We study the local analytical integrability in a neighborhood of $ p:-q $ resonant singular point of a two-dimensional vector field and its connection to time-reversibility with respect to the non-smooth involution $ \varphi(x, y) = (y^{p/q}, x^{q/p}). $ Some generalizations of the theory developed by Sibirsky for the $ 1:-1 $ resonant case to the $ p:-q $ resonant case are presented.
Citation: Jaume Giné, Valery G. Romanovski, Joan Torregrosa. Time-reversibility and integrability of $ p:-q $ resonant vector fields[J]. AIMS Mathematics, 2024, 9(1): 73-88. doi: 10.3934/math.2024005
We study the local analytical integrability in a neighborhood of $ p:-q $ resonant singular point of a two-dimensional vector field and its connection to time-reversibility with respect to the non-smooth involution $ \varphi(x, y) = (y^{p/q}, x^{q/p}). $ Some generalizations of the theory developed by Sibirsky for the $ 1:-1 $ resonant case to the $ p:-q $ resonant case are presented.
[1] | A. Algaba, C. García, J. Giné, Orbital reversibility of planar vector fields, Mathematics, 9 (2021), 14. https://doi.org/10.3390/math9010014 doi: 10.3390/math9010014 |
[2] | J. L. R. Bastos, C. A. Buzzi, J. Torregrosa, Orbitally symmetric systems with application to planar centers, Commun. Pure Appl. Anal., 20 (2021), 3319–3346. https://doi.org/10.3934/cpaa.2021107 doi: 10.3934/cpaa.2021107 |
[3] | Y. N. Bibikov, Local theory of nonlinear analytic ordinary differential equations, Lecture Notes in Mathematics, Vol. 702, Berlin, Heidelberg: Springer, 1979. https://doi.org/10.1007/BFb0064649 |
[4] | X. Chen, J. Giné, V. G. Romanovski, D. Shafer, The $1:-q$ resonant center problem for certain cubic Lotka-Volterra systems, Appl. Math. Comput., 218 (2012), 11620–11633. https://doi.org/10.1016/j.amc.2012.05.045 doi: 10.1016/j.amc.2012.05.045 |
[5] | A. Cima, A. Gasull, F. Mañosa, F. Mañosas, Algebraic properties of the Liapunov and period constants, Rocky Mountain J. Math., 27 (1997), 471–501. https://doi.org/10.1216/rmjm/1181071923 doi: 10.1216/rmjm/1181071923 |
[6] | P. Conti, C. Traverso, Buchberger algorithm and integer programming, In: H. F. Mattson, T. Mora, T. R. N. Rao, Applied algebra, algebraic algorithms, and error-correcting codes, Lecture Notes in Computer Science, Berlin, Heidelberg: Springer, 539 (1991), 130–139. https://doi.org/10.1007/3-540-54522-0_102 |
[7] | D. Cox, J. Little, D. O'Shea, Ideals, varieties, and algorithms: an introduction to computational algebraic geometry and commutative algebra, 4 Eds., Springer-Verlag, 2015. https://doi.org/10.1007/978-3-319-16721-3 |
[8] | B. Ferčec, J. Giné, Blow-up method to compute necessary conditions of integrability for planar differential systems, Appl. Math. Comput., 358 (2019), 16–24. https://doi.org/10.1016/j.amc.2019.04.007 doi: 10.1016/j.amc.2019.04.007 |
[9] | A. Fronville, A. P. Sadovski, H. Żołądek, The solution of the $1 : -2$ resonant center problem in the quadratic case, Fund. Math., 157 (1998), 191–207. https://doi.org/10.4064/fm-157-2-3-191-207 doi: 10.4064/fm-157-2-3-191-207 |
[10] | A. Gasull, J. Giné, Integrability of Liénard systems with a weak saddle, Z. Angew. Math. Phys., 68 (2017), 13. https://doi.org/10.1007/s00033-016-0756-6 doi: 10.1007/s00033-016-0756-6 |
[11] | J. Giné, J. Llibre, On the integrability of Liénard systems with a strong saddle, Appl. Math. Lett., 70 (2017), 39–45. https://doi.org/10.1016/j.aml.2017.03.004 doi: 10.1016/j.aml.2017.03.004 |
[12] | J. Giné, S. Maza, The reversibility and the center problem, Nonlinear Anal., 74 (2011), 695–704. https://doi.org/10.1016/j.na.2010.09.028 doi: 10.1016/j.na.2010.09.028 |
[13] | M. Han, T. Petek, V. G. Romanovski, Reversibility in polynomial systems of ODE's, Appl. Math. Comput., 338 (2018), 55–71. https://doi.org/10.1016/j.amc.2018.05.051 doi: 10.1016/j.amc.2018.05.051 |
[14] | A. S. Jarrah, R. Laubenbacher, V. Romanovski, The Sibirsky component of the center variety of polynomial differential systems, J. Symbolic Comput., 35 (2003), 577–589. https://doi.org/10.1016/S0747-7171(03)00016-6 doi: 10.1016/S0747-7171(03)00016-6 |
[15] | J. S. W. Lamb, J. A. G. Roberts, Time-reversal symmetry in dynamical systems: a survey, Phys. D, 112 (1998), 1–39. https://doi.org/10.1016/S0167-2789(97)00199-1 doi: 10.1016/S0167-2789(97)00199-1 |
[16] | Y. R. Liu, J. B. Li, Theory of values of singular point in complex autonomous differential systems, Sci. China Ser. A., 33 (1989), 10–23. |
[17] | J. Llibre, C. Pantazi, S. Walcher, First integrals of local analytic differential systems, Bull. Sci. Math., 136 (2012), 342–359. https://doi.org/10.1016/j.bulsci.2011.10.003 doi: 10.1016/j.bulsci.2011.10.003 |
[18] | D. Montgomery, L. Zippin, Topological transformations groups: Interscience tracts in pure and applied mathematics, New York & London: Interscience Publishers Inc., 1955. |
[19] | V. G. Romanovski, Time-reversibility in 2-dimensional systems, Open Syst. Inf. Dyn., 15 (2008), 359–370. https://doi.org/10.1142/S1230161208000249 doi: 10.1142/S1230161208000249 |
[20] | V. G. Romanovski, D. S. Shafer, Time-reversibility in two-dimensional polynomial systems, In: D. Wang, Z. Zheng, Differential equations with symbolic computation: trends in mathematics, Basel: Birkhäuser, 2005, 67–84. https://doi.org/10.1007/3-7643-7429-2_5 |
[21] | V. G. Romanovski, D. S. Shafer, On the center problem for $p:-q$ resonant polynomial vector fields, Bull. Belg. Math. Soc. Simon Stevin, 15 (2008), 871–887. https://doi.org/10.36045/bbms/1228486413 doi: 10.36045/bbms/1228486413 |
[22] | V. G. Romanovski, Y. Xia, X. Zhang, Varieties of local integrability of analytic differential systems and their applications, J. Differ. Equations, 257 (2014), 3079–3101. https://doi.org/10.1016/j.jde.2014.06.007 doi: 10.1016/j.jde.2014.06.007 |
[23] | D. S. Shafer, V. G. Romanovski, The center and cyclicity problems: a computational algebra approach, Boston: Birkhäuser, 2009. https://doi.org/10.1007/978-0-8176-4727-8 |
[24] | K. S. Sibirsky, Algebraic invariants of differential equations and matrices, in Russian, Kishinev, Shtiintsa, 1976. |
[25] | K. S. Sibirsky, Introduction to the algebraic theory of invariants of differential equations, Manchester: Manchester University Press, 1988. |
[26] | B. Sturmfels, Algorithms in invariant theory, Vienna: Springer, 2008. https://doi.org/10.1007/978-3-211-77417-5 |
[27] | M. A. Teixeira, R. M. Martins, Reversible-equivariant systems and matricial equations, An. Acad. Bras. Ciênc., 83 (2011), 375–390. https://doi.org/10.1590/S0001-37652011000200003 doi: 10.1590/S0001-37652011000200003 |
[28] | S. Walcher, On transformations into normal form, J. Math. Anal. Appl., 180 (1993), 617–632. https://doi.org/10.1006/jmaa.1993.1420 doi: 10.1006/jmaa.1993.1420 |
[29] | L. Wei, V. G. Romanovski, X. Zhang, Generalized involutive symmetry and its application in integrability of differential systems, Z. Angew. Math. Phys., 68 (2017), 132. https://doi.org/10.1007/s00033-017-0880-y doi: 10.1007/s00033-017-0880-y |
[30] | X. Zhang, Analytic normalization of analytic integrable systems and the embedding flows, J. Differ. Equations, 250 (2008), 1080–1092. https://doi.org/10.1016/j.jde.2008.01.001 doi: 10.1016/j.jde.2008.01.001 |
[31] | H. Żołądek, The classification of reversible cubic systems with center, Topol. Methods Nonlinear Anal., 4 (1994), 79–136. https://doi.org/10.12775/TMNA.1994.024 doi: 10.12775/TMNA.1994.024 |