematical modeling and analysis of a crop-pest interacting system helps us to
understand the dynamical properties of the system such as stability, bifurcations and chaos. In this
article, a predator-prey type mathematical model for pest control using bio-pesticides has been analysed
to study the global stability property of the interior equilibrium point. Moreover, the occurrence and
orbital stability of Hopf bifurcating limit cycle solutions have been studied using ref30’s conditions.
Analytical and numerical results show that the interior equilibrium of the pest control model is globally
asymptotically stable. Also, Hopf bifurcating occurs when the bifurcation parameter crosses the critical
value, and the bifurcating periodic solution is found to be stable.
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1. Introduction

The ruin of crops by pest invasions is a serious worldwide crisis not only in farming areas but also
in woodland ecosystems. This issue connected with pests has been recognized since the cultivation
of crops started. Approximately 42% of the world’s food supply is destroyed because of pests [1].
Recently, the biological control of pests has been earning more attention among experimenters, and
its practical application is also rising in the crop field. This method seeks to reduce the reliance on
pesticides by emphasizing the contribution of biological control agents where living organisms are
only used to control pests. Managing pests via chemical pesticides is less expensive and destroys
pests rapidly but generates high environmental loss. On the other hand, natural control is a long and
expensive method to use, but with very little ecological loss [2, 3].
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In this study, we focus on the application of biopesticides for crop pest control. A mathematical
model on this system can help us to identify the main parameters. The stability of model system shows
complex dynamics such as bifurcation and chaos. The global stability of equilibrium point and the
stability of a limit cycle around it are important factors in understanding the behaviors that can be
seen in a dynamical system. For example, in a biological system, the stability of a limit cycle can
determine whether a population of organisms will grow or decline over time. In a biological system,
the stability of a limit cycle can determine whether the system will oscillate periodically or exhibit
unstable behavior [4, 5].

In a dynamical system, a limit cycle refers to a periodic orbit that a system can exhibit [6]. The
stability of a limit cycle determines how the system behaves near the limit cycle [7]. There are two
types of stability for limit cycles: asymptotic stability and structural stability. Asymptotic stability
means that the system tends toward the limit cycle as time goes to infinity [8]. This means that any
initial conditions near the limit cycle will approach it over time. Asymptotic stability can be further
classified into stable limit cycles and unstable limit cycles. A stable limit cycle is one where the system
is attracted toward the limit cycle, while an unstable limit cycle is one where the system is repelled
away from the limit cycle [9]. Structural stability, on the other hand, means that the qualitative behavior
of the system is preserved under small perturbations to the system’s parameters. In other words, if a
system exhibits a limit cycle under certain conditions, then it will continue to do so under small changes
to those conditions [10, 11].

Mathematical modeling and analysis helps in understanding the dynamics of the system under
consideration [12]. Results obtained from the modeling approach can help in proposing proper pest
control strategies [13]. Dynamical properties, such as Hopf bifurcation, chaos, limit cycle etc., have
seen studied by researchers [6]. Mathematical models for pest control using biopesticides have been
proposed and studied by researchers [14–17]. Pest control models are developed to analyze specific
dynamics, such as Hopf bifurcation via the occurrence of limit cycles [18–21]. The authors of [22] and
[23] have studied the occurrences of Hopf bifurcating periodic solutions. Little research are focused on
the effect of environmental fluctuations on a sterile insect release method [24]. Mathematical models
for pest management using biological control strategies have been designed and analyzed by many
researchers [16,25,26]. The local stability of equilibrium points and the occurrence of Hopf bifurcation
has been analyzed in the articles. But there are a few articles that focus on the global stability of
equilibrium points and the stability of bifurcating periodic solutions which are important properties of
a dynamical system [27].

In [28], Chowdhury et al. have proposed a model for crop pest control using an integrated approach
(i.e., both biopesticides and chemical pesticides are used) in an optimal manner. They have analyzed
the local stability of different equilibria and provided the existence of Hopf bifurcation. But the global
stability and stability of a limit cycle were not addressed. Thus, in this research, we have derived a
model for pest control from the mathematical model proposed in [28] to study the dynamics of the
crop-pest system in the presence of biopesticides. The model system is analyzed both analytically as
well as numerically for the occurrence and stability of a Hopf bifurcating limit cycle using Poore’s
condition. Also, the global stability of the interior equilibrium point is analyzed using a suitable
Lyapunov function.

The paper is organized as follows. In section 2, the formulation of the model is given. In section
4, we will analyze the global stability of the endemic equilibrium point and the occurence of Hopf
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bifurcation. The stability of the bifurcating limit cycle around coexisting equilibrium is analysed in
section 5. Simulations are carried out in section 6 to substantiate the analytical findings. The final
section contains a discussion of the main results to conclude the the paper.

2. Formulation of the mathematical model

In this research, we have considered the mathematical model established in [28] and derive the
mathematical model to study the global stability of the interior equilibrium and stability of the limit
cycle. We provide the derivation of the model as follows.

The following hypotheses are made to derive the mathematical model:

- As system variables, the biomass of crop is denoted as X(t), the susceptible pest population as Y(t),
the infected pest as I(t) and the biopesticides (viruses) as V(t).

- Logistic growth for the biomass of the crop is considered with net growth rate r1 and carrying capacity
K. α is the consumption rate of the crop biomass by susceptible pests.

- In biological control of pest, biopests (generally viruses) are sprayed on the plantation. In this
process, susceptible pests are affected and become the infected ones. κ is the rate of replication of
the virus by lysis and µV is the mortality rate of the biopesticide (virus). πv is the constant rate of
spray of virus in the environment. λ1 is the reduction rate constant of the free virus.

- Pest consumes the crop resource at a rate αwhich is converted to the susceptible pest population with
a maximum growth rate r(X). Here, r(X) is dependent on the density of the crop biomass and is
also assumed to be a scalar multiple of the biomass of crop X due to the consumption of the crop
resources limited at the maximum crop cultivation capacity [r(X) = αr2X]. αr2 is the maximum
growth rate of the susceptible pest. Hence the susceptible are growing at the rate governed by the
consumption of crop resources, which is growing maximally at a rate r1.

- The carrying capacity of the susceptible pest is assumed as ks. Here, ks is dependent on the carrying
capacity of the crop biomass K factored with a constant term c > 1, i.e., ks = cK.

Based on the above assumptions, the following model is obtained:

dX
dt
= r1X

(
1 −

X
K

)
− αXS ,

dS
dt
= αr2XS

(
1 −

S + I
cK

)
− λS V,

dI
dt
= λS V − ξI,

dV
dt
= πv + κξI − µvV − λ1S V, (2.1)

with initial conditions as
X(0) ≥ 0, S (0) ≥ 0, I(0) ≥ 0, V(0) ≥ 0. (2.2)

The region given below is positively invariant region for the system (2.1):

Ω = {(X, S , I,V) ∈ R4
+ : 0 ≤ j ≤ M1, 0 ≤ S + I ≤ M2, 0 ≤ V ≤ M3}, (2.3)

where M1= max{K, J(0)}, M2 =
αr2 M1cK

4ξ , and M3 =
πv+κξM2

µv
.
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3. Existence of equilibria and their local stability

In this section, we analyse the existence of possible equilibrium points of the model system (2.1).
Then we study the local stability properties.

3.1. Existence of equilibria

Analyzing the system (2.1), we get three feasible steady states, namely,

(i) the plant-pest free equilibrium point E1(0, 0, 0, πv
µv

),

(ii) the pest-free equilibrium point E2(K, 0, 0, πv
µv

), and

(iii) the interior equilibrium point E∗(X∗, S ∗, I∗,V∗), where,

X∗ =
K(r1 − αS ∗)

r1
, I∗ =

λS ∗πv

ξS ∗(λ1 − κλ) + ξµv
, V∗ =

πv

S ∗(λ1 − κλ) + µv
,

and S ∗ is the positive root of the following cubic equation:

Φ(S ) = m1S 3 + m2S 2 + m3S + m4 = 0 (3.1)

with,

m1 = α2r2ξ(κλ − λ1)
m2 = cα2r2Kξ(λ1 − κλ) + αr2ξ{r1(λ1 − κλ) − αµv} − α

2r2λπv

m3 = cKαr2ξ{αµv − r1(λ1 − κλ)} + ξαr2r1µv + αr2r1λπv

m4 = cr1ξ(λπv − αr2Kµv). (3.2)

Equation (3.1) is a cubic polynomial equation, thus a real root always exists. Also, if λ1 > κλ holds
then m1 < 0, m2 > 0, and m3 > 0. Now m4 > 0 holds when λπv > αr2Kµv. Hence, using Descartes’
rule of signs, we have the following proposition.

Proposition 1. For λ1 > κλ and λπv > αr2Kµv, there always exists a unique interior equilibrium point
E∗.

3.2. Local stability and Hopf bifurcation

Here, we check the local stability of the equilibria of the system (2.1). For this analysis, we need
the Jacobian matrix of the system at any equilibrium point E(X, S , I,V) is given by

JE = [Ji j]4×4 =



r(1 − 2J
K ) − αS −αX 0 0

αr2S (1 − S+I
cK ) J22 −

αr2XS
cK −λS

0 λV −ξ − d2u1 λS

0 −λ1V κξ −µv − λ1S


, (3.3)
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where J22 = αr2X(1 − 2S+I
cK ) − λV .

At E1, the Jacobian matrix gives the following characteristic equation in ρ:

(ρ − r) · (ρ +
πvλ

µv
) · (ρ + ξ)(ρ + µv) = 0, (3.4)

whose eigenvalues are r > 0, −πvλ
µv
< 0,−ξ < 0, and −µv < 0. Thus, one eigenvalue is always positive

and, consequently, the axial equilibrium, E0, is unstable.
The Jacobian matrix of the system at pest-free equilibrium point E2(K, 0, 0, πv

µv
) which satisfies the

following equation:

(ρ + r) · (ρ − αr2K +
πvλ

µv
) · (ρ + ξ)(x + µv) = 0. (3.5)

Eigenvalues of the above matrix are given as −r, αr2K − πvλ
µv

, −ξ, and −µv. Clearly, three eigenvalues
are negative and remaining eigenvalue will be negative if

αr2µvK < πvλµv. (3.6)

The characteristic equation of JE∗ = [Ji j]4×4 is

ρ4 + σ1ρ
3 + σ2ρ

2 + σ3ρ + σ4 = 0, (3.7)

where

σ1 = −(J11 + J22 + J33 + J44)
σ2 = −J12J21 + J11J22 − J23J32 + (J11 + J22)J33 − J24J42 − J34J43 + (J11 + J22 + J33)J44

σ3 = J11J23J32 + J33(J12J21 − J11J22) + J24(J11J42 + J33J42) − J23J34J42 − J24J32J43

+J34J43(J11 + J22) + J44(J12J21 − J11J22 + J23J32) − (J11 + J22)J33J44

σ4 = J11J22J33J44 − J11J22J34J43 − J11J44J23J32 + J11J23J34J42 +

J11J24J32J43 − J11J33J24J42 − J12J21J33J44 + J12J21J34J43. (3.8)

Here,

J11 = −
r1X∗

K
, J22 = −

αr2X∗S ∗

cK
,

J33 = −ξ − d2u, J44 = −µv − λ1S ∗, J12 = −αX∗, J21 = αr2S ∗(1 −
S ∗ + I∗

cK
),

J23 = −
αr2X∗S ∗

cK
, J24 = −λS ∗J32 = λV∗, J34 = λS ∗,

J42 = −λ1V∗, J43 = κξ. (3.9)

According to the Routh-Hurwitz criterion, characteristic equation have roots with negative parts if

σ1 > 0, σ4 > 0, σ1σ2 − σ3 > 0, σ1σ2σ3 − σ
2
3 − σ

2
1σ4 > 0. (3.10)

From Proposition 1 and from the above analysis, the following theorem is obtained.
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Theorem 1. In the system (2.1),

(i) plant-pest free equilibrium E1 is always unstable,
(ii) pest-free equilibrium E2 is stable if αr2µvK < πvλ and unstable otherwise,

(iii) interior equilibrium E∗ exists if αr2µvK < πvλ, i.e., when E2 becomes unstable. E∗ is stable if the
conditions in (3.10) are satisfied.

Now, we shall analyse the conditions for which E∗ enters into Hopf bifurcation as a model
parameter varies over R. We consider the Hopf bifurcation as a function of the generic bifurcation
parameter η ∈ R.

Let Ψ : (0,∞)→ R be the following continuously differentiable function of η:

Ψ(η) := σ1(η)σ2(η)σ3(η) − σ2
3(η) − σ4(η)σ2

1(η)

The assumptions for Hopf bifurcation to occur are the usual ones and these require that the spectrum
σ(η) = {ρ : D(ρ) = 0} of the characteristic equation is such that

(A) There exists η∗ ∈ (0,∞), at which a pair of complex eigenvalues ρ(η∗), ρ̄(η∗) ∈ σ(η) are such that

Reρ(η∗) = 0, Imρ(η∗) = ω0 > 0,

and the transversality condition
dReρ(η)

dη
|η∗ , 0;

(B) All other elements of σ(η) have negative real parts.

Thus we have the following theorem [28].

Theorem 2. The system (2.1) around the interior equilibrium E∗ enters into Hopf bifurcation at η =
η∗ ∈ (0,∞) if and only if

(i) Ψ(η∗) = 0, and
(ii) σ3

1σ
′
2σ3(σ1 − 3σ3) > 2(σ2σ

2
1 − 2σ2

3)(σ′3σ
2
1 − σ

′
1σ

2
3),

and all other eigenvalues have negative real parts, where ρ(η) is purely imaginary at η = η∗.

4. Global stability of interior equilibrium E∗

In the this section, we analyse the global stability of the coexisting equilibrium of system (2.1).
For the global stability, we choose the Lyapunov function as follows:

ψ(X, S , I,V) =
1
2

(c1X2 + c2S 2 + c3I2 + c4V2).

Here, ci > 0, i = 1, 2, 3, 4, are so chosen that ψ̇ is negative definite. Now, derivative of ψ along the
solution of the equation Ẋ(t) = JE∗X(t), where X(t) = (X(t), S (t), I(t),V(t))T , is as follows

ψ̇ = c1XẊ + c2sṠ + c3I İ + c4vV̇
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= c1

(
−

r1X∗

K

)
X2 + c2

(
−
αr2X∗S ∗

cK

)
S 2 − c3ξI2 − c4 (µv + λ1S ∗) V2

+

(
c2αr2S ∗(1 −

S ∗ + I∗

cK
) − c1αX∗

)
XS +

(
c3λV∗ − c2

αr2X∗S ∗

cK

)
S I

− (c2λS ∗ + c4λ1V∗) S V + (c4κξ + c3λS ∗) IV

Thus symmetric matrix corresponding to ψ̇ is given by

M =
[
mi j

]
4×4
=

1
2



m11 m12 0 0

m21 m22 (c3λV∗ − c2
αr2X∗S ∗

cK ) −(c2λS ∗ + c4λ1V∗)

0 (c3λV∗ − c2
αr2X∗S ∗

cK ) −2c3ξ (c4κξ + c3λS ∗)

0 −(c2λS ∗ + c4λ1V∗) (c4κξ + c3λS ∗) −2c4(µv + λ1S ∗)


. (4.1)

Here,

m11 = 2c1(−
r1X∗

K
), m12 = m21 = (c2αr2S ∗(1 −

S ∗ + I∗

cK
) − c1αX∗, m22 = 2c2(−

αr2X∗S ∗

cK
). (4.2)

The positive equilibrium E∗ is locally asymptotically stable if ψ̇ is negative definite which implies
the matrix M must be negative definite. But the matrix M will be negative definite if all of the principal
minors of odd rank are negative and all of the principal minors of even rank are positive. This gives
rise to the following four conditions:

(i) − 2c1(
r1X∗

K
) < 0,

(ii) 4c1c2

(
−

r1X∗

K

) (
−
αr2X∗S ∗

cK

)
−

(
c2αr2S ∗(1 −

S ∗ + I∗

cK
) − c1αX∗

)2

> 0,

(iii) 2c1

(
−

r1X∗

K

) 4c3c2

(
αr2X∗S ∗

cK

)
ξ −

(
c3λV∗ − c2

αr2X∗S ∗

cK

)2
+2c3ξ

(
c2αr2S ∗

(
1 −

S ∗ + I∗

cK

)
− c1αX∗

)2

< 0,

(iv) − 2c4(µv + λ1S ∗) × LHS of expression of inequality (iii)
−(c4κξ + c3λS ∗) ×Minor corresponding to M43

−(c2λS ∗ + c4λ1V∗) ×Minor corresponding to M42 > 0.
(4.3)

Clearly, first condition is automatically satisfied. Now, if we choose c2, c3 in such a way that(
c2αr2S ∗(1 −

S ∗ + I∗

cK
) − c1αX∗

)
= 0, and (c3λV∗ − c2

αr2S ∗

ks
) = 0,

(4.4)
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i.e.,

c2 =
c1αX∗

αr2S ∗(1 − S ∗+I∗
cK )

=
c1αX∗2

λS ∗V∗
, c3 = c2

1
λV∗

αr2S ∗

ks
, (4.5)

then the condition (ii) and (iii) are satisfied, and thus the condition (iv) reduces to the following form:

16c1c2c3c4m11m22ξ(µv + λ1S ∗) − m11m22(c4κξ + c3λS ∗)2 + 2m11c3ξ(c2λS ∗ + c4λ1V∗)2 > 0. (4.6)

The above condition is satisfied for any suitable large value of c1 as first term in the above inequality
is positive and other two terms are negative. The negative terms do not contain c1.

Thus, we have the following theorem for the global stability of E∗.

Theorem 3. The equilibrium point E∗(X∗, S ∗, I∗,V∗) of the system (2.1) is locally asymptotically stable
if the following condition holds:

16c1c2c3c4m11m22ξ(µv + λ1S ∗) − m11m22(c4κξ + c3λS ∗)2 + 2m11c3ξ(c2λS ∗ + c4λ1V∗)2 > 0, (4.7)

where m11 and m22 are given in (4.2) and c1, c2, c3, and c4 are given in (4.5).

5. Stability of bifurcating limit cycle

To investigate the orbital stability of the Hopf-bifurcating periodic solution, ref30’s condition has
been followed [29]. According to ref30’s sufficient condition, the supercritical and subcritical nature
of the Hopf-bifurcating periodic solution is determined respectively by the positive and negative sign
of real part of the number 𭟋, where 𭟋 is defined by:

𭟋 = −ul
∂3 f l

∂xp∂xq∂xr
vpvqv̄r + 2ul

∂2 f l

∂xp∂xq
vp[(J−1

E∗ )qs]
∂2 f s

∂xt∂xw
vtv̄w +

ul
∂2 f l

∂xp∂xq
v̄p[(JE∗ − 2iω0I)−1

qs ]
∂2 f s

∂xt∂xw
vtvw, (5.1)

where the repeated indices within each term imply a sum notation and all the derivatives of f l are
evaluated at the equilibrium E∗. JE∗ is the variational matrix of the system (2.1) calculated at E∗.
u = (u1, u2, u3, u4) and v = (v1, v2, v3, v4)T are the left and right eigenvectors respectively of E∗ with
respect to eigenvalues iω0. So positivity of the real part of the above expression in parenthesis really
indicates the orbital stability of the periodic solution arising out of Hopf bifurcation.

We rewrite our system (2.1) in the following form:

dx
dt
= f (x, t), (5.2)

where x = (X, S , I,V), f = ( f 1, f 2, f 3, f 4)T , and f l, l = 1, 2, 3, 4 are right sides of system (2.1) i.e.
f 1 = r1X(1 − X

K ) − αXS etc. Now, all the second and third-order derivatives of f l(l = 1, 2, 3, 4) are as
follows:

∂2 f 1

∂X2 = −
2r1

K
,

∂2 f 1

∂ j∂S
=
∂2 f 1

∂S ∂ j
= −α,

∂2 f 2

∂S 2 = −
2αr2X∗

cK
,

∂2 f 2

∂ j∂S
=
∂2 f 2

∂S ∂ j
=

AIMS Mathematics Volume 9, Issue 9, 24229–24246.
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αr2 −
2αr2S ∗

cK
∂2 f 2

∂s∂i
=
∂2 f 2

∂i∂s
= −

αr2X∗

cK
,

∂3 f 2

∂X∂S ∂S
=

∂3 f 2

∂s∂ j∂s
=

∂3 f 2

∂s∂S ∂ j
= −

2αr2

cK
,

∂2 f 2

∂X∂I
=
∂2 f 2

∂I∂X
= −

αr2S ∗

cK
,

∂3 f 2

∂ j∂s∂i
=

∂3 f 2

∂ j∂i∂s
=

∂3 f 2

∂s∂ j∂i
=

∂3 f 2

∂s∂i∂ j
=

∂3 f 2

∂i∂ j∂s
=

∂3 f 2

∂i∂s∂ j
= −

αr2

cK
∂2 f 2

∂s∂v
=
∂2 f 2

∂v∂s
= −λ

∂2 f 3

∂v∂s
=
∂2 f 3

∂s∂v
= λ,

∂2 f 4

∂s∂v
=
∂2 f 4

∂v∂s
− λ1. (5.3)

Now we calculate Mω0 = (JE∗ − 2iω0I)−1

= 1
m


a11 a12 a11 a11

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a43

 .
Here,

a11 = −

(
αr2X∗S ∗

cK
+ 2iω0

)
{(ξ + 2iω0)(µv + λ1S ∗ + 2iω0) − κξλS ∗} +

αr2X∗S ∗

cK
{λV∗(µv + λ1S ∗ + 2iω0) − λλ1S ∗V∗} − λS ∗{λκξV∗ − λ1V∗(ξ + 2iω0)}

a12 = αX∗{(ξ + 2iω0)(µv + λ1S ∗ + 2iω0) − κξλS ∗}

a13 = −αX∗{
αr2X∗S ∗

cK
(µv + λ1S ∗ + 2iω0) + κξλS ∗}

a14 = αX∗λS ∗{
αr2X∗S ∗

cK
− (ξ + 2iω0)}

a21 = −αr2S ∗(1 −
S ∗ + I∗

cK
){(ξ + 2iω0)(µv + λ1S ∗ + 2iω0) − κξλS ∗}

a22 = −

(
r1X∗

K
+ 2iω0

)
{(ξ + 2iω0)(µv + λ1S ∗ + 2iω0) − κξλS ∗}

a23 =

(
r1X∗

K
+ 2iω0

)
{κξλS ∗ −

αr2X∗S ∗

cK
(µv + λ1S ∗ + 2iω0)}

a24 = −λS ∗
(
r1X∗

K
+ 2iω0

)
{
αr2X∗S ∗

cK
− (ξ + 2iω0)}

a31 = −αr2S ∗(1 −
S ∗ + I∗

cK
){λV∗(µv + λ1S ∗ + 2iω0) − λλ1S ∗V∗}

a32 = −

(
r1X∗

K
+ 2iω0

)
{λV∗(µv + λ1S ∗ + 2iω0) − λλ1S ∗V∗}

a33 = −

(
r1X∗

K
+ 2iω0

)
{

(
αr2X∗S ∗

cK
+ 2iω0

)
(µv + λ1S ∗ + 2iω0) − λλ1S ∗V∗} −

αX∗αr2S ∗(1 −
S ∗ + I∗

cK
)(µv + λ1S ∗ + 2iω0)

a34 =

(
r1X∗

K
+ 2iω0

)
{λ2S ∗V∗ − λS ∗

(
αr2X∗S ∗

cK
+ 2iω0

)
} + αX∗λS ∗αr2S ∗(1 −

S ∗ + I∗

cK
)
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a41 = −αr2S ∗
(
1 −

S ∗ + I∗

cK

)
{λV∗κξ − (ξ + 2iω0)λ1V∗}

a42 = −

(
r1X∗

K
+ 2iω0

)
{λV∗κξ − (ξ + 2iω0)λ1V∗}

a43 =

(
r1X∗

K
+ 2iω0

)
{
αr2X∗S ∗

cK
λ1V∗ − κξ

(
αr2X∗S ∗

cK
+ 2iω0

)
} + αX∗αr2S ∗(1 −

S ∗ + I∗

cK
)κξ

a44 =

(
r1X∗

K
+ 2iω0

)
{

(
αr2X∗S ∗

cK
+ 2iω0

)
(ξ + 2iω0) −

αr2X∗S ∗

cK
λV∗}

−αX∗αr2S ∗(1 −
S ∗ + I∗

cK
)(ξ + 2iω0)

and

m = −

(
αr2X∗S ∗

cK
+ 2iω0

)
{(ξ + 2iω0)(µv + λ1S ∗ + 2iω0) − κξλS ∗} +

αr2X∗S ∗

cK
{λV∗(µv + λ1S ∗ + 2iω0) − λλ1S ∗V∗} − λS ∗{λκξV∗ − λ1V∗(ξ + 2iω0)}

+αX∗{(ξ + 2iω0)(µv + λ1S ∗ + 2iω0) − κξλS ∗}.

(5.4)

Now, if we put ω0 = 0 in the above expressions, we get the component of M = (JE∗)−1.

In the next section we find out the left eigenvector and right eigenvector of the variational matrix JE∗

with respect to the eigenvalue iω0, i.e., we calculate row vector u = (u1, u2, u3, u4) and column vector
v = (v1, v2, v3, v4)T such that

uJE∗ = iω0u, (5.5)
JE∗v = iω0v.

Solving the first equation of (5.5), we find the left eigenvector u = (u1, u2, u3, u4) where

u1 = m42m21S + iω0m2
42m21

u2 = m42{m11S − m42ω
2
0} + iω0m42(m42m11 + S )

u3 = m2
42m11m23 − m42m43R + iω0m42{m42m23 + m43Q}

u4 = m11m23m42m32 − m42m33R + m42ω
2
0Q + iω0m42{R + m33Q + m23m32}.

Solving the second equations of (5.5), we find the right eigenvector v = η(v1, v2, v3, v4)T where

v1 = m12m24T − iω0m12m2
24

v2 = m11m24T + m2
24ω

2
0 + iω0m24(T − m11m24)

v3 = m34m24R − m11m32m2
24 − iω0m24(m34Q + m32m24)

v4 = m11m23m24m32 + m24{m33R − ω2
0Q} + iω0m24(m23m32 − m33Q − m24R).

Now for uv = 1 we get,

η =
A − iω0B
A2 − ω2

0B2
. (5.6)
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Here,

A = m12m21m42m24UT + ω2
0m12m21m2

42m2
24 + m42m24(m11U − m42ω

2
0)(m11T +

m24ω
2
0) − ω2

0m42m24(m11m42 + U)(T − m11m24) + m42m24(m11m23m42

−m43R)(m34R − m11m32m24) + ω2
0m42m24(m23m42 + m43Q)(m34Q +

+m32m24)m42m24{(m11m23m32)2 − (m33R − ω2
0Q)2} − ω2

0m42m24{(m23m32)2

−(R + m33Q)2},

B = m12m21m2
42m24T − m12m21m42m2

24U + m42m24(T − m11m24)(m11U − m42ω
2
0)

+m42m24(m11m23m42 − m43R)(m34Q − m32m24) + m42m24(m23m42 + m43Q)
(m34R − (m11m32m24) + m42m24(m11m32m23 − m33R + ω2

0Q)(m32m23 − m33Q

+m24R) + m42m24(R + m33Q + m32m23)(m11m32m23 + m33R − ω2
0Q),

where,

Q = m11 − m22, R = m12m21 + m11m22 + ω
2
0,

U = m32m43 − m42m33, T = m24m33 − m23m34. (5.7)

Writing the expression of (5.1) in detail, we have the following:

The first term:

−ul
∂3 f l

∂xp∂xq∂xr
vpvqv̄r = −u2

∂3 f 2

∂s∂ j∂s
(v2

2v̄1 + 2v1|v2|
2) − u2

∂3 f 2

∂ j∂s∂i
(2v1v2v̄3

+2v1v3v̄2 + 2v3v2v̄1). (5.8)

The second term:

2ul
∂2 f l

∂xp∂xq
vp[(J−1

E∗ )qs]
∂2 f s

∂xt∂xw
vtv̄w (5.9)

= 2
[
u1

(
∂2 f 1

∂ j2 v1 +
∂2 f 1

∂s∂ j
v2

)
+ u2

∂2 f 2

∂s∂ j
v2

][
M11A1 + M12A2 + M13A3 + M14A4

]
+2

[
u1
∂2 f 1

∂ j∂s
v1 + u2

(
∂2 f 2

∂ j∂s
v1 +

∂2 f 2

∂i∂s
v3 +

∂2 f 2

∂v∂s
v4

)
+ u3

∂2 f 3

∂v∂s
v4 + u4

∂2 f 4

∂v∂s
v4

]
[
M21A1 + M22A2 + M23A3 + M24A4

]
+ 2u2

(
∂2 f 2

∂ j∂i
v1 +

∂2 f 2

∂s∂i
v2

)
×[

M31A1 + M32A2 + M33A3 + M34A4

]
+

2
(
u2
∂2 f 2

∂s∂v
v2 + u3

∂2 f 3

∂s∂v
v2 + u4

∂2 f 4

∂s∂v
v2

)
×

(
M41A1 + M42A2 + M43A3 + M44A4

)
, (5.10)

The third term:

ul
∂2 f l

∂xp∂xq
v̄p[(JE∗ − 2iω0I)−1

qs ]
∂2 f s

∂xt∂xw
vtvw (5.11)
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=

[
u1

(
∂2 f 1

∂ j2 v̄1 +
∂2 f 1

∂s∂ j
v̄2

)
+ u2

∂2 f 2

∂s∂ j
v̄2

]
[
Mω011B1 + Mω012B2 + Mω013B3 + Mω014B4

]
[
u1
∂2 f 1

∂ j∂s
v̄1 + u2

(
∂2 f 2

∂ j∂s
v̄1 +

∂2 f 2

∂i∂s
v̄3 +

∂2 f 2

∂v∂s
v̄4

)
+ u3

∂2 f 3

∂v∂s
v̄4 + u4

∂2 f 4

∂v∂s
v̄4

]
[
Mω021B1 + Mω022B2 + Mω023B3 + Mω024B4

]
+ u2

(
∂2 f 2

∂ j∂i
v̄1 +

∂2 f 2

∂s∂i
v̄2

)
[
Mω031B1 + Mω032B2 + Mω033B3 + Mω034B4

]
+(

u2
∂2 f 2

∂s∂v
v̄2 + u3

∂2 f 3

∂s∂v
v̄2 + u4

∂2 f 4

∂s∂v
v̄2

)
[
Mω041B1 + Mω042B2 + Mω043B3 + Mω044B4

]
, (5.12)

where

A1 =
∂2 f 1

∂ j2 |v1|
2 +

∂2 f 1

∂s∂ j
(v1v̄2 + v2v̄1)

A2 =
∂2 f 2

∂s∂ j
(v1v̄2 + v2v̄1) +

∂2 f 2

∂ j∂i
(v1v̄3 + v3v̄1) +

∂2 f 2

∂s∂i
(v3v̄2 + v2v̄3)

+
∂2 f 2

∂s∂ j
(v4v̄2 + v2v̄4)

A3 =
∂2 f 3

∂s∂v
(v4v̄2 + v2v̄4)

A4 =
∂2 f 4

∂s∂v
(v4v̄2 + v2v̄4)

B1 =
∂2 f 1

∂ j2 (v1)2 + 2
∂2 f 1

∂s∂ j
v1v2

B2 = 2
∂2 f 2

∂s∂ j
v1v2 + 2

∂2 f 2

∂ j∂i
v1v3 + 2

∂2 f 2

∂s∂i
v2v3 + 2

∂2 f 2

∂s∂ j
v2v4

B3 = 2
∂2 f 3

∂s∂v
v2v4

B4 = 2
∂2 f 4

∂s∂v
v2v4

Putting the value of all second- and third-order derivatives of f l(l = 1, 2, 3, 4), u, v, and the
components of matrix M and Mω0 in the first term, and placing the second term and third term in
terms of the parameters of the model, we calculate the expression (5.1) and the sign of the real part
of this expression. This in turn indicates the orbital stability of the limit cycle arising from Hopf
bifurcation.
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6. Numerical simulations

In this section, we have analyzed the dynamics of the model system using numerical simulations
in MATLAB. The analytical results obtained in the previous sections are verified using numerical
calculations. Results are plotted in the figures and discussed below.

In Figure 1, the numerical solution of the model is presented. As the value of the parameter is
enhanced, oscillation in the solutions is increased. Solutions become periodic when the rate is higher
(λ = 0.00012).

Figure 2 shows the global stability of interior equilibrium point E∗ for λ = 0.00008 . All phase
portraits are converging to the same interior steady point (E∗(35.98, 56.07, 28.92, 1031).

Figure 3 depicts the bifurcation diagram of the system. We have plotted the maximum and minimum
values of the periodic solutions. When the bifurcation parameter λ crosses the critical value λ∗ =
0.0000965 (approx.), the system bifurcates into periodic oscillations.

In Figure 4, we see the orbital stability of the bifurcating periodic solution for a fixed value of
the parameter λ. We observe that when λ passes through the value 0.0000965 (approx.), the interior
equilibrium E∗ bifurcates toward a periodic solution (see Figure 3). From this figure, we conclude that
the bifurcating limit cycle is stable (supercritical).
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Figure 1. Numerical solutions of the model (2.1) are plotted using the set of parameter as
given in Table 1 for different values of infection rate λ.
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Table 1. Short descriptions of the parameters and their values.

Parameters Short description Value (unit)
r1 growth rate of crop biomass 0.05 kg day−1

K maximum crop biomass 50 kg plant−1

α crop consumption rate 0.001 kg pest−1 day−1

λ contact rate of pest with viruses 0.00005 day−1

λ1 reduction rate constant of virus 0.00001 gm pest −1 day−1

when it attack pests
ξ mortality rate of infected pest 0.1 plant−1 day−1

r2 growth rate of susceptible pest 8 day−1

µV decay rate of virus 0.1 gm day−1

c a proportional constant 6
πv recruitment of biopesticides 2.5 gm day−1
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Figure 2. Phase portraits of model populations are plotted in the X − I − S plane for the set
of parameters as in Figure 1.
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Figure 3. A Hopf bifurcation diagram is plotted taking the infection rate, λ, as the main
parameter. Other parameter values are taken from Figure 1.
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Figure 4. Phase portraits of model populations are plotted in the X − I − S plane for three
different initial conditions with the set of parameters as in Figure 2 and λ = 0.00012 > λ∗.

7. Discussion and conclusions

Control of pest attacks is an important aspect in agriculture to obtain healthy crops as well as high
yield. Mathematical modeling helps in identifying the parameters important for crop pest management.
In this paper, we have considered a model for pest control using biological agents and observed the
effects of biopesticide in controlling the pest. We have explored the global stability of the interior
equilibrium point E∗. Applying Poore’s criteria, we studied the stability of the limit cycle around the
interior equilibrium point.

We have shown how the dynamics changes with the increase in the value of the parameter λ
(the infection rate of the pest by the virus) of the system. The model reveals that infection can be
sustained only above a threshold value of the consumption rate λ. On increasing the value of λ, the
endemic equilibrium bifurcates toward a periodic solution (Theorem 2). Numerically, we have shown
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that system (2.1) is stable globally asymptotically when the consumption rate by the pest is below a
threshold value and, after that value, the system is unstable for some higher value of this threshold
value giving a stable periodic solution (Figure 2).

In conclusion, in this research, two important dynamical behaviors, namely the global stability of
the endemic equilibrium and stability of Hopf bifurcating periodic solution, have been successfully
analyzed analytically and numerically using a mathematical model for biological control of crop pests.
This article established that the endemic equilibrium is globally stable when the consumption rate
of the crop biomass by pests is lower. Also, a Hopf bifurcating periodic solution exits for a higher
consumption rate and it is stable. The results will help us in proposing a proper control strategy for
pest control in crop cultivation.
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