In this paper, we prove the existence of the approximate $ (\sigma, \tau) $-Hermitian Yang-Mills structure on the $ (\sigma, \tau) $-semi-stable quiver bundle $ \mathcal{R} = (\mathcal{E}, \phi) $ over compact Gauduchon manifolds. An interesting aspect of this work is that the argument on the weakly $ L^{2}_1 $-subbundles is different from [Álvarez-Cónsul and García-Prada, Comm. Math. Phys., 2003] and [Hu-Huang, J. Geom. Anal., 2020].
Citation: Dan-Ni Chen, Jing Cheng, Xiao Shen, Pan Zhang. Semi-stable quiver bundles over Gauduchon manifolds[J]. AIMS Mathematics, 2023, 8(5): 11546-11556. doi: 10.3934/math.2023584
In this paper, we prove the existence of the approximate $ (\sigma, \tau) $-Hermitian Yang-Mills structure on the $ (\sigma, \tau) $-semi-stable quiver bundle $ \mathcal{R} = (\mathcal{E}, \phi) $ over compact Gauduchon manifolds. An interesting aspect of this work is that the argument on the weakly $ L^{2}_1 $-subbundles is different from [Álvarez-Cónsul and García-Prada, Comm. Math. Phys., 2003] and [Hu-Huang, J. Geom. Anal., 2020].
[1] | L. Álvarez-Cónsul, O. García-Prada, Hitchin-Kobayashi correspondence, quivers, and vortices, Commun. Math. Phys., 238 (2003), 1–33. https://doi.org/10.1007/s00220-003-0853-1 doi: 10.1007/s00220-003-0853-1 |
[2] | I. Biswas, H. Kasuya, Higgs bundles and flat connections over compact Sasakian manifolds, Commun. Math. Phys., 385 (2021), 267–290. https://doi.org/10.1007/s00220-021-04056-4 doi: 10.1007/s00220-021-04056-4 |
[3] | U. Bruzzo, B. G. Otero, Metrics on semistable and numerically effective Higgs bundles, J. Reine Angew. Math., 2007 (2007), 59–79. https://doi.org/10.1515/CRELLE.2007.084 doi: 10.1515/CRELLE.2007.084 |
[4] | X. Chen, R. Wentworth, A Donaldson-Uhlenbeck-Yau theorem for normal varieties and semistable bundles on degenerating families, Math. Ann., 2023 (2023). https://doi.org/10.1007/s00208-023-02565-2 |
[5] | S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, P. Lond. Math. Soc., s3-50 (1985), 1–26. https://doi.org/10.1112/plms/s3-50.1.1 doi: 10.1112/plms/s3-50.1.1 |
[6] | Z. Hu, P. Huang, The Hitchin-Kobayashi correspondence for quiver bundles over generalized Kähler manifolds, J. Geom. Anal., 30 (2020), 3641–3671. https://doi.org/10.1007/s12220-019-00210-6 doi: 10.1007/s12220-019-00210-6 |
[7] | S. Kobayashi, Differential geometry of complex vector bundles, Japan: Mathematical Society, 1987. |
[8] | C. Li, C. Zhang, X. Zhang, Mean curvature negativity and HN-negativity of holomorphic vector bundles, 2021, arXiv: 2112.00488. |
[9] | J. Y. Li, X. Zhang, Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles, Calc. Var., 52 (2015), 783–795. https://doi.org/10.1007/s00526-014-0733-x doi: 10.1007/s00526-014-0733-x |
[10] | M. Lübke, A. Teleman, The Kobayashi-Hitchin correspondence, World Scientific, 1995. |
[11] | T. Mochizuki, Wild harmonic bundles and wild pure twistor $\mathcal{D}$-modules, Astérisque, 340 (2011). |
[12] | Y. Nie, X. Zhang, Semistable Higgs bundles over compact Gauduchon manifolds, J. Geom. Anal., 28 (2018), 627–642. https://doi.org/10.1007/s12220-017-9835-y doi: 10.1007/s12220-017-9835-y |
[13] | W. Ou, Admissible metrics on compact Kähler varieties, 2022, arXiv: 2201.04821. |
[14] | C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867–918. https://doi.org/10.2307/1990994 doi: 10.2307/1990994 |
[15] | K. Uhlenbeck, S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pur. Appl. Math., 39 (1986), S257–S293. https://doi.org/10.1002/cpa.3160390714 doi: 10.1002/cpa.3160390714 |
[16] | D. Wu, X. Zhang, Higgs bundles over foliation manifolds, Sci. China Math., 64 (2021), 399–420. https://doi.org/10.1007/s11425-019-1736-4 doi: 10.1007/s11425-019-1736-4 |
[17] | C. Zhang, P. Zhang, X. Zhang, Higgs bundles over non-compact Gauduchon manifolds, Trans. Amer. Math. Soc., 374 (2021), 3735–3759. https://doi.org/10.1090/tran/8323 doi: 10.1090/tran/8323 |
[18] | P. Zhang, Semi-stable holomorphic vector bundles over generalized Kähler manifolds, Complex Var. Elliptic, 67 (2022), 1481–1495. https://doi.org/10.1080/17476933.2021.1882436 doi: 10.1080/17476933.2021.1882436 |
[19] | W. Zhang, Lectures on Chern-Weil theory and Witten deformations, World Scientific, 2001. |