Research article Special Issues

On a nonlinear time-fractional cable equation

  • Received: 28 April 2024 Revised: 14 June 2024 Accepted: 20 June 2024 Published: 07 August 2024
  • MSC : 34K37, 35A01, 35B33

  • A nonlinear time-fractional cable equation posed on the interval $ (0, 1) $ under a homogeneous Dirichlet boundary condition is investigated in this work. The considered equation reflects the anomalous electro-diffusion in nerve cells. Using nonlinear capacity estimates specifically adapted to the considered problem, we establish sufficient conditions for the nonexistence of weak solutions.

    Citation: Mohamed Jleli, Bessem Samet. On a nonlinear time-fractional cable equation[J]. AIMS Mathematics, 2024, 9(9): 23584-23597. doi: 10.3934/math.20241146

    Related Papers:

  • A nonlinear time-fractional cable equation posed on the interval $ (0, 1) $ under a homogeneous Dirichlet boundary condition is investigated in this work. The considered equation reflects the anomalous electro-diffusion in nerve cells. Using nonlinear capacity estimates specifically adapted to the considered problem, we establish sufficient conditions for the nonexistence of weak solutions.



    加载中


    [1] T. A. M. Langlands, B. I. Henry, S. L. Wearne, Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions, J. Math. Biol., 59 (2009), 761–808. https://doi.org/10.1007/s00285-009-0251-1761–808. doi: 10.1007/s00285-009-0251-1761–808
    [2] T. A. M. Langlands, B. I. Henry, S. L. Wearne, Anomalous subdiffusion with multispecies linear reaction dynamics, Phys. Rev. E, 77 (2008), 021111.
    [3] X. L. Hu, L. M. Zhang, Implicit compact difference schemes for the fractional cable equation, Appl. Math. Model., 36 (2012), 4027–4043. https://doi.org/10.1016/j.apm.2011.11.027 doi: 10.1016/j.apm.2011.11.027
    [4] Y. M. Lin, X. J. Li, C. J. Xu, Finite difference/spectral approximations for the fractional cable equation, Math. Comput., 80 (2011), 1369–1396.
    [5] Y. Liu, Y. W. Du, H. Li, J. F. Wang, A two-grid finite element approximation for a nonlinear time-fractional cable equation, Nonlinear Dyn., 85 (2016), 2535–2548. https://doi.org/10.1007/s11071-016-2843-9 doi: 10.1007/s11071-016-2843-9
    [6] F. W. Liu, Q. Q. Yang, I. Turner, Two new implicit numerical methods for the fractional cable equation, J. Comput. Nonlinear Dynam., 6 (2011), 011009. https://doi.org/10.1115/1.4002269 doi: 10.1115/1.4002269
    [7] A. Z. Fino, M. Kirane, Qualitative properties of solutions to a time-space fractional evolution equation, Quart. Appl. Math., 70 (2012), 133–157. https://doi.org/10.1090/S0033-569X-2011-01246-9 doi: 10.1090/S0033-569X-2011-01246-9
    [8] M. Kirane, A. Kadem, A. Debbouche, Blowing-up solutions to two-times fractional differential equations, Math. Nachr., 286 (2013), 1797–1804. https://doi.org/10.1002/mana.201200047 doi: 10.1002/mana.201200047
    [9] M. Kirane, Y. Laskri, N. E. Tatar, Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives, J. Math. Anal. Appl., 312 (2005), 488–501. https://doi.org/10.1016/j.jmaa.2005.03.054 doi: 10.1016/j.jmaa.2005.03.054
    [10] M. Kirane, S. A. Malik, The profile of blowing-up solutions to a nonlinear system of fractional differential equations, Nonlinear Anal., 73 (2010), 3723–3736. https://doi.org/10.1016/j.na.2010.06.088 doi: 10.1016/j.na.2010.06.088
    [11] N. E. Tatar, Nonexistence results for a fractional problem arising in thermal diffusion in fractal media, Chaos Solitons Fract., 36 (2008), 1205–1214. https://doi.org/10.1016/j.chaos.2006.08.001 doi: 10.1016/j.chaos.2006.08.001
    [12] M. B. Borikhanov, M. Ruzhansky, B. T. Torebek, Qualitative properties of solutions to a nonlinear time-space fractional diffusion equation, Fract. Calc. Appl. Anal., 26 (2023), 111–146. https://doi.org/10.1007/s13540-022-00115-2 doi: 10.1007/s13540-022-00115-2
    [13] A. Kassymov, N. Tokmagambetov, B. T. Torebek, Multi-term time-fractional diffusion equation and system: mild solutions and critical exponents, Publ. Math. Debrecen, 100 (2022), 295–321.
    [14] Q. G. Zhang, H. R. Sun, Y. N. Li, The nonexistence of global solutions for a time fractional nonlinear Schrödinger equation without gauge invariance, Appl. Math. Lett., 64 (2017), 119–124. https://doi.org/10.1016/j.aml.2016.08.017 doi: 10.1016/j.aml.2016.08.017
    [15] J. W. He, Nonexistence of global solutions for time fractional wave equations in an exterior domain, J. Integral Equ. Appl., 35 (2023), 11–26. https://doi.org/10.1216/jie.2023.35.11 doi: 10.1216/jie.2023.35.11
    [16] M. Jleli, B. Samet, Nonexistence for time-fractional wave inequalities on Riemannian manifolds, Discrete Cont. Dyn. Syst.-Ser. S, 16 (2023), 1517–1536. https://doi.org/10.3934/dcdss.2022115 doi: 10.3934/dcdss.2022115
    [17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, In: Jan V. Mill, North-Holland mathematics studies, Vol. 204, Elsevier, Amsterdam, The Netherlands, 2006.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(384) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog