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1. Introduction

In this work, we are concerned with the nonlinear time-fractional cable equation

∂u
∂t
+
∂αu
∂tα
−
∂β

∂tβ
∂2u
∂x2 = F(x, u), t > 0, 0 < x < 1 (1.1)

subject to the initial condition
u(0, x) = u0(x), 0 < x < 1 (1.2)

and the Dirichlet boundary condition

u(t, 1) = 0, t > 0. (1.3)

Here, u = u(t, x), 0 < α, β < 1, ∂α

∂tα (resp. ∂β

∂tβ ) is the Caputo fractional derivative of order α (resp. β)
with respect to the time-variable t, F(x, u) = x−σ|u|p, σ ≥ 0, p > 1 is a nonlinear reaction term, and
u0 ∈ L1

loc((0, 1]). Namely, we are interested in the study of the nonexistence of weak solutions to the
considered problem.

Fractional derivatives were found to be quite flexible for describing diverse materials and processes
presenting memory and hereditary properties. This fact motivated the study of time-fractional
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evolution equations from both practical and theoretical points of view. The time-fractional cable
equation (see [1]) is a generalization of the classical cable equation, which was introduced in [2] as a
macroscopic model for electrodiffusion of ions in nerve cells, when molecular diffusion is anomalous
subdiffusion due to binding, crowding, or trapping. We can find in the literature several contributions
related to the numerical study of the time-fractional cable equation, see, e.g., [3–6] and the references
therein.

The study of the nonexistence of solutions to time-fractional evolution equations was first
considered by Kirane and his collaborators (see, e.g., [7–10]). Next, this topic was developed by many
authors, see, e.g., Tatar [11], Borikhanov, Ruzhansky and Torebek [12], Kassymov, Tokmagambetov,
and Torebek [13], Zhang, Sun, et al. [14], He [15], and Jleli [16]. To the best of our knowledge, the
study of the time-fractional cable equation was not previously considered in the literature.

The approach used in this work is based on nonlinear capacity estimates specifically adapted to
the nonlocal properties of the Caputo fractional derivatives ∂α

∂tα and ∂β

∂tβ , the second-order differential
operator ∂2

∂x2 , the domain (0, 1), the initial condition (1.2), and the boundary condition (1.3). The cases
α < β, α = β, and α > β are studied separately. Namely, when α < β, we show that for suitable
initial values u0, (1.1)–(1.3) admits no weak solution for all p > 1. Furthermore, if u0 satisfies a certain
behavior as x → 0+, then, if α = β, (1.1)–(1.3) admits no weak solution for all p > 1. However, if
α > β and σ ≥ 2, then there exists a certain range of p where (1.1)–(1.3) admits no weak solution.

The rest of this paper is organized as follows: In Section 2, we briefly recall some basic notions
and properties related to the Caputo fractional derivative. In Section 3, we define weak solutions to the
considered problem and state our main results. In Section 4, we establish some useful lemmas. We
finally prove our main results in Section 5.

Throughout this paper, by ℓ ≫ 1, we mean that ℓ is a sufficiently large real number. By C (or Ci),
we mean a positive constant that is independent of the parameters T,R, and the solution u. The value
of this constant is not important and is not necessarily the same from one line to another.

2. Some preliminaries on fractional calculus

In this section, we briefly recall some basic notions and properties of fractional calculus. For more
details, see, e.g., [17].

Let T > 0 be fixed, β > 0, and f ∈ C([0,T ]). The left-sided Riemann-Liouville fractional integral
of order β of f is defined by

Iβ0 f (t) =
1
Γ(β)

∫ t

0
(t − s)β−1 f (s) ds, 0 < t ≤ T.

The right-sided Riemann-Liouville fractional integral of order β of f is defined by

IβT f (t) =
1
Γ(β)

∫ T

t
(s − t)β−1 f (s) ds, 0 ≤ t < T.

Here, Γ denotes the Gamma function, that is,

Γ(s) =
∫ ∞

0
ts−1e−t dt, s > 0.
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It can be easily seen that
lim
t→0+

Iβ0 f (t) = lim
t→T−

IβT f (t) = 0. (2.1)

We have the following integration-by-parts rule: If β > 0 and f , g ∈ C([0,T ]), then∫ T

0
g(t)Iβ0 f (t) dt =

∫ T

0
f (t)IβT g(t) dt. (2.2)

Let 0 < β < 1 and f ∈ C1([0,T ]). The Caputo fractional derivative of order β of f is defined by

CDβ
0 f (t) = I1−β

0
d f
dt

(t), 0 < t ≤ T,

that is,
CDβ

0 f (t) =
1

Γ(1 − β)

∫ t

0
(t − s)−β

d f
dt

(s) ds, 0 < t ≤ T.

Let w = w(t, x) : [0,T ] × I → R, where I ⊂ R. We denote by Iβ0w, β > 0, the left-sided Riemann-
Liouville fractional integral of order β of w with respect to the variable t, that is,

Iβ0w(t, x) = Iβ0w(·, x)(t) =
1
Γ(β)

∫ t

0
(t − s)β−1w(s, x) ds, 0 < t ≤ T, x ∈ I.

We denote by IβT w the right-sided Riemann-Liouville fractional integral of order β of w with respect to
the variable t, that is,

IβT w(t, x) = IβT w(·, x)(t) =
1
Γ(β)

∫ T

t
(s − t)β−1w(s, x) ds, 0 ≤ t < T, x ∈ I.

Let 0 < β < 1. We denote by ∂β

∂tβ the Caputo fractional derivative of order β of w with respect to the
variable t, that is,

∂βw
∂tβ

(t, x) = CDβ
0w(·, x)(t)

= I1−β
0

∂w
∂t

(t, x)

=
1

Γ(1 − β)

∫ t

0
(t − s)−β

∂w
∂t

(s, x) ds, 0 < t ≤ T, x ∈ I.

3. Main results

Before stating our main results, we need to define weak solutions to the considered problem.
For all T > 0, let

S T = [0,T ] × (0, 1].

We introduce a set of functions

ΨT =
{
ψ = ψ(t, x) ∈ C3(S T ) : ψ ≥ 0, suppx(ψ) ⊂⊂ (0, 1], ψ(·, 1) ≡ 0, ψ(T, ·) ≡ 0

}
,

where by suppx(ψ) ⊂⊂ (0, 1], we mean that ψ is uniformly compactly supported on (0, 1] with respect
to the variable x.

A weak solution to (1.1)–(1.3) is defined as follows:
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Definition 3.1. We say that u ∈ Lp
loc([0,∞) × (0, 1]) is a weak solution to (1.1)-(1.2)-(1.3), if∫

S T

x−σ|u|pψ dx dt +
∫ 1

0
u0(x)

(
ψ(0, x) + I1−α

T ψ(0, x) − I1−β
T

∂2ψ

∂x2 (0, x)
)

dx

= −

∫
S T

u
∂ψ

∂t
dx dt −

∫
S T

u
∂I1−α

T ψ

∂t
dx dt +

∫
S T

u
∂2

∂x2

∂I1−β
T ψ

∂t

 dx dt
(3.1)

for all T > 0 and ψ ∈ ΨT .

It can be easily seen that any classical solution to (1.1)–(1.3) is a weak solution in the sense of
Definition 3.1. Namely, for all T > 0, multiplying (1.1) by ψ ∈ ΨT , integrating by parts over S T , using
(1.2), (1.3), properties (2.1) and (2.2), we obtain (3.1).

We are now in a position to state our main results. We first consider the case where β > α.

Theorem 3.1. Let 0 < α < β < 1, σ ≥ 0, and u0 ∈ L1((0, 1)). If∫ 1

0
u0(x)(1 − x) dx > 0, (3.2)

then for all p > 1, (1.1)–(1.3) admits no weak solution.

We next consider the case where β ≤ α.

Theorem 3.2. Let 0 < β ≤ α < 1, σ ≥ 0, and u0 ∈ C([0, 1]). Assume that u0 satisfies (3.2) and

|u0(x)| ∼ xδ as x→ 0+, (3.3)

where δ > 1.

(i) If α = β, then for all p > 1, (1.1)–(1.3) admits no weak solution.
(ii) If α > β, σ ≥ 2, and

1 +
σ − 2
δ

< p < 1 +
σ − 2
δ
+
β(δ − 1)
δ(α − β)

, (3.4)

then (1.1)–(1.3) admits no weak solution.

4. Auxiliary results

Some useful lemmas are established in this section.
For ℓ ≫ 1 and T > 0, let

ηT (t) = T−ℓ(T − t)ℓ, 0 ≤ t ≤ T. (4.1)

The following properties can be found in [17, Property 2.1, p 71].

Lemma 4.1. Let 0 < κ < 1. For all t ∈ [0,T ], we have

IκTηT (t) =
Γ(ℓ + 1)
Γ(ℓ + 1 + κ)

T−ℓ(T − t)ℓ+κ, (4.2)

d
dt

IκTηT (t) = −
Γ(ℓ + 1)
Γ(ℓ + κ)

T−ℓ(T − t)ℓ+κ−1. (4.3)
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Lemma 4.2. Let m > 1 and 0 < κ < 1. We have∫ T

0
η
−1

m−1
T

∣∣∣∣∣dηT

dt

∣∣∣∣∣ m
m−1

dt = CT 1− m
m−1 , (4.4)∫ T

0
η
−1

m−1
T

∣∣∣∣∣∣dIκTηT

dt

∣∣∣∣∣∣
m

m−1

dt = CT 1− (1−κ)m
m−1 . (4.5)

Proof. From (4.1) and (4.3), for all t ∈ (0,T ), we have

η
−1

m−1
T

∣∣∣∣∣dηT

dt

∣∣∣∣∣ m
m−1

= C
[
T−ℓ(T − t)ℓ

] −1
m−1

[
T−ℓ(T − t)ℓ−1

] m
m−1

= CT−ℓ(T − t)ℓ−
m

m−1

(4.6)

and

η
−1

m−1
T

∣∣∣∣∣∣dIκTηT

dt

∣∣∣∣∣∣
m

m−1

= C
[
T−ℓ(T − t)ℓ

] −1
m−1

[
T−ℓ(T − t)ℓ+κ−1

] m
m−1

= CT−ℓ(T − t)ℓ+
(κ−1)m

m−1 .

(4.7)

Integrating (4.6) (resp. (4.7)) over (0,T ), we obtain (4.4) (resp. (4.5)). □

We now introduce the function

L(x) = 1 − x, 0 < x ≤ 1. (4.8)

We also need a cut-off function ξ ∈ C∞([0,∞)) satisfying

0 ≤ ξ ≤ 1, ξ ≡ 0 in
[
0,

1
2

]
, ξ ≡ 1 in [1,∞).

For ℓ,R ≫ 1, let
ξR(x) = L(x)ξℓ(Rx), 0 < x ≤ 1,

that is,

ξR(x) =


0 if 0 < x ≤ 1

2R ,

L(x)ξℓ(Rx) if 1
2R ≤ x ≤ 1

R ,

L(x) if 1
R ≤ x ≤ 1.

(4.9)

Lemma 4.3. Let a ≥ 0 and m > 1. We have∫ 1

0
x

a
m−1 ξR(x) dx ≤ 1. (4.10)

Proof. From (4.8), (4.9) and the properties of ξ (namely 0 ≤ ξ ≤ 1), we have∫ 1

0
x

a
m−1 ξR(x) dx =

∫ 1

1
2R

x
a

m−1 (1 − x)ξℓ(Rx) dx

≤

∫ 1

1
2R

x
a

m−1 dx

≤ 1 −
1

2R
≤ 1,

which proves (4.10). □
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Lemma 4.4. Let a ≥ 0 and m > 1. We have∫ 1

0
x

a
m−1 ξ

−1
m−1
R (x)

∣∣∣∣∣∣d2ξR

dx2 (x)

∣∣∣∣∣∣
m

m−1

dx ≤ CR
2m−a
m−1 −1. (4.11)

Proof. For all x ∈ (0, 1), we obtain by the definition of ξR that

d2ξR

dx2 (x) =
d2

dx2

[
(1 − x)ξℓ(Rx)

]
= ξℓ(Rx)

d2

dx2 (1 − x) + (1 − x)
d2

dx2 [ξℓ(Rx)] + 2
d
dx

(1 − x)
d
dx

[ξℓ(Rx)]

= (1 − x)
d2

dx2 [ξℓ(Rx)] − 2
d
dx

[ξℓ(Rx)],

which yields
d2ξR
dx2 (x)
L(x)

=
d2

dx2 [ξℓ(Rx)] − 2
d
dx [ξℓ(Rx)]

L(x)
. (4.12)

Then, by the properties of ξ, we obtain

supp
(
d2ξR

dx2

)
⊂

[
1

2R
,

1
R

]
, (4.13)

which implies that∫ 1

0
x

a
m−1 ξ

−1
m−1
R (x)

∣∣∣∣∣∣d2ξR

dx2 (x)

∣∣∣∣∣∣
m

m−1

dx =
∫ 1

R

1
2R

x
a

m−1 ξ
−1

m−1
R (x)

∣∣∣∣∣∣d2ξR

dx2 (x)

∣∣∣∣∣∣
m

m−1

dx. (4.14)

On the other hand, by the definition of ξR, for all x ∈
(

1
2R ,

1
R

)
, we have

x
a

m−1 ξ
−1

m−1
R (x)

∣∣∣∣∣∣d2ξR

dx2 (x)

∣∣∣∣∣∣
m

m−1

= x
a

m−1 ξ
−ℓ

m−1 (Rx)(1 − x)

∣∣∣∣∣∣∣
d2ξR
dx2 (x)
L(x)

∣∣∣∣∣∣∣
m

m−1

≤ x
a

m−1 ξ
−ℓ

m−1 (Rx)

∣∣∣∣∣∣∣
d2ξR
dx2 (x)
L(x)

∣∣∣∣∣∣∣
m

m−1

,

which implies by (4.14) that∫ 1

0
x

a
m−1 ξ

−1
m−1
R (x)

∣∣∣∣∣∣d2ξR

dx2 (x)

∣∣∣∣∣∣
m

m−1

dx ≤
∫ 1

R

1
2R

x
a

m−1 ξ
−ℓ

m−1 (Rx)

∣∣∣∣∣∣∣
d2ξR
dx2 (x)
L(x)

∣∣∣∣∣∣∣
m

m−1

dx. (4.15)

Furthermore, by (4.12) and the properties of ξ, for all x ∈
(

1
2R ,

1
R

)
(with R ≫ 1), we obtain∣∣∣∣∣∣∣

d2ξR
dx2 (x)
L(x)

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ d2

dx2 [ξℓ(Rx)]

∣∣∣∣∣∣ + 2

∣∣∣∣∣∣∣
d
dx [ξℓ(Rx)]

L(x)

∣∣∣∣∣∣∣
≤ C

(
R2ξℓ−2(Rx) + R−1ξℓ−1(Rx)

)
≤ CR2ξℓ−2(Rx),
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which yields

x
a

m−1 ξ
−ℓ

m−1 (Rx)

∣∣∣∣∣∣∣
d2ξR
dx2 (x)
L(x)

∣∣∣∣∣∣∣
m

m−1

≤ CR
2m

m−1 x
a

m−1 ξℓ−
2m

m−1 (Rx)

≤ CR
2m

m−1 x
a

m−1 .

Then, using (4.15) and integrating the above estimate over
(

1
2R ,

1
R

)
, we obtain∫ 1

0
x

a
m−1 ξ

−1
m−1
R (x)

∣∣∣∣∣∣d2ξR

dx2 (x)

∣∣∣∣∣∣
m

m−1

dx ≤ CR
2m

m−1

∫ 1
R

1
2R

x
a

m−1 dx

≤ CR
2m

m−1 R−(
a

m−1+1),

which proves (4.11). □

For ℓ,T,R ≫ 1, let us introduce the function

ψ(t, x) = ηT (t)ξR(x), (t, x) ∈ S T . (4.16)

The following lemma follows immediately from (4.1), (4.9), and (4.16).

Lemma 4.5. The function ψ belongs to ΨT .

We now introduce the nonlinear capacity terms

J(a,m, 0, ψ) =
∫

S T

x
a

m−1ψ
−1

m−1

∣∣∣∣∣∂ψ∂t

∣∣∣∣∣ m
m−1

dx dt, (4.17)

J(a,m, κ, ψ) =
∫

S T

x
a

m−1ψ
−1

m−1

∣∣∣∣∣∣∂IκTψ
∂t

∣∣∣∣∣∣
m

m−1

dx dt, (4.18)

K(a,m, κ, ψ) =
∫

S T

x
a

m−1ψ
−1

m−1

∣∣∣∣∣∣ ∂2

∂x2

(
∂IκTψ
∂t

)∣∣∣∣∣∣
m

m−1

dx dt, (4.19)

where a ≥ 0, m > 1, and 0 < κ < 1.

Lemma 4.6. Let a ≥ 0 and m > 1. We have

J(a,m, 0, ψ) ≤ CT 1− m
m−1 . (4.20)

Proof. By (4.16) and (4.17), we have

J(a,m, 0, ψ) =
(∫ T

0
η
−1

m−1
T

∣∣∣∣∣dηT

dt

∣∣∣∣∣ m
m−1

dt
) (∫ 1

0
x

a
m−1 ξR(x) dx

)
.

Then, using (4.4) and Lemma 4.3, we obtain (4.20). □

Similarly, by (4.16), (4.18), (4.5), and Lemma 4.3, we obtain the following estimate:

Lemma 4.7. Let a ≥ 0, m > 1, and 0 < κ < 1. We have

J(a,m, κ, ψ) ≤ CT 1− (1−κ)m
m−1 .

We now use (4.16), (4.19), (4.5), and Lemma 4.4 to obtain the following estimate:

Lemma 4.8. Let a ≥ 0, m > 1, and 0 < κ < 1. We have

K(a,m, κ, ψ) ≤ CT 1− (1−κ)m
m−1 R

2m−a
m−1 −1.
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5. Proofs of the main results

This section is devoted to the proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Let us suppose that u ∈ Lp
loc([0,∞) × (0, 1]) is a weak solution to (1.1)-(1.2)-

(1.3). By (3.1) and Lemma 4.5, for all ℓ,T,R ≫ 1, we have∫
S T

x−σ|u|pψ dx dt +
∫ 1

0
u0(x)

(
ψ(0, x) + I1−α

T ψ(0, x) − I1−β
T

∂2ψ

∂x2 (0, x)
)

dx

≤

∫
S T

|u|
∣∣∣∣∣∂ψ∂t

∣∣∣∣∣ dx dt +
∫

S T

|u|

∣∣∣∣∣∣∂I1−α
T ψ

∂t

∣∣∣∣∣∣ dx dt +
∫

S T

|u|

∣∣∣∣∣∣∣ ∂2

∂x2

∂I1−β
T ψ

∂t


∣∣∣∣∣∣∣ dx dt,

(5.1)

where ψ is the function defined by (4.16). On the other hand, because of Young’s inequality, we have∫
S T

|u|
∣∣∣∣∣∂ψ∂t

∣∣∣∣∣ dx dt =
∫

S T

(
x
−σ
p |u|ψ

1
p
) (

x
σ
pψ

−1
p

∣∣∣∣∣∂ψ∂t

∣∣∣∣∣) dx dt

≤
1
3

∫
S T

x−σ|u|pψ dx dt +C
∫

S T

x
σ

p−1ψ
−1
p−1

∣∣∣∣∣∂ψ∂t

∣∣∣∣∣ p
p−1

,

that is, ∫
S T

|u|
∣∣∣∣∣∂ψ∂t

∣∣∣∣∣ dx dt ≤
1
3

∫
S T

x−σ|u|pψ dx dt +CJ(σ, p, 0, ψ), (5.2)

where J(σ, p, 0, ψ) is given by (4.17) with a = σ and m = p. Similarly, we obtain∫
S T

|u|

∣∣∣∣∣∣∂I1−α
T ψ

∂t

∣∣∣∣∣∣ dx dt ≤
1
3

∫
S T

x−σ|u|pψ dx dt +CJ(σ, p, 1 − α, ψ), (5.3)

where J(σ, p, 1 − α, ψ) is given by (4.18) with a = σ, m = p, κ = 1 − α, and∫
S T

|u|

∣∣∣∣∣∣∣ ∂2

∂x2

∂I1−β
T ψ

∂t


∣∣∣∣∣∣∣ dx dt ≤

1
3

∫
S T

x−σ|u|pψ dx dt +CK(σ, p, 1 − β, ψ), (5.4)

where K(σ, p, 1 − β, ψ) is given by (4.19) with a = σ, m = p, and κ = 1 − β. Then, it follows from
(5.1)–(5.4) that ∫ 1

0
u0(x)

(
ψ(0, x) + I1−α

T ψ(0, x) − I1−β
T

∂2ψ

∂x2 (0, x)
)

dx

≤ C (J(σ, p, 0, ψ) + J(σ, p, 1 − α, ψ) + K(σ, p, 1 − β, ψ)) .
(5.5)

Furthermore, by (4.16) and (4.2) (with κ ∈ {1 − α, 1 − β}), for all x ∈ (0, 1), we have

ψ(0, x) = (1 − x)ξℓ(Rx), I1−α
T ψ(0, x) = C1T 1−α(1 − x)ξℓ(Rx)

and

I1−β
T

∂2ψ

∂x2 (0, x) = C2T 1−β d2

dx2

[
(1 − x)ξℓ(Rx)

]
.
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We also have by (4.13) that

supp
(
I1−β
T

∂2ψ

∂x2 (0, x)
)
⊂

[
1

2R
,

1
R

]
.

Consequently, we obtain ∫ 1

0
u0(x)

(
ψ(0, x) + I1−α

T ψ(0, x) − I1−β
T

∂2ψ

∂x2 (0, x)
)

dx

= T 1−α
(
Tα−1 +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx

−C2T 1−β
∫ 1

R

1
2R

u0(x)
d2

dx2

[
(1 − x)ξℓ(Rx)

]
dx.

(5.6)

Next, using (5.5), (5.6), Lemma 4.6 (with a = σ and m = p), Lemma 4.7 (with a = σ, m = p, and
κ = 1 − α), and Lemma 4.8 (with a = σ, m = p, and κ = 1 − β), we obtain

T 1−α
(
Tα−1 +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx −C2T 1−β

∫ 1
R

1
2R

u0(x)
d2

dx2

[
(1 − x)ξℓ(Rx)

]
dx

≤ C
(
T 1− p

p−1 + T 1− αp
p−1 + T 1− βp

p−1 R
2p−σ
p−1 −1

)
,

that is,

(
Tα−1 +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx −C2Tα−β

∫ 1
R

1
2R

u0(x)
d2

dx2

[
(1 − x)ξℓ(Rx)

]
dx

≤ C
(
Tα−

p
p−1 + Tα

(
1− p

p−1

)
+ Tα−

βp
p−1 R

2p−σ
p−1 −1

)
.

(5.7)

We now take T = Rθ, where

θ > max

 2
β − α

,

2p−σ
p−1 + 1
βp
p−1 − α

 . (5.8)

Then, (5.7) reduces to

(
Rθ(α−1) +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx −C2Rθ(α−β)

∫ 1
R

1
2R

u0(x)
d2

dx2

[
(1 − x)ξℓ(Rx)

]
dx

≤ C
(
Rλ1(θ) + Rλ2(θ) + Rλ3(θ)

)
,

(5.9)

where

λ1(θ) = θ

(
α −

p
p − 1

)
,

λ2(θ) = θα

(
1 −

p
p − 1

)
,

λ3(θ) = θ

(
α −

βp
p − 1

)
+

2p − σ
p − 1

− 1.
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Remark that for all θ > 0, we have
λi(θ) < 0, i = 1, 2. (5.10)

Moreover, by (5.8), we have
λ3(θ) < 0. (5.11)

On the other hand, by the properties of ξ and since u0 ∈ L1((0, 1)), we obtain by the dominated
convergence theorem that

lim
R→∞

(
Rθ(α−1) +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx = C1

∫ 1

0
u0(x)(1 − x) dx. (5.12)

We also have from the proof of Lemma 4.4 that

Rθ(α−β)
∫ 1

R

1
2R

|u0(x)|

∣∣∣∣∣∣ d2

dx2

[
(1 − x)ξℓ(Rx)

]∣∣∣∣∣∣ dx ≤ CRθ(α−β)R2
∫ 1

R

1
2R

|u0(x)|ξℓ−2(Rx) dx

= CRθ(α−β)+2
∫ 1

R

1
2R

|u0(x)|ξℓ−2(Rx) dx

≤ CRθ(α−β)+2
∫ 1

R

1
2R

|u0(x)| dx.

Since θ(α− β)+ 2 < 0 (by (5.8)) and u0 ∈ L1((0, 1)), we obtain by the dominated convergence theorem
that

lim
R→∞

Rθ(α−β)+2
∫ 1

R

1
2R

|u0(x)| dx = 0,

which yields

lim
R→∞

Rθ(α−β)
∫ 1

R

1
2R

|u0(x)|

∣∣∣∣∣∣ d2

dx2

[
(1 − x)ξℓ(Rx)

]∣∣∣∣∣∣ dx = 0. (5.13)

Finally, passing to the limit as R→ ∞ in (5.9), using (5.10)–(5.13), we obtain∫ 1

0
u0(x)(1 − x) dx ≤ 0,

which contradicts (3.2). The proof of Theorem 3.1 is then completed. □

Proof of Theorem 3.2. We also use the contradiction argument. Namely, supposing that u ∈

Lp
loc([0,∞) × (0, 1]) is a weak solution to (1.1)–(1.3), and following the first steps of the proof of

Theorem 3.1, we obtain (5.7), which is equivalent to

(
Tα−1 +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx

≤ C
(
Tα−

p
p−1 + Tα

(
1− p

p−1

)
+ Tα−

βp
p−1 R

2p−σ
p−1 −1

)
+C2Tα−β

∫ 1
R

1
2R

u0(x)
d2

dx2

[
(1 − x)ξℓ(Rx)

]
dx.

(5.14)
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On the other hand, from (3.3) and the proof of Lemma 4.4, we have (for R ≫ 1)∫ 1
R

1
2R

|u0(x)|

∣∣∣∣∣∣ d2

dx2

[
(1 − x)ξℓ(Rx)

]∣∣∣∣∣∣ dx ≤ CR2
∫ 1

R

1
2R

|u0(x)|ξℓ−2(Rx) dx

≤ CR2
∫ 1

R

0
|u0(x)| dx

= CR2
∫ 1

R

0
xδ dx

= CR1−δ,

which implies by (5.14) that

(
Tα−1 +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx

≤ C
(
Tα−

p
p−1 + Tα

(
1− p

p−1

)
+ Tα−

βp
p−1 R

2p−σ
p−1 −1 + Tα−βR1−δ

)
.

(5.15)

We now take T = Rθ, where θ > 0, and (5.15) reduces to

(
Rθ(α−1) +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx

≤ C
(
Rθ

(
α−

p
p−1

)
+ Rθα

(
1− p

p−1

)
+ Rθ

(
α−

βp
p−1

)
+

2p−σ
p−1 −1 + Rθ(α−β)+1−δ

)
.

(5.16)

We first consider

(i) The case α = β. In this case, (5.16) reduces to

(
Rθ(α−1) +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx ≤ C

(
Rµ1(θ) + Rµ2(θ) + Rµ3(θ) + Rµ4

)
, (5.17)

where

µ1(θ) = θ

(
α −

p
p − 1

)
, (5.18)

µ2(θ) = θα

(
1 −

p
p − 1

)
, (5.19)

µ3(θ) = θα

(
1 −

p
p − 1

)
+

2p − σ
p − 1

− 1,

µ4 = 1 − δ.

Remark that for all θ > 0, we have
µi(θ) < 0, i = 1, 2. (5.20)

We also have (since δ > 1)
µ4 < 0. (5.21)
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Furthermore, imposing that

θ > max
{

0,
p + 1 − σ

α

}
,

we obtain
µ3(θ) < 0. (5.22)

Then, passing to the limit as R → ∞ in (5.17), using the dominated convergence theorem, (5.20)–
(5.22), we reach a contradiction with (3.2).

We next consider

(ii) The case α > β, σ ≥ 2 and p satisfies (3.4). In this case, we take

θ =
δ(p − 1) + 2 − σ

β
.

Notice that by (3.4), we have θ > 0. Furthermore, we have

θ

(
α −

βp
p − 1

)
+

2p − σ
p − 1

− 1 = θ(α − β) + 1 − δ = 1 − δ +
(α − β)
β

[
δ(p − 1) + 2 − σ

]
.

Thus, (5.16) reduces to

(
Rθ(α−1) +C1

) ∫ 1

0
u0(x)(1 − x)ξℓ(Rx) dx ≤ C

(
Rµ1(θ) + Rµ2(θ) + Rµ

)
, (5.23)

where µ1(θ) and µ2(θ) are given, respectively, by (5.18) and (5.19), and

µ = 1 − δ +
(α − β)
β

[
δ(p − 1) + 2 − σ

]
.

Notice that from (3.4), we have
µ < 0. (5.24)

Hence, passing to the limit as R→ ∞ in (5.23), using the dominated convergence theorem, (5.20), and
(5.24), we reach a contradiction with (3.2). This completes the proof of Theorem 3.2. □

6. Conclusions

Sufficient conditions are obtained for the nonexistence of weak solutions to the nonlinear time-
fractional cable equation (1.1), subject to the initial condition (1.2) and the boundary condition (1.3).
Two cases are studied. In the first one (see Theorem 3.1), it is assumed that 0 < α < β < 1. If the
initial function satisfies ∫ 1

0
u0(x)(1 − x) dx > 0,

it is proven that for all p > 1, the problem has no weak solution. In the second case (see Theorem 3.2),
it is assumed that 0 < β ≤ α < 1. If u0 satisfies the above integral condition and |u0(x)| ∼ xδ as x→ 0+,
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where δ > 1, it is proven that the problem has no weak solution if one of the following conditions
holds: α = β; or α > β, σ ≥ 2 and

1 +
σ − 2
δ

< p < 1 +
σ − 2
δ
+
β(δ − 1)
δ(α − β)

.

In this paper, we only studied the one-dimensional case. It would be interesting to extend the present
study to the N-dimensional case, where N ≥ 2. Namely, the problem

∂u
∂t
+
∂αu
∂tα
−
∂β

∂tβ
∆u = F(x, u), t > 0, x ∈ B(0, 1)

subject to the initial condition
u(0, x) = u0(x), x ∈ B(0, 1)

and the boundary condition
u(t, x) = 0, t > 0, |x| = 1,

where ∆ is the Laplacian operator in RN , B(0, 1) is the open unit ball in RN and F(x, u) = |x|−σ|u|p,
σ ≥ 0, p > 1.
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