Research article Special Issues

Multi-objective Boolean grey wolf optimization based decomposition algorithm for high-frequency and high-utility itemset mining

  • Received: 18 January 2023 Revised: 14 April 2023 Accepted: 26 April 2023 Published: 25 May 2023
  • MSC : 05C85, 78M50

  • In itemset mining, the two vital goals that must be resolved from a multi-objective perspective are frequency and utility. To effectively address the issue, researchers have placed a great deal of emphasis on achieving both objectives without sacrificing the quality of the solution. In this work, an effective itemset mining method was formulated for high-frequency and high-utility itemset mining (HFUI) in a transaction database. The problem of HFUI is modeled mathematically as a multi-objective issue to handle it with the aid of a modified bio-inspired multi-objective algorithm, namely, the multi-objective Boolean grey wolf optimization based decomposition algorithm. This algorithm is an enhanced version of the Boolean grey wolf optimization algorithm (BGWO) for handling multi-objective itemset mining problem using decomposition factor. In the further part of this paper decomposition factor will be mentioned as decomposition. Different population initialization strategies were used to test the impact of the proposed algorithm. The system was evaluated with 12 different real-time datasets, and the results were compared with seven different recent existing multi-objective models. Statistical analysis, namely, the Wilcoxon signed rank test, was also utilized to prove the impact of the proposed algorithm. The outcome shows the impact of the formulated technique model over other standard techniques.

    Citation: N. Pazhaniraja, Shakila Basheer, Kalaipriyan Thirugnanasambandam, Rajakumar Ramalingam, Mamoon Rashid, J. Kalaivani. Multi-objective Boolean grey wolf optimization based decomposition algorithm for high-frequency and high-utility itemset mining[J]. AIMS Mathematics, 2023, 8(8): 18111-18140. doi: 10.3934/math.2023920

    Related Papers:

  • In itemset mining, the two vital goals that must be resolved from a multi-objective perspective are frequency and utility. To effectively address the issue, researchers have placed a great deal of emphasis on achieving both objectives without sacrificing the quality of the solution. In this work, an effective itemset mining method was formulated for high-frequency and high-utility itemset mining (HFUI) in a transaction database. The problem of HFUI is modeled mathematically as a multi-objective issue to handle it with the aid of a modified bio-inspired multi-objective algorithm, namely, the multi-objective Boolean grey wolf optimization based decomposition algorithm. This algorithm is an enhanced version of the Boolean grey wolf optimization algorithm (BGWO) for handling multi-objective itemset mining problem using decomposition factor. In the further part of this paper decomposition factor will be mentioned as decomposition. Different population initialization strategies were used to test the impact of the proposed algorithm. The system was evaluated with 12 different real-time datasets, and the results were compared with seven different recent existing multi-objective models. Statistical analysis, namely, the Wilcoxon signed rank test, was also utilized to prove the impact of the proposed algorithm. The outcome shows the impact of the formulated technique model over other standard techniques.



    加载中


    [1] C. C. Aggarwal, J. Han, Frequent Pattern Mining, 1 Ed., Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-07821-2_1
    [2] S. Ventura, J. M. Luna, Pattern Mining with Evolutionary Algorithms, 1 Ed., Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-33858-3
    [3] J. R. Sampson, Adaptation in Natural and Artificial Systems (John H. Holland), SIAM Review, 18 (1976), 529–530. https://doi.org/10.1137/1018105 doi: 10.1137/1018105
    [4] J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 doi: 10.1109/ICNN.1995.488968
    [5] M. Dorigo, V. Maniezzo, A. Colorni, Ant system: Optimization by a colony of cooperating agents, IEEE T. Syst. Man Cy. B, 26 (1996), 29–41. https://doi.org/10.1109/3477.484436 doi: 10.1109/3477.484436
    [6] X. S. Yang, S. Deb, Cuckoo search: Recent advances and applications, Neural Comput. Applic., 24 (2014), 169–174. https://doi.org/10.1007/s00521-013-1367-1 doi: 10.1007/s00521-013-1367-1
    [7] N. Pazhaniraja, S. Sountharrajan, B. Sathis Kumar, High utility itemset mining: a Boolean operators-based modified grey wolf optimization algorithm, Soft Comput., 24 (2020), 16691–16704. https://doi.org/10.1007/s00500-020-05123-z doi: 10.1007/s00500-020-05123-z
    [8] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [9] H. Faris, Hossam, I. Aljarah, M. A. Al-Betar, S. Mirjalili, Grey wolf optimizer: A review of recent variants and applications, Neural Comput. Appl., 30 (2018), 413–435. https://doi.org/10.1007/s00521-017-3272-5 doi: 10.1007/s00521-017-3272-5
    [10] S. Mirjalili, S. Saremi, S. M. Mirjalili, L. S. Coelho, Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization, Expert Syst. Appl., 47 (2016), 106–119. https://doi.org/10.1016/j.eswa.2015.10.039 doi: 10.1016/j.eswa.2015.10.039
    [11] Wolpert, David H., William G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
    [12] L. Huang, H. Chen, X. Wang, G. Chen, A fast algorithm for mining association rules, J. Comput. Sci. Technol., 15 (2000), 619–624. https://doi.org/10.1007/BF02948845 doi: 10.1007/BF02948845
    [13] A. Savasere, E. R. Omiecinski, S. B. Navathe, An efficient algorithm for mining association rules in large databases, Proceedings of the 21th International Conference on Very Large Data Bases, 1995,432–444. https://doi.org/10.5555/645921.673300 doi: 10.5555/645921.673300
    [14] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, ACM Sigmod Rec., 29 (2000), 1–12.
    [15] M. J. Zaki, Scalable algorithms for association mining, IEEE Trans. Knowl. Data Eng., 12 (2000), 372–390. https://doi.org/10.1109/69.846291 doi: 10.1109/69.846291
    [16] C. Lucchese, S. Orlando, P. Palmerini, R. Perego, F. Silvestri, kDCI: A Multi-Strategy Algorithm for Mining Frequent Sets, Proceedings of the IEEE ICDM Workshop of Frequent Itemset Mining Implementations (FIMI), 2003.
    [17] H. Yao, H.J. Hamilton, C. J. Butz, A foundational approach to mining itemset utilities from databases, Proceedings of the 2004 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2004,482–486. https://doi.org/10.1137/1.9781611972740.51 doi: 10.1137/1.9781611972740.51
    [18] Y. Liu, W. K. Liao, A. Choudhary, A fast high utility itemsets mining algorithm, Proceedings of the 1st international workshop on Utility-based data mining, 2005, 90–99. https://doi.org/10.1145/1089827.1089839 doi: 10.1145/1089827.1089839
    [19] K. Gade, J. Wang, G. Karypis, Efficient closed pattern mining in the presence of tough block constraints, Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2004,138–147. https://doi.org/10.1145/1014052.1014070 doi: 10.1145/1014052.1014070
    [20] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, Y. K. Lee, Efficient tree structures for high utility pattern mining in incremental databases, IEEE Trans. Knowl. Data Eng., 21 (12) (2009) 1708–1721. https://doi.org/10.1109/TKDE.2009.46 doi: 10.1109/TKDE.2009.46
    [21] V. S. Tseng, C. W. Wu, B. E. Shie, P. S. Yu, Up-growth: An efficient algorithm for high utility itemset mining, Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2010,253–262. https://doi.org/10.1145/1835804.1835839 doi: 10.1145/1835804.1835839
    [22] C. W. Wu, B. E. Shie, V. S. Tseng, P. S. Yu, Mining top-k high utility itemsets, Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2012, 78–86. https://doi.org/10.1145/2339530.2339546 doi: 10.1145/2339530.2339546
    [23] M. Liu, J. Qu, Mining high utility itemsets without candidate generation, Proceedings of ACM International Conference on Information and Knowledge Management, 2012, 55–64. https://doi.org/10.1145/2396761.2396773 doi: 10.1145/2396761.2396773
    [24] H. Ryang, U. Yun, Top-k high utility pattern mining with effective threshold raising strategies, Knowl.-Based Syst., 76 (2015), 109–126. https://doi.org/10.1016/j.knosys.2014.12.010 doi: 10.1016/j.knosys.2014.12.010
    [25] V. S. Tseng, C. W. Wu, P. Fournier-Viger, P. S. Yu, Efficient algorithms for mining top-k high utility itemsets, IEEE Trans. Knowl. Data Eng., 28 (2016), 54–67. https://doi.org/10.1109/TKDE.2015.2458860 doi: 10.1109/TKDE.2015.2458860
    [26] A. H. Altalhi, J. M. Luna, M. A. Vallejo, S. Ventura, Evaluation and comparison of open source software suites for data mining and knowledge discovery, Wiley Interdiscip. Rev.: Data Min. Knowl. Discov., 7 (2017), e1204. https://doi.org/10.1002/widm.1204 doi: 10.1002/widm.1204
    [27] S. Kannimuthu, K. Premalatha, Discovery of high utility itemsets using genetic algorithm with ranked mutation, Appl. Artif. Intell., 28 (2014), 337–359. https://doi.org/10.1080/08839514.2014.891839 doi: 10.1080/08839514.2014.891839
    [28] J. C. Lin, L. Yang, P. Fournier-Viger, J. M. Wu, T. Hong, L. S. Wang, J. Zhan, Mining high-utility itemsets based on particle swarm optimization, Eng. Appl. Artif. Intell., 55 (2016), 320–330. https://doi.org/10.1016/j.engappai.2016.07.006 doi: 10.1016/j.engappai.2016.07.006
    [29] J. C. W. Lin, L. Yang, P. Fournier-Viger, T. P. Hong, M. Voznak, A binary pso approach to mine high-utility itemsets, Soft Comput., 21 (2017), 5103–5121. https://doi.org/10.1007/s00500-016-2106-1 doi: 10.1007/s00500-016-2106-1
    [30] J. M. Wu, J. Zhan, J. C. Lin, An ACO-based approach to mine high-utility itemsets, Knowl.-Based Syst., 116 (2017), 102–113. https://doi.org/10.1016/j.knosys.2016.10.027 doi: 10.1016/j.knosys.2016.10.027
    [31] K. Thirugnanasambandam, S. Prakash, V. Subramanian, S. Pothula, V. Thirumal, Reinforced cuckoo search algorithm-based multimodal optimization, Appl. Intell., 49 (2019), 2059–2083. https://doi.org/10.1007/s10489-018-1355-3 doi: 10.1007/s10489-018-1355-3
    [32] R. S. Raghav, K. Thirugnansambandam, D. K. Anguraj, Beeware Routing Scheme for Detecting Network Layer Attacks in Wireless Sensor Networks. Wireless Pers. Commun., 112 (2020), 2439–2459. https://doi.org/10.1007/s11277-020-07158-9 doi: 10.1007/s11277-020-07158-9
    [33] D. Saravanan, S. Janakiraman, K. Chandraprabha, T. Kalaipriyan, R. Raghav, S. Venkatesan, Augmented Powell-Based Krill Herd Optimization for Roadside Unit Deployment in Vehicular Ad Hoc Networks, J. Test. Eva., 47 (2019), 4108–4127. https://doi.org/10.1520/JTE20180494 doi: 10.1520/JTE20180494
    [34] K. Thirugnanasambandam, R. S. Raghav, D. Saravanan, U. Prabu, M. Rajeswari, Experimental Analysis of Ant System on Travelling Salesman Problem Dataset TSPLIB, EAI Endorsed Trans. Pervasive Health Technol., 5 (2019), e4. https://doi.org/10.4108/eai.13-7-2018.163092 doi: 10.4108/eai.13-7-2018.163092
    [35] S. Abbaspour, A. Aghsami, F. Jolai, M. Yazdani, An Integrated Queueing-Inventory-Routing Problem in a Green Dual-Channel Supply Chain Considering Pricing and Delivery Period, a Case Study of Construction Material Supplier, J. Comput. Des. Eng., 9 (2022), 1917-1951. https://doi.org/10.1093/jcde/qwac089 doi: 10.1093/jcde/qwac089
    [36] A. Asgari, M. Yari, S. M. S. Mahmoudi, U. Desideri, Multi-objective grey wolf optimization and parametric study of a continuous solar-based tri-generation system using a phase change material storage unit, J. Energy Storage, 55 (2022), 105783. https://doi.org/10.1016/j.est.2022.105783 doi: 10.1016/j.est.2022.105783
    [37] A. Hasanzadeh, A. Chitsaz, A. Ghasemi, P. Mojaver, R. Khodaei, S. M. Alirahmi, Soft computing investigation of stand-alone gas turbine and hybrid gas turbine–solid oxide fuel cell systems via artificial intelligence and multi-objective grey wolf optimizer, Energy Rep., 8 (2022), 7537–7556. https://doi.org/10.1016/j.egyr.2022.05.281 doi: 10.1016/j.egyr.2022.05.281
    [38] L. Xuan, G. Chen, W. Zuo, Effective algorithms to mine skyline frequent-utility itemsets, Eng. Appl. Artif. Intell., 116 (2022), 105355. https://doi.org/10.1016/j.engappai.2022.105355 doi: 10.1016/j.engappai.2022.105355
    [39] B. Le, T. Truong, H. Duong, P. Fournier-Viger, H. Fujita, H-FHAUI: Hiding frequent high average utility itemsets, Inf. Sci., 611 (2022), 408–431. https://doi.org/10.1016/j.ins.2022.07.027 doi: 10.1016/j.ins.2022.07.027
    [40] J. M. Luna, R. U. Kiran, P. Fournier-Viger, S. Ventura, Efficient Mining of Top-k High Utility Itemsets through Genetic Algorithms, Inf. Sci., 624 (2023), 529–553. https://doi.org/10.1016/j.ins.2022.12.092 doi: 10.1016/j.ins.2022.12.092
    [41] K. Miettinen, Nonlinear Multiobjective Optimization, Norwell: Kluwer, 1999.
    [42] L. Zhang, G. Fu, F. Cheng, J. Qiu, , Y. Su, A multi-objective evolutionary approach for mining frequent and high utility itemsets, Appl. Soft Comput., 62 (2018), 974–986. https://doi.org/10.1016/j.asoc.2017.09.033 doi: 10.1016/j.asoc.2017.09.033
    [43] L. Zhang, P. Luo, E. Chen, M. Wang, Revisiting bound estimation of pattern measures: A generic framework, Inf. Sci., 339 (2016), 254–273. https://doi.org/10.1016/j.ins.2015.12.036 doi: 10.1016/j.ins.2015.12.036
    [44] W. Peng, X. Niu, P. Fournier-Viger, C. Huang, B. Wang, UBP-Miner: An efficient bit based high utility itemset mining algorithm, Knowl.-Based Syst., 248 (2022), 108865. https://doi.org/10.1016/j.knosys.2022.108865 doi: 10.1016/j.knosys.2022.108865
    [45] F. Wei, C. Li, Q. Zhang, X. Zhang, J. C. W. Lin, An efficient biobjective evolutionary algorithm for mining frequent and high utility itemsets, Appl. Soft Comput., 140 (2023) 110233. https://doi.org/10.1016/j.asoc.2023.110233 doi: 10.1016/j.asoc.2023.110233
    [46] P. Fournier-Viger, C. W. Lin, A. Gomariz, T Gueniche, A. Soltani, Z. Deng, et al., The SPMF Open-Source Data Mining Library Version 2, Proc. 19th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2016) Part Ⅲ, Springer LNCS 9853 (2016), 36–40. https://www.philippe-fournier-viger.com/spmf/
    [47] E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithms a comparative case study, Proceedings of International Conference on Parallel Problem Solving from Nature, (1998) 292–301. https://doi.org/10.1007/BFb0056872 doi: 10.1007/BFb0056872
    [48] J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez, Recommender systems survey, Knowl.-Based Syst., 46 (2013) 109–132. https://doi.org/10.1016/j.knosys.2013.03.012 doi: 10.1016/j.knosys.2013.03.012
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1466) PDF downloads(77) Cited by(4)

Article outline

Figures and Tables

Figures(4)  /  Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog