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Abstract: In itemset mining, the two vital goals that must be resolved from a multi-objective 

perspective are frequency and utility. To effectively address the issue, researchers have placed a great 

deal of emphasis on achieving both objectives without sacrificing the quality of the solution. In this 

work, an effective itemset mining method was formulated for high-frequency and high-utility itemset 

mining (HFUI) in a transaction database. The problem of HFUI is modeled mathematically as a multi-

objective issue to handle it with the aid of a modified bio-inspired multi-objective algorithm, namely, 

the multi-objective Boolean grey wolf optimization based decomposition algorithm. This algorithm is 

an enhanced version of the Boolean grey wolf optimization algorithm (BGWO) for handling multi-

objective itemset mining problem using decomposition factor. In the further part of this paper 

decomposition factor will be mentioned as decomposition. Different population initialization strategies 

were used to test the impact of the proposed algorithm. The system was evaluated with 12 different 

real-time datasets, and the results were compared with seven different recent existing multi-objective 
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models. Statistical analysis, namely, the Wilcoxon signed rank test, was also utilized to prove the 

impact of the proposed algorithm. The outcome shows the impact of the formulated technique model 

over other standard techniques. 

Keywords: Boolean operators; Grey Wolf Optimization; Frequency and Utility mining; Swarm 

intelligence; multi-objective algorithm 

Mathematics Subject Classification: 05C85, 78M50 

 

1. Introduction  

In data mining, frequent itemset mining is the process of retrieving a frequently used itemset from 

a transaction database to determine the relationship among the individual items to improve productivity. 

For example, in a supermarket database, identifying frequently purchased combinations of items will 

lead the investor to buy more stock of the items together and thus improve the supplies, which will 

result in more profit. This identification also helps to promote the itemset with attractive offers, so that 

the likelihood of purchase in a shop will be increased significantly. Due to this advantage, a significant 

number of researchers have contributed to frequent itemset mining to find the best combined 

itemsets [1]. 

In general, an itemset can be termed as a frequent itemset if and only if its appearance in the 

database is not less than the user specified value (𝑚𝑖𝑛𝑓𝑟𝑒𝑞). However, considering only the frequency 

of an itemset does not lead to an optimal discovery of the itemset which gives us the most profit. Users 

who check for more profit may feel that frequency based mining alone is not that effective. Utility is 

another consideration for improving profits, as used in what is usually called high-utility itemset 

mining (HUIM) [2], which counts the profit achieved through every itemset in the transaction database. 

In this utility mining, every item has a profit value and a number of occurrences in the database. An 

itemset can be termed as a high-utility itemset if and only if its profit in the database is not less than 

the user specified value (𝑚𝑖𝑛𝑢𝑡𝑖𝑙). 

Most of the studies on itemset mining consider either frequency or utility. In other words, the two 

factors are considered as separate objectives. With this perspective, if an itemset needs to be discovered 

with high frequency and high utilization, a set of solutions which cross the minimum threshold for 

frequency must first be discovered, and then the minimum threshold value of utility will be applied to 

obtain an itemset. With this procedure, there may be a possibility of obtaining empty sets if the 

transaction database is very large. Also, applying an algorithm twice to solve a problem is not 

computationally efficient. For example, an itemset with high-frequency items may have a very low 

utility value, and vice versa. Hence, addressing this as a multi-objective optimization problem is worthy. 

Evolutionary algorithms, based on evolution in nature, perform well in terms of solving 

optimization algorithms in multi-objective solution space. Algorithms such as the genetic 

algorithm [3], particle swarm optimization [4], the ant colony optimization algorithm [5], the cuckoo 

search algorithm [6], etc. are prominent evolutionary methods for solving optimization problems. This 

work extends the work of Pazhaniraja et al. (2020), which sought to perform high utility itemset mining 

with the Boolean grey wolf optimization algorithm (BGWO) [7]. In this work, the BGWO is modeled 

to solve the multi-objective optimization problem of high-frequency and high-utility mining using 

decomposition factor. 



18113 

AIMS Mathematics Volume 8, Issue 8, 18111–18140. 

The grey wolf optimization algorithm (GWO) organizes the roles in the wolf pack according to 

the pack hierarchy [8]. GWO is used in many optimization tasks since it has fewer constraints and does 

not need imitative knowledge in the first search. This inventive technique is simple and accomplishes 

a balanced diversification and intensification procedure over the search area [9]. GWO has quickly 

garnered a broad research audience from many fields. Recently, a multi-objective GWO (MOGWO) 

was developed to solve optimization problems with various and competing objectives [10]. MOGWO 

integrates a static auxiliary archive for preserving and retrieving Pareto optimal solutions. The societal 

and hunting behaviors of grey wolves are then simulated using this algorithm. Even though MOGWO 

has outperformed other multi-objective optimizers, there remains potential for further development. 

The contributions of this research work are as follows: 

• An effective multi-objective Boolean grey wolf optimization algorithm (MOBGWO) has been 

designed and developed to handle binary-based multi-objective optimization problems. 

• Effective Boolean operators are designed to handle the generation of feasible solutions that 

include stochastic randomness and uncertainty in solution generation to maintain non-

determinism. 

• The proposed MOBGWO model is utilized for HFUI from a multi-objective perspective 

considering frequency and utility of the itemset.  

The proposed algorithm has been analyzed by evaluating it with different sizes of datasets, from 

small to extremely large datasets. The formulated MOBGWO model is compared with other standard 

techniques to prove the significance of the proposed algorithm. The motivating factor for proposing a 

multi-objective optimization algorithm is the “No Free Lunch Theorem” proposed by Wolpert, D. H., 

and Macready, W. G., in 1997 [11]. As per Wolpert’s theorem, there exists no single algorithm that can 

solve all optimization problems. When we compare the performances of all optimization algorithms, 

the performance averages will be equal to one another. This is the base motivation of our proposed 

algorithm. However, there are a significant number of approaches for solving multi-objective 

optimization problems, and every individual problem has its own features to be handled which are not 

generic in nature. Our proposed algorithm addresses one such aspect of itemset mining in this research 

work. 

The rest of the work is structured as follows: Section 2 discusses related studies on recent 

algorithms that have been proposed for HFUI. Section 3 illustrates the multi-objective problem 

formulation of HFUI. Section 4 discusses the proposed multi-objective Boolean grey wolf optimization 

based decomposition algorithm for performing HFUI. Section 5 deals with the experimental evaluation 

of the formulated model, and the final section concludes the paper with future directions. 

2. Literature survey 

In 1994, Agrawal and Srikant formulated the frequent itemset mining problem [12] and solved it 

using the Apriori algorithm. Since then, several approaches have been framed and proposed, such as 

Partition-1 [13], FP-Growth [14], Eclat [15] and KDCI [16]. These techniques are effective only for 

mining that does not care about profit, since high frequency may not always lead to high profit. Hence, 

in 2004, Huo et al. [17] formulated utility-based itemset mining, through which they discovered a high-

utility itemset from the transaction database. In a proposal by Lie et al. [18], the items are pruned to 

reduce the cost of computation, and the method uses the transaction-weight utility property. Since then, 

several approaches have been proposed [19–23] for performing high-utility itemset mining. When 
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there exists a greater number of itemset on the perspective of either frequent or utility there exists a 

problem which are all to be preserved. To address this problem, an effective top 𝑘 high utility itemset 

mining algorithm was proposed which utilizes a threshold value [24,25], and some open-source 

software tools were also proposed [26]. 

The approaches of traditional algorithms are effective, but the exhaustive search-based models 

are highly time-consuming processes. Meanwhile, stochastic optimization models using evolutionary 

techniques are intended to solve the optimization issues in appropriate ways with computational 

efficiency. The first such approach for HUIM is the genetic algorithm [27], which uses a ranked 

mutation model for mining high-utility itemsets (HUIs). Using particle swarm optimization, the 

discrete particle swarm optimization algorithm was proposed for HUIM, and some of the same authors 

later proposed a binary version of the particle swarm optimization algorithm for mining HUIs [28,29]. 

Another model, called an ant colony system [30], has been proposed for HUIM, in which processes 

such as the two-way pruning model were imposed for effective handling of a transaction database for 

the mining process. 

In a similar way, several approaches have been presented for performing HUIM and high-

frequency and high-utility mining. Evolutionary algorithms are not only intended to solve mining 

problems but are also used in other research domains such as mathematical benchmark functions and 

many more. Other applications can be found in [31–34]. The intention of this research is to propose an 

effective multi-objective model for performing HFUI. 

The choice of GWO has been made based on its simplicity and the wide usage of the algorithm 

for solving various applications in different domains from both single-objective and multi-objective 

perspectives. Some of the applications include a routing problem in a dual supply chain which 

considers both the price and the duration of delivery from a case study on a construction material 

supplier in 2022 by Abbaspour et al. [35]. In 2022, Asgari et al. proposed a multi-objective variant of 

GWO for analyzing a solar based tri-generation system [36]. In 2022, Hasanzadeh et al. proposed 

another multi-objective variant of GWO for solving the combination of solid oxide fuel cell with other 

hybrid and standalone gas turbines [37]. However, based on the “No Free Lunch Theorem” [7], our 

proposed algorithm is developed to perform multi-objective HFUI. 

In 2022, Xuan Liu, Genlang Chen and Wanli Zuo [38] proposed the EMSFUI-D and EMSFUI-B 

algorithms to identify high utility itemsets. These algorithms holds two different pruning mechanisms 

to rule out the least utilized items without considering them for fitness evaluation. High average-utility 

itemset mining involves evaluating a quantitative consumer transactional database in order to discover 

high average-utility itemsets, or groupings of items with high average usefulness. In 2022, Le. B. 

et al. [39] proposed to mine frequent HAUI that involves evaluating a quantitative consumer 

transactional database in order to discover high average-utility itemsets, or groupings of items with 

high average usefulness. In 2023, Luna et al. [40] proposed top-k high utility itemset mining through 

genetic algorithms for performing high utility itemset extraction. It directs the search process by 

evaluating the usability of each item to provide initial solutions and combines solutions appropriately, 

hence lowering runtime and memory usage. However, the effective mechanism to identify high utility 

itemset mining is still in debate, and, as per the statement of the No Free Lunch theorem, the proposed 

algorithm is being used for identifying the high utility itemset from a different objective’s perspective.  
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3. System design 

In this section a detailed description of frequency and utility itemset mining is given along with 

an example model. Based on this problem definition, the objectives of the problem are also given in 

this section. 

3.1. Problem formulation of high frequency and high utility itemset mining  

Let us consider Table 1 as a transaction database (𝐷 ) consisting of eight transactions 𝑇  = 

{𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6,  𝑡7, 𝑡8  , each with a unique 𝑖𝑑  ranging from 1 to 8. In general, a transaction 

database consists of 𝑚 finite sets of transactions 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑚  in which each transaction has a 

varied number of items in it. As a single set, the number of distinct items (𝑛) in all the transactions is 

represented as 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑛}. A transaction can be named as a supporting transaction when a set 

of items (𝑋) is presented in that transaction. The supporting transactions of the itemset is the number 

of overall transactions that contains the itemset 𝑋, and it can be represented as 𝐷𝑋 . The itemset 𝑋 is 
a frequent itemset if 𝑓𝑟𝑒𝑞(𝑋) ≥ 𝑚𝑖𝑛𝑠𝑢𝑝, where 𝑚𝑖𝑛𝑠𝑢𝑝 is the threshold value specified by the user, 

and 𝑓𝑟𝑒𝑞(𝑋) denotes the total number of transactions that contain itemset 𝑋. 

Table 1. Transaction table. 

𝒕𝒊𝒅 Transaction 𝑾(𝒕𝒊𝒅) 

𝒕𝟏 {(𝒂, 𝟑), (𝒃, 𝟒), (𝒄, 𝟒), (𝒅, 𝟕)} 18 

𝒕𝟐 {(𝒂, 𝟖), (𝒃, 𝟏𝟑), (𝒄, 𝟑), (𝒆, 𝟐𝟎𝟏)} 225 

𝒕𝟑 {(𝒂, 𝟒), (𝒃, 𝟕), (𝒅, 𝟑), (𝒇, 𝟐), (𝒉, 𝟐)} 18 

𝒕𝟒 {(𝒂, 𝟐), (𝒅, 𝟒), (𝒈, 𝟔)(𝒊, 𝟐), (𝒋, 𝟏)} 15 

𝒕𝟓 {(𝒄, 𝟖), (𝒅, 𝟖), (𝒆, 𝟓), (𝒉, 𝟏), (𝒊, 𝟏)} 23 

𝒕𝟔 {(𝒂, 𝟖), (𝒃, 𝟔), (𝒊, 𝟐)} 16 

𝒕𝟕 {(𝒄, 𝟑), (𝒅, 𝟐), (𝒉, 𝟏)} 6 

𝒕𝟖 {(𝒂, 𝟗), (𝒃, 𝟏𝟐), (𝒊, 𝟒)(𝒋, 𝟐)} 27 

In Table 1 , the items are represented as pairs of item names and numbers. For example, in 

transaction 𝑡1, the term (𝑎, 3) denotes that the item 𝑎 is utilized 3 times in transaction 𝑡1. Likewise, 

in every transaction, each item is specified with a utilization value of the item which is used in that 

transaction, 𝑡𝑖𝑑. The overall efficacy of each transaction is given as 𝑊(𝑡𝑖𝑑) in the last column of 

Table 1. 

In Table 1, there are 10 distinct items in the transaction database (𝐷) 𝐼 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗} 

and eight transactions 𝑇 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8 . For example, let us consider an itemset 𝑋 =

{𝑎, 𝑏}. The supporting transactions of itemset 𝑋 in database 𝐷 are 𝐷𝑋 = {𝑡1, 𝑡2, 𝑡3, 𝑡6, 𝑡8}, and thus 

𝑓𝑟𝑒𝑞(𝑋) =
|𝐷𝑋|

|𝑇|
, which is 

5

8
 for the itemset {𝑎, 𝑏}. The itemset 𝑋 can be termed as a frequent itemset 

if 𝑚𝑖𝑛𝑓𝑟𝑒𝑞 is set in the interval (0 to 0.6). 

The weight of an item in a transaction is represented as 𝑊(𝑡𝑖𝑑, 𝑖). For example, the weight of 

item 𝑎  in transaction 𝑡1  is 3. Similarly, for weight of an itemset 𝑋  in a transaction 𝑡𝑖  can be 

represented as 𝑊(𝑡𝑖𝑑, 𝑋) . For example, the weight of itemset 𝑋 = {𝑎, 𝑏}  in the transaction 𝑡1  is 

𝑊(𝑡1, 𝑎) + 𝑊(𝑡1, 𝑏) = 3 + 4 = 7. 
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In a similar way, the utility of an itemset (𝑋 ) in the entire transaction database 𝐷  can be 

represented as follows: 

𝑢𝑡𝑖𝑙(𝑋, 𝐷) =  
∑ ∑ 𝑊(𝑡𝑖, 𝑋)𝑋⊆𝑡

|𝐷𝑋|
𝑖=𝑖𝑑∈𝐷𝑋

∑ 𝑊(𝑡𝑖𝑑)|𝑇|
𝑖𝑑=1

. (1) 

For example, in transaction database 𝐷 , 𝑢𝑡𝑖𝑙({𝑎, 𝑏}, 𝐷) =
7+21+11+14+21

18+225+18+15+23+16+6+27
=

74

348
=

0.21. Similarly, 𝑢𝑡𝑖𝑙({𝑏, 𝑒}, 𝐷) is 0.61. If 𝑚𝑖𝑛𝑢𝑡𝑖𝑙, through which high utility itemsets can be defined, 

is set to 0.5, itemset {𝑏, 𝑒} will be denoted as a high utility itemset, and the itemsets {𝑎, 𝑏} will be 

discarded. Similarly, the other high utility itemset in the transaction database 𝐷  are identified as 

𝑢𝑡𝑖𝑙({𝑎, 𝑒}, 𝐷) =  0.60,  𝑢𝑡𝑖𝑙({𝑐, 𝑒}, 𝐷)  = 0.62, 𝑢𝑡𝑖𝑙({𝑎, 𝑏, 𝑒}, 𝐷)  = 0.63, 𝑢𝑡𝑖𝑙({𝑎, 𝑐, 𝑒}, 𝐷)  = 0.60, 

𝑢𝑡𝑖𝑙({𝑏, 𝑐, 𝑒}, 𝐷) = 0.62 and 𝑢𝑡𝑖𝑙({𝑎, 𝑏, 𝑐, 𝑒}, 𝐷) = 0.64. 

3.2. Multi-objective formulation for high frequency and high utility itemset mining  

In high frequency and high utility itemset mining, the two factors of frequency of an itemset and 

its utility in the database can be observed as two different objectives in a multi-objective optimization 

model, as discussed here. The two factors are considered as two different objectives based on the 

inference as follows: 

Theorem 1. In a transaction database D, a high-utility itemset may have low frequency, and a low-

utility itemset may have high frequency.  

Proof: From Table 1, in a transaction database 𝐷, the frequency of item {a  is 0.8, and its utility is 

0.05. In this example, the frequency of the itemset meets the user constraint when 𝑚𝑖𝑛𝑓𝑟𝑒𝑞 is set to 

0.5. However, the utility does not meet the user constraint when 𝑚𝑖𝑛𝑢𝑡𝑖𝑙  is set to 0.5. On the other 

hand, if the itemset 𝑋 is {𝑎, 𝑒}, then the frequency of 𝑋 in the transaction database 𝐷 is 0.2, and 

its utility is 0.60. Thus, the utility of the itemset 𝑋 satisfies the user constraint, whereas the frequency 

does not, provided that 𝑚𝑖𝑛𝑓𝑟𝑒𝑞 =  𝑚𝑖𝑛𝑢𝑡𝑖𝑙 = 0.5. Thus, the transformation of high frequency and 

high utility itemset mining into a multi-objective optimization is valid. 

Hence, the objectives of the problem can be represented as follows: 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐹(𝑋) = {
max(𝐹𝑟𝑒𝑞(𝑋))

max(𝑈𝑡𝑖𝑙(𝑋))
. (2) 

4. Multi-objective Boolean grey wolf optimization based decomposition algorithm 

In this section, detailed descriptions of the standard grey wolf optimization algorithm (GWO), the 

conversion of the standard GWO into the Boolean GWO and the multi-objective Boolean GWO with 

decomposition algorithm for performing multi-objective high frequency and high utility itemset 

mining are given. 
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4.1. Standard GWO 

In the past decade, bio-inspired optimization algorithms have been applied by researchers to solve 

a number of significant optimization problems, including combinatorial problems such as the Traveling 

Salesman Problem, knapsack problems, virtual machine placement in cloud computing, etc. They have 

such wide applications because they possess simplicity, such as straightforward implementation 

irrespective of gradient information. One such optimization algorithm is the grey wolf optimization 

algorithm [8]. It is inspired from the social behavior of wolves, as they possess good leadership and 

high-level hunting strategies toward their prey. They are among the high-level predators and work in 

groups with sizes varying from 5 to 12 naturally.  

The wolves are further classified as Alpha, Beta, Delta and Omega wolves. Alpha wolves (𝛼) are 

responsible for decision making, and it is the most dominant wolves’ category when compared to other 

categories of wolves. These wolves instruct the other wolves of the group. Alpha wolves are 

responsible for production of new wolves. Beta wolves (𝛽) are the wolves with the category next to 

the Alpha wolves. These wolves help the Alpha wolves in planning. Beta wolves will assume 

leadership of the wolves’ group in the absence of Alpha wolves. In the presence of Alpha wolves, these 

Beta wolves will act as the responding wolves for the decisions made by the Alpha wolves. In the third 

category are the Delta wolves (𝛿). These wolves are the subordinate wolves in the pack and are the 

next level of wolves. These wolves fall under the classifications of elders, sentinels, hunters, scouts 

and caregivers. As the last category of wolves, the Omega wolves (𝜔) are the lowest ranking wolves 

and play the role of scapegoat. They obey the instructions provided by all other wolves in the group. 

The formation of GWO is based on tracking, chasing and approaching the prey of the wolves. 

The wolves perceive, encircle and harass the prey until the prey’s movement stops. Then, they attack 

the prey in an effective manner. The GWO is effective for exploration and the exploitation phase of a 

search strategy in solution space. However, the standard GWO is proposed for solving continuous 

optimization problems such as mathematical benchmark problems, tension/compression spring design, 

welded beam design, etc. HFUI, on the other hand, is a binary based solution representation in which 

the conventional operators of standard GWO will not be very effective for generation of new solutions 

for the next iterations. Hence, Pazhaniraja et al. proposed a Boolean based grey wolf optimization 

algorithm [7] for performing HUI mining. In the next section, a description of BGWO is given in brief. 

4.2. Boolean based grey wolf optimization algorithm 

In this section, the Boolean based GWO is described in brief. It is highly recommended to visit 

the origin of this algorithm in [7]. For further proper understanding of this paper a brief note is given 

as follows: There are, in total, 5 Boolean operators used in BGWO which replace the conventional 

operators in the standard GWO for processing the HFUI problem. The representation of a solution is 

first given in this section, through which the further processing can be applied. 

4.2.1. Solution representation 

From the example of Table 1, the database 𝐷 consists of eight transactions 𝑇 = {𝑡1, 𝑡2, … , 𝑡8}. In 

the first transaction, out of 10 distinct items, only 4 items, namely, {𝑎, 𝑏, 𝑐, 𝑑}, are included. This can 

be represented as a set 𝐷(𝑡1) = [1 1 1 1  0 0 0 0 0 0]  which shows that items {𝑎, 𝑏, 𝑐, 𝑑}  are 
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included, and items {𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗  are not included. In this way, the whole database can be represented 

as follows: 

𝐷(𝐵𝑖𝑡𝑀𝑎𝑝) =

[
 
 
 
 
 
 
 
1 1 1
1 1 1
1 1 0

1 0 0 0 0 0 0
0 1 0 0 0 0 0
1 0 1 0 1 0 0

1 0 0
0 0 1
1
0
1

1
0
1

0
1
0

1
1

0
1

0 1 0 1 1
0 0 1 1 0

0 0 0 0 0 1 0
1
0

0
0

0 0 1 0 0
0 0 0 1 1]

 
 
 
 
 
 
 

, (3) 

where 𝑇𝑑 denotes the row of the transaction, and {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗} specifies the column items. 

4.2.2. De Morgan’s AND (𝛬) 

De Morgan's law specifies a sequence of conversion rules that includes valid rules of inference. 

In a De Morgan’s AND gate, the resultant factor will be 1 if any input value holds 0, and the output 

value will be 0 if both the input values are 1. A 2-bit input model of a De Morgan’s AND gate is shown 

in Table 2. 

Table 2. Two-bit input De Morgan’s AND. 

Input Output 
𝑨 𝑩 �̅�+�̅� 
0 0 1 
1 0 1 
0 1 1 
1 1 0 

4.2.3. Difference (⊝) 

The Boolean difference gives output in two vectors, namely, Difference and Borrow. For a 2-bit 

input, the borrow will return as 1 only if the first bit is 0 and the second bit is 1. In all other cases, the 

value of borrow will be 0. For the difference vector, the output will be one if and only if only one of 

the inputs is 1; otherwise, the result will be 0. Table 3 shows the values of 2-bit vectors. 

Table 3. 2-bit input Difference (⊝) gate values. 

Input Output 

𝑨 𝑩 Diff. Borrow 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

4.2.4. Binary Adder (⊕) 

Table 4 shows the input and output of the 2-bit input model of Binary Adder. Like the Difference 

operator, this Binary Adder also returns two different vectors, namely, Sum and Carry. Carry will return 
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1 only if both the inputs are 1. For Sum, the output will be 1 if and only if only one of the inputs is 1; 

otherwise, the resultant will be 0. 

Table 4. 2-bit input Binary Adder (⊕) gate values. 

Input Output 

𝑨 𝑩 SUM CARRY 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 0 1 

4.2.5. Multiplexer (with uncertainty) (⋈) 

A multiplexer of 2𝑛 inputs has 𝑛 select lines, which are used to select which input line to send 

to the output. (𝑺𝟎 ). A generalized equation for the Multiplexer is given below. In our model the 

multiplexer is responsible for the uncertainty factors 𝐴 and 𝐶.  

𝒛 = (𝑨 ∧ ¬𝑺𝟎)⋁(𝑩 ∧ 𝑺𝟎). (4) 

There are two coefficient components, A and C, in the suggested model. The uncertainty factors 

are caused by these two components. These two factors are responsible for the stochastic randomness 

during the search process. 

4.2.6. 2-bit circular shift (left and right) (↦,↤) 

The process of moving the last element in a tuple to the first place while shifting all other entries 

to the next position, or carrying out the opposite operation, is known as circular shift. A two-bit circular 

shift alternates between two places. 

4.3. Multi-objective Boolean grey wolf optimization based decomposition algorithm for HFUI 

For solving multi-objective optimization problems, the proposed Boolean GWO is integrated with 

a decomposition-based optimization model. In decomposition, the problem is divided into 

subproblems which can be solved in an effective manner. In this section, the Boolean GWO is modeled 

to perform multi-objective HFUI. After the population initialization, the problem is divided into 

subproblems, and it proceeds by the finding of neighbors. Later, the solutions are evolved to next 

generation iteration. 

4.3.1. Initialization strategy 

In general, optimization algorithms start with an initial population in a random manner. However, 

initializing in a random manner for itemset mining will often lead to infeasible solutions. For example, 

there is no combination of items {𝑏, 𝑔}. Suppose a solution is generated as [0, 1, 0, 0, 0, 0, 1, 0, 0, 0] 

and sent for fitness calculation; it will return a value 0. If this is chosen to be a crossover solution, then 

the generation of a child solution will also be ineffective. Thus, for an effective initialization, two 
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things are required: 1. The generated solutions should indicate a valid itemset combination from the 

database. 2. The generated solutions after the search strategy through BGWO should also be a valid 

itemset. If these two conditions are met, then the convergence of optimal solutions in a shorter number 

of iterations is highly possible in the search strategy. Hence, two selection strategies are adopted from 

Multi-Objective Evolutionary Algorithm based Decomposition (MOEA/D) based HFUI mining.  

Transaction Itemset: The transaction-itemset utility can be denoted as 𝑢𝑡𝑖𝑙(𝑡𝑖). The sum of all 

transaction utilities can be computed as ∑ 𝑢𝑡𝑖𝑙(𝑡𝑖)
|𝐷|
𝑖=1 .  Individuals can be selected based on the 

probability of 
𝑢𝑡𝑖𝑙(𝑡𝑖)

∑ 𝑢𝑡𝑖𝑙(𝑡𝑖)
|𝐷|
𝑖=1

 

Meta-Itemset: Likewise for meta-itemsets, let us consider that there are 10 meta-itemsets in the 

transaction database 𝐷 , namely, {𝑎}, {𝑏}, {𝑐}, {𝑑}, {𝑒}, {𝑓} , {𝑔}, {ℎ}, {𝑖} and {𝑗} . The frequency of 

items can be calculated as 𝑓𝑟𝑒𝑞(𝑀𝑖). The collective calculation of frequencies can be computed as 

∑ 𝑓𝑟𝑒𝑞(𝑀𝑖).
|𝑀|
𝑖=1   Now, the choice if an individual can be selected is based on the probability 

𝑓𝑟𝑒𝑞(𝑀𝑖)

∑ 𝑓𝑟𝑒𝑞(𝑀𝑖) 
|𝑀|
𝑖=1

. 

4.3.2. Creation of subproblems 

Let us consider that there are 𝑁𝑃𝑜𝑝  individuals in the population. 𝑁𝑃𝑜𝑝  subproblems are 

generated as follows: 

𝜆 = {𝜆1, 𝜆2, … , 𝜆𝑁𝑃𝑜𝑝
} (5) 

are the evenly spread vectors in which each 𝜆 corresponds to 2 values, namely, 𝜆𝑖 = (𝜆𝑖
1, 𝜆𝑖

2) where 

the 2 refers to the number of objectives that satisfy 𝜆𝑖
1 + 𝜆𝑖

2 = 1. These subproblems are then solved 

using Tchebycheff method [41] which is formulated as 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑔(𝑋|𝜆𝑖, 𝑧
∗) = max

𝑗=1:2
{(𝜆𝑖

𝑗
. |𝐹𝑗(𝑋) − 𝑧∗|)}, (6) 

where 𝑧∗ = (𝑧1
∗, 𝑧2

∗)  is the reference point that records the maximum value for individual fitness 

function. 

4.3.3. Finding neighbors 

After the creation of subproblems, the solutions used to find their neighbors for further processing. 

Euclidian distance for every subproblem with other subproblem is computed and then sort the 

individual’s based on the Euclidian distance in descending order. Then extract the first 𝑁𝐵 number 

of individuals and name it as the neighbours of every corresponding individual. 

4.3.4. Dominant determination 

In Section 3.2 description of multi-objective optimization model is given, and the domination 
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strategy that identifies the solutions with better results in different objective functions is defined. In 

this section, the pseudocode of dominant determination is given. A solution 𝑥 can be termed as a non-

dominant solution iff none of the objective value of that solution is lesser than the other solution’s 

objective values. The pseudocode is given in Algorithm 1. 

Table 5. Nomenclature for Algorithms 1 and 2. 

Parameter name Variable representation  

Population / Solutions in a Generation �⃗⃗⃗�  

A Single Individual / Solution �⃗⃗⃗� 𝒊 

Total number of solutions in a population 𝑵𝒑𝒐𝒑 

Fitness Function 𝑭 

Fitness function of first objective 𝒇𝟏 

Fitness function of second objective 𝒇𝟐 

Dimension 𝒅 

Transaction Database 𝔻 

Number of Objectives 𝑵𝒐𝒃𝒋 

Current iteration 𝒕 

Maximum number of iterations 𝑴𝑨𝑿𝑰𝑻 

Number of Neighbors 𝑻 

Random vectors  �⃗⃗� , �⃗� 𝟏, �⃗� 𝟐 

Coefficient Vectors �⃗⃗� , �⃗⃗�  

Markers for population split of wolves as alpha, beta and 

gamma. 
𝑳𝟏, 𝑳𝟐, 𝑳𝟑, 𝑳𝟒 

Optimal solution index 𝔃 

Sorted population  𝑺 

Dominated solution indices 𝑫𝑫 

External Population 𝑬𝑷 

Nearest Neighbor Index 𝑻𝒈 

Decomposed cost of every individual 𝒈𝒊 

Table 5 represents the parameters used in Algorithms 1 and 2 and the respective variables that 

represent the parameters. Algorithm 1 represents the dominance identification model. In Algorithm 2, 

the actual working procedure of the Boolean multi-objective optimization-based decomposition 

algorithm is presented. 
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Algorithm 1: Dominant determination 

Input: Population (�⃗⃗⃗� ), 𝑵𝒑𝒐𝒑 = |�⃗⃗⃗� |, 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆 𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑭 = (𝒇𝟏, 𝒇𝟐) 

for each 𝒊 ∈  𝑵𝑷𝒐𝒑 do 

     for each 𝒋 ∈  𝑵𝑷𝒐𝒑 do 

          if ((∀ (𝑭(𝝍𝒊
⃗⃗ ⃗⃗ ) ≤ 𝑭(𝝍𝒋

⃗⃗ ⃗⃗  )))  && (∃ (𝑭(𝝍𝒊
⃗⃗ ⃗⃗ ) < 𝑭(𝝍𝒋

⃗⃗ ⃗⃗  )))) then 

               𝝍𝒋
⃗⃗ ⃗⃗  . 𝒊𝒔𝑫𝒐𝒎𝒊𝒏𝒂𝒕𝒆𝒅 = 𝑻𝒓𝒖𝒆 

          elseif ((∀ (𝑭(𝝍𝒋
⃗⃗ ⃗⃗  ) ≤ 𝑭(𝝍𝒊

⃗⃗ ⃗⃗ )))  && (∃ (𝑭(𝝍𝒋
⃗⃗ ⃗⃗  ) < 𝑭(𝝍𝒊

⃗⃗ ⃗⃗ )))) then 

               𝝍𝒊
⃗⃗ ⃗⃗ . 𝒊𝒔𝑫𝒐𝒎𝒊𝒏𝒂𝒕𝒆𝒅 = 𝑻𝒓𝒖𝒆 

          end if 

     end for 

end for 

Output: �⃗⃗⃗� . 𝒊𝒔𝑫𝒐𝒎𝒊𝒏𝒂𝒕𝒆𝒅 

After calculating the domination of individuals, the solution for the next generation is computed 

using BGWO, which is given in Algorithm 2. In the later part, once again, the decomposed cost and 

determination of domination of individuals are computed to update the external population (EP).   

Algorithm 2: Multi-objective Boolean grey wolf optimization based decomposition algorithm on HFUI 

Input: Transaction Database (𝔻 ), Number of Objectives (𝑵𝒐𝒃𝒋),  Objective Function (𝒇𝟏, 𝒇𝟐 ), initial iteration (𝒕), 

Population Size (𝑵𝑷𝒐𝒑 ), Dimension of an individual (𝒅 ), Population Space (�⃗⃗⃗� (𝑵𝑷𝒐𝒑, 𝒅) = ∅ ), Maximum Iteration 

(𝑴𝑨𝑿𝑰𝑻), Number of Neighbors (𝑻) 

Begin 

// Parameter Initialization 

𝒕 ← 𝟏  

�⃗⃗� , �⃗� 𝟏, �⃗� 𝟐 ← 𝒓𝒂𝒏𝒅𝒊([𝟎, 𝟏], 𝟏, 𝒅)  

�⃗⃗� = (𝟐 ↤ �⃗⃗� )𝚲(�⃗� 𝟏 ⊝ �⃗⃗� )   

�⃗⃗� = 𝟐 ↦ �⃗� 𝟐  

Initialize 𝑳𝟏, 𝑳𝟐, 𝑳𝟑, 𝑳𝟒 

Initialize 𝔃 

// Population Initialization & Fitness Computation 

for each 𝒊 ∈  𝑵𝑷𝒐𝒑 do 

     �⃗⃗⃗� 𝒊 ← 𝒓𝒂𝒏𝒅𝒊([𝟎, 𝟏], 𝟏, 𝒅) 

     [𝑭𝒊𝒕𝒊] ← 𝒇𝟏(�⃗⃗⃗� 𝒊), 𝒇𝟐(�⃗⃗⃗� 𝒊) 

     𝔃 ← 𝐦𝐚𝐱 (𝔃, 𝑭𝒊𝒕𝒊) 

end for  

/ Creating Sub Problems 

for each 𝒊 ∈  𝑵𝑷𝒐𝒑 do 

     𝝀𝒊 ← 𝒓𝒂𝒏𝒅(𝑵𝒐𝒃𝒋, 𝟏) 

     𝝀𝒊 ← 𝝀𝒊/𝒏𝒐𝒓𝒎(𝝀𝒊) 

end for  

𝑫 ← 𝑬𝒖𝒄𝒍𝒊𝒅(𝝀, 𝝀)  

// Finding Neighbours (NB) 
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for each 𝒊 ∈  𝑵𝑷𝒐𝒑 do 

     𝑺 ← 𝒔𝒐𝒓𝒕(𝑫(𝒊, : )) 

     𝑵𝑩𝒊 ←  𝑺(𝟏: 𝑻) 

end for  

// Calculation of Decomposed Cost 

for each 𝒊 ∈  𝑵𝑷𝒐𝒑 do 

     𝒈𝒊 ← 𝐦𝐚𝐱 ( 𝝀𝒊.∗ 𝒂𝒃𝒔(𝑭𝒊𝒕𝒊 −  𝔃)) 

end for  

// Domination Determination 

𝑫𝑫  ←  𝑫𝒐𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏(�⃗⃗⃗� )  // Logical Value 

𝑬𝑷 ←  �⃗⃗⃗� (~[𝑫𝑫])   

// Iteration Starts 

do   

// Sorting and extraction of 𝜶, 𝜷 and 𝜸 Individuals 

�⃗⃗⃗� 𝑺𝒐𝒓𝒕𝒆𝒅 ←  𝒔𝒐𝒓𝒕(�⃗⃗⃗� , ′𝒅𝒆𝒔𝒄𝒆𝒏𝒅′) 

�⃗⃗⃗� 𝜶 ← �⃗⃗⃗� 𝑺𝒐𝒓𝒕𝒆𝒅 (𝒓𝒂𝒏𝒅𝒊 ([𝟏 ,
𝑵𝑷𝒐𝒑

𝟏𝟎𝟎
× 𝑳𝟏]))  

�⃗⃗⃗� 𝜷 ← �⃗⃗⃗� 𝑺𝒐𝒓𝒕𝒆𝒅 (𝒓𝒂𝒏𝒅𝒊 ([
𝑵𝑷𝒐𝒑

𝟏𝟎𝟎
× 𝑳𝟐  ,

𝑵𝑷𝒐𝒑

𝟏𝟎𝟎
× 𝑳𝟑])) 

�⃗⃗⃗� 𝜸 ← �⃗⃗⃗� 𝑺𝒐𝒓𝒕𝒆𝒅 (𝒓𝒂𝒏𝒅𝒊 ([
𝑵𝑷𝒐𝒑

𝟏𝟎𝟎
× 𝐋𝟒 ,   𝑵𝑷𝒐𝒑])) 

 

for each 𝒊 ∈  𝑵𝑷𝒐𝒑 do 

      𝑵𝑩𝑻𝟏, 𝑵𝑩𝑻𝟐, 𝑵𝑩𝑻𝟑 ← 𝐫𝐚𝐧𝐝𝐬𝐚𝐦𝐩𝐥𝐞(𝐓, 𝟑)   

      �⃗⃗⃗� 𝑻𝟏 ← �⃗⃗⃗� (𝑵𝑩𝑻𝟏); �⃗⃗⃗� 𝑻𝟐 ← �⃗⃗⃗� (𝑵𝑩𝑻𝟐); �⃗⃗⃗� 𝑻𝟑 ← �⃗⃗⃗� (𝑵𝑩𝑻𝟑) 

       �⃗⃗� 𝜶 ← |�⃗⃗� 𝟏 ⋈ (�⃗⃗⃗� 𝑻𝟏 ⊝ �⃗⃗⃗� 𝒊)|  ,  �⃗⃗� 𝜷 ← |�⃗⃗� 𝟐 ⋈ (�⃗⃗⃗� 𝑻𝟐 ⊝ �⃗⃗⃗� 𝒊)| , �⃗⃗� 𝜸 ← |�⃗⃗� 𝟑 ⋈ (�⃗⃗⃗� 𝑻𝟑 ⊝ �⃗⃗⃗� 𝒊)| 

       �⃗⃗⃗� 𝟏 ← |�⃗⃗⃗� 𝜶 ⊝ ( �⃗⃗� 𝟏 ⋈ �⃗⃗� 𝜶)| ,   �⃗⃗⃗� 𝟐 ← |�⃗⃗⃗� 𝜷 ⊝ (�⃗⃗� 𝟐 ⋈  �⃗⃗� 𝜷)|,    �⃗⃗⃗� 𝟑 ← |�⃗⃗⃗� 𝜸 ⊝ (�⃗⃗� 𝟑 ⋈ �⃗⃗� 𝜸)|  

       �⃗⃗⃗� 𝒔𝒖𝒎 ,  �⃗⃗⃗� 𝑪𝒂𝒓𝒓𝒚 ← �⃗⃗⃗� 𝟏 ⊕ �⃗⃗⃗� 𝟐 ⊕ �⃗⃗⃗� 𝟑 

       if (𝒇(�⃗⃗⃗� 𝒔𝒖𝒎 ) < 𝒇(�⃗⃗⃗� 𝑪𝒂𝒓𝒓𝒚 )) then 

            �⃗⃗⃗� 𝑻 ← �⃗⃗⃗� 𝒔𝒖𝒎  

            𝑭𝒊𝒕𝑻 ← 𝒇(�⃗⃗⃗� 𝒔𝒖𝒎) 

       else 

            �⃗⃗⃗� 𝑻 ← �⃗⃗⃗� 𝑪𝒂𝒓𝒓𝒚  

            𝑭𝒊𝒕𝑻 ← 𝒇(�⃗⃗⃗� 𝑪𝒂𝒓𝒓𝒚) 

       end if 

       𝔃 ← 𝐦𝐚𝐱(𝔃, 𝑭𝒊𝒕𝑻) 

       for each 𝒋 ∈  𝑻 do 

            𝑻𝒈 ← 𝐦𝐚𝐱 ( 𝝀𝒊.∗ 𝒂𝒃𝒔(𝑭𝒊𝒕𝑻 −  𝔃)) 

            if (𝑻𝒈 ≤ 𝒈𝒊) then 

                 �⃗⃗⃗� 𝒊 ← �⃗⃗⃗� 𝑻 

            end if 

       end for 

end for  

// Domination Determination 
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𝑫𝑫  ←  𝑫𝒐𝒎𝒊𝒏𝒂𝒕𝒊𝒐𝒏(�⃗⃗⃗� )  // Logical Value 

𝑬𝑷 ←  �⃗⃗⃗� (~[𝑫𝑫])   

 

  �⃗⃗� , �⃗� 𝟏, �⃗� 𝟐 ← 𝒓𝒂𝒏𝒅𝒊([𝟎, 𝟏], 𝟏, 𝒅)  

  �⃗⃗� = (𝟐 ↤ �⃗⃗� )𝚲(�⃗� 𝟏 ⊝ �⃗⃗� )   

  �⃗⃗� = 𝟐 ↦ �⃗� 𝟐  

 

  𝒕 ← 𝒕 + 𝟏 

  Until (𝒕 ≤ 𝑴𝑨𝑿𝑰𝑻) 

   𝝍∗⃗⃗⃗⃗  ⃗ ← �⃗⃗⃗� (𝑬𝑷(𝐦𝐚𝐱(𝑭𝒊𝒕)) 

End  

Output: EP 

4.3.5. Working model of MOBGWO 

In the initial phase, three different random binary vectors are generated, namely, 𝑎 , 𝑟 1, 𝑟 2, which 

are the basic blocks for the construction of coefficient factors 𝐴 , 𝐶  respectively. For the construction 

of coefficient vector 𝐴 , a Boolean operation “AND” gate is used between the vector 𝑎  with left two-

bit circular shift and a difference vector between 𝑎   and 𝑟 1 . Similarly, the coefficient vector 𝐶   is 

prepared by right two-bit circular shift on 𝑟 2. 

In the population initialization phase, every solution vector (�⃗� 𝑖) is prepared randomly, and its 

respective fitness values are also calculated using two objective functions, namely, 𝑓1 and 𝑓2. The 

best fitness value is recorded in the variable 𝓏. 

A subset of vectors 𝜆 is generated for decomposing the problem based on the number of objectives. 

This vector is responsible for the weightage given to the objectives for every solution. Since a different 

combination strikes out during the iteration, the combinations will have high probability to end up with 

optimal Pareto front solutions.  

For every solution, the near neighbor solutions (i.e., 𝑇  solutions) are identified based on the 

Euclidian distance between the 𝜆 vector representations of every solution. Then, for every solution, the 

decomposed cost will be identified as 𝑔𝑖. Now, the domination factor of every solution is identified 

based on Algorithm 1.  

Based on the default threshold values to segregate the wolves as alpha, beta and gamma wolves, 

the solution is sorted based on the decomposition cost of every solution. Then, from sorted solution 

index 1 to 𝐿1 , the solutions will be treated as Alpha wolves. From 𝐿2  (i.e., 𝐿1 +1) to 𝐿3 , the 

individuals will be treated as beta wolves, and the rest will be treated as Gamma wolves. Now, the 

evolution of wolves from one generation to the next generation will be carried out based on the Boolean 

operations described in Section 4.2.  

After the identification of optimal solutions from the generated solutions, the best will be 

promoted for the further iteration evolution. The process will be continued till it reaches the maximum 

number of iterations, and the optimal solution will be registered at the end of the algorithm from the 
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external population archive (𝐸𝑃). Figure 1 shows the flowchart of the proposed MOBGWO. 

 

Figure 1. Flowchart of MOBGWO. 

5. Experimental evaluation 

In this section, the experimental setup for evaluation of the proposed algorithm, the datasets used 

for evaluation, the performance metrics for evaluation, and the results analysis are discussed in detail. 

5.1. Experimental setup and dataset 

The formulated technique was executed in MATLAB v9.2 in a system configured with a Core i7 

9th generation processor, 8 GB of RAM and a 1 TB HDD. The model bounds are shown in Table 6. 

The performance of the proposed algorithm is compared with existing multi-objective models, such as 

MOEA-HFUI [42], HUI-Miner [23], HUIM-ACS [30], FP-Growth [14], TKU-Miner [43], UBP-
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Miner [44] and BOEA-HFUI [45]. For evaluating the proposed algorithm, 12 real datasets were 

downloaded from the SPMF repository [46]. The details of the datasets are given in Table 7. None of 

the datasets holds the weight of each item in any transaction. Hence, the distribution of weights of each 

item is done based on the previous works [20,23,43] that generated the weight values for each item in 

the range 1 to 1000. 

Table 6. Simulation parameters. 

Parameters Values 

Population Size 100 

Runs 10 

Iterations/Run 500 

Circular Position Shift  2 

𝒎𝒊𝒏𝒇𝒓𝒆𝒒 
0.5 

𝒎𝒊𝒏𝒖𝒕𝒊𝒍 0.5 

Neighbors (T) 15 

𝑵𝒐𝒃𝒋 
2 

Table 7. Details of the dataset. 

Dataset Transaction Length No. of Items No. of Transactions  % of dataset used 

Accident 46 469 34018 20% 

Foodmart 11 1559 21557 80% 

USCensus 48 396 100000 20% 

PowerAC 7 133 104000 90% 

Chess 37 76 3196 100% 

Susy 19 191 50000 5% 

Connect 43 129 33779 80% 

BMS-web-view-1 181 497 59602 80% 

KDDcup99 16 133 100000 20% 

Pamp 24 142 100000 20% 

OnlineRetail 8 2585 54191 20% 

Mushroom 23 120 8124 100% 

5.2. Performance metrics 

Two performance indicators, namely, Hypervolume [47] and coverage [48], were used to measure 

the formulated technique in a multi-objective solution space.  

Hypervolume (HV): It is utilized to calculate the convergence and diversity of the population in the 

given solution space. Larger values of hypervolume indicate better performance of the algorithm. 

Coverage (Cov): It determines the diversity in population of the algorithm. It can be mathematically 

represented as  
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𝐶𝑜𝑣 =
𝑁𝑑

𝑁
, (7) 

where N indicates the total number of items and 𝑁𝑑  indicates the different items present in the 

external population. Larger values of coverage indicate better diversity achieved by the algorithm. 

5.3. Experimental analysis 

The results of the proposed algorithm are compared with the other standard algorithms in terms 

of non-dominated solutions achieved from the multi-objective perspective, the curve of Pareto front 

solutions and the values achieved in terms of coverage and hypervolume for the given solution space.  

Figure 2 shows the non-dominated solutions and their curves achieved with respect to the two 

objectives, namely, frequency and utility of the itemset. The achieved solutions are plotted in the graph 

for all 12 real time datasets which were obtained from the SPMF data repository. 
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Figure 2. Non-dominated solutions of MOBGWO-HFUI on all 12 datasets. 
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The total number of non-dominated solutions achieved using MOBGWO for HFUI on the datasets 

Chess, Connect, Accidents, Mushroom, Foodmart, OnlineRetail, USCensus, Pamp, KDDcup99, Susy, 

BMS-Web-View-1 and Powerc were 12, 14, 10, 6, 6, 7, 13, 22, 24, 21, 10 and 11, respectively. The 

comparison of the achieved solutions over the existing algorithms are shown in Figure 3.  

In Figure 3, the initialization strategy of the proposed algorithm is examined. Four different 

initialization strategies were being tested over a small number of datasets, namely, the Chess, Connect 

and Accidents datasets. Both the HV and Coverage were examined to fix the optimal initialization 

strategy. The compared models include MOBGWO-HFUI (rand), which represents the random 

generation of solutions irrespective of their infeasibility. The next model is MOBGWO-HFUI (Trans), 

which represents the probability initialization strategy through the transaction-itemset model. The next 

model is MOBGWO-HFUI (Meta), which represents the probability initialization strategy through the 

meta-itemset model. Finally, a hybrid initialization model MOBGWO-HFUI was used which is the 

fusion of Trans and Meta itemset initialization. This model holds half of the population with Trans and 

the other half with the meta itemset initialization model. The inferences and the analysis are discussed 

in this section. 

 

Figure 3. Performance indicators with different initialization strategies for MOBGWO-HFUI. 
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From Figure 3 it can be inferred that both on convergence and diversity preservation the hybrid 

initialization model outperforms the existing initialization models. Figure 3(a),(c),(e) shows the 

performance of different initialization models for the performance indicator HV for the dataset Chess, 

Connect and Accident, respectively. Similarly, Figure 3(b),(d),(f) shows the performances of different 

initialization models for the performance indicator coverage for the datasets Chess, Connect and 

Accident, respectively. From the observation of Figure 3, it is worth it to use the hybrid initialization 

strategy for further implementation of the proposed algorithm. 

Figure 4 shows the non-dominant solution set plot with respect to frequency and utility of the 

itemset obtained. There are 12 subplots showing the performance graphs of all algorithms for the 12 

real time datasets, as indicated from the 𝑎 to 𝑙 subgraphs. 

From Figure 4, on comparing the counts of non-dominant individuals, the following inferences 

are obtained. For the Chess dataset, the number of obtained non-dominant individuals for the algorithm 

MOEA-FHUI was 12, for HUIM-ACS was 5, for FP Growth was 6, for TKU Miner was 4, for HUI-

Miner was 3, for UBP-Miner was 4, for BOEA-HFUI was 6 and for MOBGWO-HFUI was 12. 

Similarly, from the subgraphs we can perceive that the proposed algorithm obtained a greater number 

of Pareto front solutions when compared with the existing algorithms.  

Tables 8 and 9 show the performance indicator values Coverage and Hypervolume, respectively. 

The values of the indicators range from 0 to 1. As the number approaches 1, it indicates the 

improvement of the algorithm. In Tables 8 and 9, a ± sign indicates the results in the range specified. 

The other three symbols (+ / - / ≈) indicate better, worse and equal performance compared to our 

proposed algorithm. 

From Table 8, it is evident that the proposed algorithm outperforms the existing algorithms in 

eight datasets out of 12. Next to the proposed algorithm, MOEA-HFUI outperforms our proposed 

algorithm in 2 datasets, namely, Accidents and Powerc. The proposed algorithm performs significantly 

equally to the existing algorithm MOEA-HFUI in five datasets, namely, Chess, Connect, Mushroom, 

KDDcup99 and Susy. In Foodmart dataset TKU-Miner outperforms all existing algorithms including 

our proposed algorithm. On BMS-Web-View-1 dataset HUI-Miner, HUIM-ACS and our proposed 

MOBGWO-HFUI perform equally and achieve the maximum value 1. On comparing the proposed 

algorithm results with UDP-Mnier, the results effectively for 10 datasets out of 12 and on comparing 

with BOEA-HFUI proposed algorithm outperforms in eight different datasets out of 12. 

From Table 9, the proposed algorithm MOBGWO-HFUI outperforms all the existing algorithm 

in eight datasets. The existing algorithm MOEA-HFUI outperforms the proposed algorithm on three 

datasets, namely, Mushroom, Foodmart and Susy dataset. The existing algorithm MOEA-FHUI 

significantly performs equally with our proposed algorithm MOBGWO-HFUI with Chess, Accidents, 

Pamp, KDDcup99 and Powerc datasets. On comparing the proposed algorithm results with UDP-

Miner, the results are effective for 11 datasets out of 12 except BMS-Web-View dataset, and on 

comparing with BOEA-HFUI, the proposed algorithm outperforms in nine different datasets out of 12. 
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Figure 4. Non-dominated solutions of MOBGWO-HFUI and existing algorithms on all 12 datasets. 

Table 8. Performance indicator coverage for 12 real time datasets. 

Dataset TKU-

Miner 

FP-

growth 

HUI-

Miner 

HUIM-ACS MOEA-FHUI UPI-Miner BOEA-FHUI MOBGWO-HFUI 

Accidents 0.253− 0.237− 0.267− 0.252−  ± 0.02 𝟎. 𝟐𝟕𝟓+  ±  𝟎. 𝟎𝟎𝟐 0.271− 𝟎. 𝟐𝟕𝟔+ ± 𝟎. 𝟎𝟎𝟏 0.271 ±  0.001 

Foodmart 𝟎. 𝟗𝟕𝟗+ 0.915− 0.955− 0.943−  ±  0.01 0.938−  ±  0.001 0.975≈ 0.973≈ ± 0.002 0.971 ± 0.004 

USCensus 0.305− 0.275− 0.289− 0.285−  ±  0.02 0.328−  ±  0.01 0.352≈ 0.357≈ ± 0.01 𝟎. 𝟑𝟓𝟔 ± 𝟎. 𝟎𝟒 

Powerc 0.378− 0.372− 0.334− 0.334−  ±  0.01 0.451+  ±  0.01 0.411− 𝟎. 𝟒𝟓𝟐+ ± 𝟎.𝟎𝟏 0.448 ± 0.01 

Chess 0.159− 0.151− 0.150− 0.152−  ±  0.01 0.193≈  ±  0.004 𝟎. 𝟏𝟗𝟖+  0.192− ± 0.003 𝟎. 𝟏𝟗𝟔 ±  𝟎. 𝟎𝟎𝟐  

Susy 0.273− 0.264− 0.259− 0.254−  ±  0.02 0.312≈  ±  0.06 0.318≈ 0.314− ± 0.02 𝟎. 𝟑𝟐𝟏 ± 𝟎. 𝟎𝟒 

Connect 0.120− 0.108− 0.132− 0.134−  ±  0.03 𝟎. 𝟏𝟓𝟏≈  ±  𝟎. 𝟎𝟎𝟓 0.144− 0.152≈ ± 0.001 0.151 ±  0.002 

BMS-Web-

View-1 

0.698− 0.713− 𝟏≈ 𝟏≈ 0.764−  ±  0.01 𝟏≈ 𝟏≈ 𝟏 

KDDcup99 0.257− 0.283− 0.255− 0.268−  ±  0.03 0.299≈  ±  0.01 0.299− 𝟎. 𝟑𝟎𝟏≈ ± 𝟎. 𝟎𝟐 0.301 ±  0.01 

Pamp 0.317− 0.286− 0.313− 0.327−  

±  0.004 

0.345−  ±  0.01 0.353− 0.362−  ±  0.01 𝟎. 𝟑𝟔𝟖 ±  𝟎. 𝟎𝟒 

OnlineRetail 0.974− 0.948− 0.967− 0.965−  ±  0.01 0.995−  ±  0.001 0.987− 0.994−  ±  0.002 𝟎. 𝟗𝟗𝟖 ±  𝟎. 𝟎𝟎𝟏 

Mushroom 0.342− 0.311− 0.351− 0.337−  ±  0.04 0.431≈  ±  0.006 0.436≈  0.434≈  ±  0.002 𝟎. 𝟒𝟑𝟕 ±  𝟎. 𝟎𝟎𝟐 
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Table 9. Performance indicator Hypervolume for 12 real time datasets. 

Dataset TKU-Miner FP-

growth 

HUI-

Miner 

HUIM-ACS MOEA-FHUI UPI-Miner BOEA-FHUI MOBGWO-

HFUI 

Accidents 0.756− 0.741− 0.672− 0.686−  

±  0.03 

0.769≈  

±  0.02 

0.783− 𝟎. 𝟖𝟎𝟐≈  

±  𝟎. 𝟎𝟑 

0.801 ±  0.04 

Foodmart 𝟎. 𝟎𝟓𝟑+ 0.040− 0.050− 0.035−  

±  0.04 

0.036+  

±  0.001 

0.051+ 0.035+  

±  0.001 

0.034 ±  0.002 

USCensus 0.617− 0.615− 0.617− 0.624−  

±  0.009 

0.650−  

±  0.01 

0.658− 0.679−  

±  0.03 

𝟎. 𝟔𝟖𝟕 ±  𝟎. 𝟎𝟒 

Powerc 0.411− 0.398− 0.397− 0.409−  

±  0.01 

0.424≈  

±  0.008 

0.421− 𝟎. 𝟒𝟐𝟗+  

±  𝟎. 𝟎𝟎𝟑 

0.421 ±  0.002 

Chess 0.776− 0.730− 0.759− 0.754−  

±  0.02 

0.804−  

±  0.01 

0.801− 0.806−  

±  0.01 

𝟎. 𝟖𝟏𝟏 ±  𝟎. 𝟎𝟑 

Susy 0.819− 0.822− 0.824− 0.811−  

±  0.03 

𝟎. 𝟖𝟑𝟓+  

±  𝟎. 𝟎𝟑 

0.825− 0.827−  

±  0.01 

0.829 ±  0.02 

Connect 0.905− 0.896− 0.870− 0.902−  

±  0.01 

0.928−  

±  0.008 

0.917− 0.936−  

±  0.002 

𝟎. 𝟗𝟒𝟔 ±  𝟎. 𝟎𝟎𝟒 

BMS-Web-

View-1 

0.050− 0.048− 0.069− 0.061−  

±  0.02 

0.085−  

±  0.01 

𝟎. 𝟎𝟗𝟑≈ 0.085−  

±  0.02 

𝟎. 𝟎𝟗𝟐 ±  𝟎. 𝟎𝟒 

KDDcup99 0.885− 0.869− 0.890− 0.895−  

±  0.01 

0.897≈  

±  0.002 

0.892− 0.898≈  

±  0.001 

𝟎. 𝟗𝟎𝟐 ±  𝟎. 𝟎𝟒 

Pamp 0.817− 0.823− 0.812− 0.801−  

±  0.01 

0.858≈  

±  0.01 

0.812− 0.859≈  

±  0.01 

𝟎. 𝟖𝟔𝟐 ±  𝟎. 𝟎𝟒 

OnlineRetail 0.090− 0.085− 0.103− 0.096−  

±  0.04 

0.111−  

±  0.002 

0.111− 0.113−  

±  0.001 

𝟎. 𝟏𝟐𝟏 ±  𝟎. 𝟎𝟎𝟓 

Mushroom 0.832− 0.745− 0.791− 0.789−  

±  0.02 

0.839+  

±  0.01 

0.837+ 𝟎. 𝟖𝟒𝟎+  

±  𝟎. 𝟎𝟐 

0.832 ±  0.04 
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Table 10. Wilcoxon signed rank test on coverage for 12 real time datasets. 

Datasets TKU-Miner Vs MOBGWO-

HFUI 

FP-growth Vs MOBGWO-

HFUI 

HUI-Miner Vs MOBGWO-

HFUI 

HUIM-ACS Vs MOBGWO-

HFUI 

MOEA-FHUI Vs 

MOBGWO-HFUI 

UDP-Miner Vs MOBGWO-

HFUI 

BOEA-FHUI Vs 

MOBGWO-HFUI 

P-

Value 

T+ T- Winner P-

Value 

T+ T- Winner P-

Value 

T+ T- Winner P-

Value 

T+ T- Winner P-

Value 

T+ T- Winner P-

Value 

T+ T- Winner P-

Value 

T+ T- Winner 

Accidents 0 0 55 + 1.73E-

06 

0 55 + 1.73E-

06 

0 55 + 0 0 55 + 3.38E-

03 

30 25 - 0 0 55 + 3.38E-

03 

30 25 - 

Foodmart 1.65E-

01 

55 0 - 0 0 55 + 0 0 55 + 0 0 55 + 1.73E-

06 

0 55 + 1.80E-

05 

18 37 + 1.73E-

06 

0 55 + 

USCensus 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 1.73E-

06 

0 55 + 0 0 55 + 

Powerc 0 0 55 + 1.73E-

06 

0 55 + 1.73E-

06 

0 55 + 0 0 55 + 3.38E-

03 

30 25 - 0 0 55 + 3.38E-

03 

30 25 - 

Chess 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 3.38E-

03 

30 25 - 0 0 55 + 

Susy 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 

Connect 1.83E-

03 

6 49 + 1.80E-

05 

18 37 + 4.68E-

03 

12 43 + 1.73E-

06 

0 55 + 1 0 0 = 0 0 55 + 1 0 0 = 

BMS-Web-

View-1 

0 0 55 + 0 0 55 + 1 0 0 = 1 0 0 = 0 0 55 + 1 0 0 = 0 0 55 + 

KDDcup99 1.83E-

03 

4 51 + 1.80E-

05 

16 39 + 4.68E-

03 

9 46 + 1.73E-

06 

0 55 + 0 0 55 + 0 0 55 + 4.68E-

03 

46 9 - 

Pamp 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 

OnlineRetail 1.65E-

01 

55 0 - 0 0 55 + 0 0 55 + 0 0 55 + 1.73E-

06 

0 55 + 0 0 55 + 1.73E-

06 

0 55 + 

Mushroom 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 0 0 55 + 

+/=/- 10/0/2 12/0/0 11/1/0 11/1/0 9/1/2 10/1/1 8/1/3 
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Table 11. Wilcoxon signed rank test on Hypervolume for 12 real time datasets. 

Function TKU-Miner Vs 

MOBGWO-HFUI 

FP-growth Vs MOBGWO-

HFUI 

HUI-Miner Vs 

MOBGWO-HFUI 

HUIM-ACS Vs 

MOBGWO-HFUI 

MOEA-FHUI Vs 

MOBGWO-HFUI 

UDP-Miner Vs 

MOBGWO-HFUI 

BOEA-FHUI Vs 

MOBGWO-HFUI 

P-

Value 

T

+ 

T- Winne

r 

P-

Value 

T

+ 

T- Winne

r 

P-

Value 

T

+ 

T- Winne

r 

P-

Value 

T

+ 

T- Winne

r 

P-

Value 

T

+ 

T- Winne

r 

P-

Value 

T

+ 

T- Winne

r 

P-

Value 

T

+ 

T- Winne

r 

Accidents 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 4.68E

-03 

42 1

3 

- 

Foodmart 1 55 0 - 0 0 5

5 

+ 0 0 5

5 

+ 1.83E

-03 

13 4

2 

+ 1.73E

-06 

0 5

5 

+ 1 55 0 - 1.73E

-06 

0 5

5 

+ 

USCensus 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 

Powerc 3.38E

-03 

0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 1.73E

-06 

0 5

5 

+ 1 55 0 - 0 0 5

5 

+ 1 55 0 - 

Chess 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 

Susy 3.38E

-03 

0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 1.73E

-06 

0 5

5 

+ 1 55 0 - 0 0 5

5 

+ 1 55 0 - 

Connect 1.83E

-03 

13 4

2 

+ 0 0 5

5 

+ 0 0 5

5 

+ 1.73E

-06 

0 5

5 

+ 1.73E

-06 

0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 

BMS-Web-

View-1 

1.83E

-03 

14 4

1 

+ 1.80E

-05 

10 4

5 

+ 4.68E

-03 

0 5

5 

+ 1.73E

-06 

0 5

5 

+ 1.73E

-06 

0 5

5 

+ 4.68E

-03 

46 9 - 0 0 5

5 

+ 

KDDcup99 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 1.73E

-06 

0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 

Pamp 0 0 5

5 

+ 4.11E

-03 

15 4

0 

+ 0 0 5

5 

+ 1.73E

-06 

0 5

5 

+ 1.73E

-06 

0 5

5 

+ 0 0 5

5 

+ 1.73E

-06 

0 5

5 

+ 

OnlineRetai

l 

0 0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 1.73E

-06 

0 5

5 

+ 1.73E

-06 

0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 

Mushroom 3.38E

-03 

0 5

5 

+ 0 0 5

5 

+ 0 0 5

5 

+ 1.73E

-06 

0 5

5 

+ 1 55 0 - 1 55 0 - 1 55 0 - 

+/=/- 11/0/1 12/0/0 12/0/0 12/0/0 9/0/3 9/0/3 8/0/4 
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5.4. Statistical analysis–Wilcoxon signed rank test on MOBGWO-HFUI vs other state-of-art 

algorithms 

In Tables 10 and 11, we utilized non-parametrical pairwise Wilcoxon signed rank test comparing 

MOBGWO-HFUI with other existing algorithms on 12 real time datasets to demonstrate impact 

difference. “+” denotes the cases in which the Null Hypothesis 𝐻0  is rejected, and the proposed 

MOBGWO-HFUI shows superior performance to the compared algorithm. “=” indicates that there 

exists no statistical difference between the compared algorithms. “-” indicates that 𝐻0 is rejected, and 

MOBGWO-HFUI has worse performance than the other existing technique. At the end of each table, 

the overall cases of pairwise comparison are given. The p-values that fall below 1.76E-6 are rounded. 

From Table 10 it is evident that the proposed algorithm is effective when compared to the other 

existing state of art algorithms. On analyzing the Wilcoxon signed rank test on Coverage values, 

MOBGWO-HFUI outperforms FP-Growth on all datasets. With HUI-Miner and HUIM-ACS, 

MOBGWO-HFUI competes equally on one dataset, and in the remaining 11 datasets MOBGWO-

HFUI outperforms both the algorithms with significant differences. On competing with TKU-Miner, 

the proposed MOBGWO-HFUI outperforms in 10 different datasets, but TKU-Miner outperforms 

MOBGWO-HFUI in FoodMark and OnlineRetail datasets. With respect to MOEA-FHUI, MOBGWO-

HFUI outperforms on 9 different datasets, competes equally with 1 dataset and loses on the other 2 

datasets. Competing with UDP-Miner, MOBGWO-HFUI outperforms in 10 datasets, competes 

equally with one BMS-View dataset and lost to chess dataset in all the runs. Competing with BOEA-

FHUI, MOBGWO-HFUI outperforms in eight datasets, competes equally with Connect dataset and 

loses to Accidents, PowerC and KDDcup99 datasets marginally. Overall, the performance of 

MOBGWO-HFUI is significant in positive aspects. 

From Table 11 it is evident that the proposed algorithm is effective when compared to the other 

existing state of art algorithms. On analyzing the Wilcoxon signed rank test on Hypervolume values, 

MOBGWO-HFUI outperforms FP-Growth, HUIM-ACS and HUI-Miner on all datasets. On 

competing with TKU-Miner, proposed MOBGWO-HFUI outperforms in 11 different datasets, but 

TKU-Miner outperforms MOBGWO-HFUI in FoodMark dataset. With respect to MOEA-FHUI, 

MOBGWO-HFUI outperforms on 9 different datasets and loses on the other 3 datasets. Competing 

with UDP-Miner, MOBGWO-HFUI outperforms in nine datasets out of 12. Competing with BOEA-

FHUI, MOBGWO-HFUI outperforms in eight datasets and lost to 4 other datasets marginally. 

6. Conclusions 

In this paper, a multi-objective Boolean grey wolf optimization based decomposition technique 

was introduced for solving the high-frequency and high-utility itemset mining problem by addressing 

both the frequency and utility as objectives in a simultaneous manner. For solving this problem, the 

high-frequency and high-utility itemset problem was modeled in a multi-objective domain space with 

2 objectives. Then, a Boolean based grey wolf optimization algorithm was modeled to solve the multi-

objective optimization problem using decomposition factor. The decomposition factor solves the 

problem by breaking the problem into subproblems. In this scenario the multi-objective problem has 

been broken into subproblems and solved effectively. To evaluate the proposed algorithm, two 
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performance indicators, namely, Hypervolume and coverage, were used to find the convergence and 

diversity achieved through the algorithm in the given solution space. Seven different multi-objective 

algorithms were tested in the same testbed to determine the impact of the proposed algorithm. A total 

of 12 real time datasets were used to prove the significance. statistical analysis using the Wilcoxon 

signed rank test shows the significance of the proposed algorithm over other existing algorithms. From 

all the classical, statistical analysis and interpretation of results in the above sections, it is proven that 

the proposed algorithm is effective when compared with the existing algorithms. The future direction 

of this research work can be extended with a greater number of objectives in itemset mining. 
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