

http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(5): 11546–11556.

DOI: 10.3934/math.2023584 Received: 21 December 2022 Revised: 06 March 2023

Accepted: 09 March 2023 Published: 15 March 2023

Research article

Semi-stable quiver bundles over Gauduchon manifolds

Dan-Ni Chen, Jing Cheng, Xiao Shen and Pan Zhang*

School of Mathematical Sciences, Anhui University, Hefei 230601, China

* Correspondence: Email: panzhang20100@ahu.edu.cn.

Abstract: In this paper, we prove the existence of the approximate (σ, τ) -Hermitian Yang-Mills structure on the (σ, τ) -semi-stable quiver bundle $\mathcal{R} = (\mathcal{E}, \phi)$ over compact Gauduchon manifolds. An interesting aspect of this work is that the argument on the weakly L_1^2 -subbundles is different from [Álvarez-Cónsul and García-Prada, Comm. Math. Phys., 2003] and [Hu-Huang, J. Geom. Anal., 2020].

Keywords: (σ, τ) -semi-stability; approximate (σ, τ) -Hermitian Yang-Mills structure; continuity

method

Mathematics Subject Classification: 53C07, 53C25

1. Introduction

The classical Hitchin-Kobayashi correspondence establishes a deep equivalent relation between the stability and the existence of the canonical metric (or connection) on holomorphic vector bundles. The study of Hitchin-Kobayashi correspondence has a huge story line, which can be traced back to the 1980s [5, 14, 15]. In the new century, this correspondence still attracted lots of researchers' attention (see [2–4, 13, 16–18] and references therein). A lot of important and interesting applications of the correspondence have come out. Takuro Mochizuki was awarded the 2022 Breakthrough Prize in Mathematics, due to his excellent work in holonomic \mathcal{D} -modules. Among these excellent works is the complete proof of a stimulating conjecture of Masaki Kashiwara about an extension of the Hard Lefschetz Theorem and other nice properties from pure sheaves to \mathcal{D} -modules [11]. It is amazing that the Hitchin-Kobayashi correspondence on the filtered flat bundle plays a key role in the proof of Kashiwara's conjecture. In some sense, this reveals that the Hitchin-Kobayashi correspondence plays an important role in the development of modern mathematics.

In an earlier paper, Álvarez-Cónsul and García-Prada [1] established a Hitchin-Kobayashi correspondence on quiver bundles over the compact Kähler manifold. Recently, their result has been generalized by Hu-Huang [6] to a more general base manifold (generalized Kähler manifold). To be

specific, they proved that the stability and the existence of Hermitian Yang-Mills metric on the quiver bundle are equivalent. The stability condition they considered is given by a strict inequality. When the inequality is not strict, such inequality condition is nothing but semi-stability. The aim of this paper is to generalize the result in [12] to the quiver bundle case. In fact we can prove the following theorem:

Theorem 1.1. Let $Q = (Q_0, Q_1)$ be a quiver, and $\mathcal{R} = (\mathcal{E}, \phi)$ be a holomorphic Q-bundle over a compact Gauduchon manifold (X, ω) . Assume σ and τ are collections of positive real numbers σ_v and τ_v , where $v \in Q_0$. Assume that every $\mathcal{E}_v = \pi_v \circ \mathcal{E}$ admits non-positive mean curvature $\sqrt{-1}\Lambda_\omega F_{H_{0,v}}$. If $\mathcal{R} = (\mathcal{E}, \phi)$ is (σ, τ) -semi-stable, then it admits an approximate (σ, τ) -Hermitian Yang-Mills structure, i.e., the metrics satisfying the inequality (2.1).

Remark 1.1. By the result of Nie-Zhang [12], every semi-stable holomorphic vector bundle \mathcal{E}_{v} over compact Gauduchon manifold X must admit a Hermitian metric with negative mean curvature $\sqrt{-1}\Lambda_{\omega}F_{H_{0,v}}$ if the slope of \mathcal{E}_{v} is negative. In a recent paper, Li-Zhang-Zhang [8] gave a brief characterization of mean curvature negativity of holomorphic vector bundles over compact Gauduchon manifold.

At first, we cannot use Álvarez-Cónsul and García-Prada's techniques [1] to our setting, directly. Since their proof is rather reliant on the Donaldson's functional on Kähler manifold, this functional is not well-defined on the Gauduchon manifold. Second, we cannot use Hu-Huang's results [6] to our setting neither. This is because that they arrive at an inequality (not strictly) to get a contradiction with the strict inequality condition, and this is of course not valid to the semi-stable case. The proof of the main theorem will use the Uhlenbeck-Yau's continuity method [15]. It is also worth to mention that, the perturbed equation considered in this paper is also different to Hu-Huang [6]. In [6], the perturbed term is independent of the vertex numbers σ_{ν} . We observe that, once we add the vertex numbers σ_{ν} in the perturbed term, we can complete the proof of Theorem 1.1 by adapting with Simpson [14] and Nie-Zhang's [12] arguments.

An interesting aspect of this work is that the argument on the weakly L_1^2 -subbundles is different from the previous quiver bundle case [1,6]. In [6], they used Lübke-Teleman's argument [10] to run this step. To our best knowledge, we cannot use this to our semi-stable setting. Hence, let us look back to reference [1]. In [1], they construct a quantity χ [1, Page 22] by the eigenvalues λ_j of $u_\infty = \bigoplus_{\nu} u_{\infty,\nu}$, where $u_{\infty,\nu}$ is endomorphism on \mathcal{E}_{ν} . In some sense, it is more natural to use eigenvalues $\lambda_{j,\nu}$ of \mathcal{E}_{ν} to construct the quantity χ . Once we began by doing this to start the argument, another difficulty arose. The eigenvalues $\lambda_{j,\nu}$, the real numbers σ_{ν} , the rank of \mathcal{E}_{ν} and other quantities are intimately entangled, and these cannot be separated to run the next step. To fix this, we define the maximum of $\lambda_{j,\nu}$ and the minimum of $\sum_{j=1}^{l-1} (\lambda_{j+1,\nu} - \lambda_{j,\nu})$, and then we are lucky to construct a new and useful quantity χ , which may be of independent interest.

2. Preliminaries

In this section, we introduce the basic setup and notation that will be used throughout the paper. More detailed information on quiver bundles can be found in [1,6].

2.1. Gauduchon manifold

Let X be a compact Hermitian manifold of dimension n, and g be a Hermitian metric with associated Kähler form ω . The exterior differential operator d decomposes (uniquely) as the sum of ∂ , of bidegree (1,0) and of $\bar{\partial}$, of bidegree (0,1). The Hermitian metric g is called Gauduchon if ω satisfies $\partial \bar{\partial} \omega^{n-1} = 0$. Throughout the paper we assume (X, ω) is a Gauduchon manifold.

2.2. Quiver bundle

A quiver is a pair of two sets (Q_0, Q_1) together with two maps $h, t : Q_0 \to Q_1$. For simplicity, we denote it by $Q = (Q_0, Q_1)$. Elements of Q_0 (resp. Q_1) are called vertices (resp. arrows) of the quiver. For each $a \in Q_1$, ha (resp. ta) is called the head (resp. ta) of the arrow ta.

A holomorphic *Q*-bundle over (X, ω) is a pair $\mathcal{R} = (\mathcal{E}, \phi)$, where \mathcal{E} is a collection of holomorphic vector bundle \mathcal{E}_{v} over (X, ω) , for each $v \in Q_0$, and ϕ is a collection of morphisms $\phi_a : \mathcal{E}_{ta} \to \mathcal{E}_{ha}$, for each $a \in Q_0$, such that $\mathcal{E}_{v} = 0$ for all but finitely many $v \in Q_0$, and $\phi_a = 0$ for all but finitely many $a \in Q_1$.

2.3. (σ, τ) -Hermitian Yang-Mills structure

A Hermitian metric on holomorphic Q-bundle $\mathcal{R} = (\mathcal{E}, \phi)$ is a collection H of Hermitian metrics H_{ν} on \mathcal{E}_{ν} , for each $\nu \in Q_0$ with $\mathcal{E}_{\nu} \neq 0$. For each $\nu \in Q_0$, let σ and τ be collections of real numbers σ_{ν} , τ_{ν} with positive σ_{ν} . A holomorphic Q-bundle $\mathcal{R} = (\mathcal{E}, \phi)$ admits a (σ, τ) -Hermitian Yang-Mills structure if there exists a collection H of Hermitian metrics H_{ν} on \mathcal{E}_{ν} , such that

$$\sigma_v \sqrt{-1} \Lambda_\omega F_{H_v} + \sum_{a \in h^{-1}(v)} \phi_a \circ \phi_a^{*H_v} - \sum_{a \in t^{-1}(v)} \phi_a^{*H_v} \circ \phi_a = \tau_v \cdot \operatorname{Id}_{\mathcal{E}_v},$$

for each $v \in Q_0$, such that $\mathcal{E}_v \neq 0$, where Λ_ω is the contraction with ω , F_{H_v} is the curvature of the Chern connection D_{H_v} with respect to the metric H_v on \mathcal{E}_v , for each $v \in Q_0$ with $\mathcal{E}_v \neq 0$.

Álvarez-Cónsul-García-Prada [1] and Hu-Huang [6] proved a holomorphic Q-bundle $\mathcal{R} = (\mathcal{E}, \phi)$ admits a (σ, τ) -Hermitian Yang-Mills structure if, and only if, $\mathcal{R} = (\mathcal{E}, \phi)$ is poly-stable.

A holomorphic *Q*-bundle $\mathcal{R} = (\mathcal{E}, \phi)$ admits an approximate (σ, τ) -Hermitian Yang-Mills structure if for every $\varepsilon > 0$, there exists a collection of Hermitian metrics $H_{\varepsilon,v}$ on each \mathcal{E}_v , such that

$$\max_{X} |\sigma_{v} \sqrt{-1} \Lambda_{\omega} F_{H_{\varepsilon,v}} + \sum_{a \in h^{-1}(v)} \phi_{a} \circ \phi_{a}^{*H_{\varepsilon,v}} - \sum_{a \in t^{-1}(v)} \phi_{a}^{*H_{\varepsilon,v}} \circ \phi_{a} - \tau_{v} \cdot \operatorname{Id}_{\varepsilon_{v}}|_{H_{\varepsilon,v}} < \varepsilon.$$
 (2.1)

Kobayashi [7] introduced this notion for a holomorphic vector bundle ($\phi = 0$). When $|Q_0| = 1$, this notion has a strong relationship with the semi-stability of the bundle [7, 9, 12, 17, 18].

2.4. Semi-stability

Given a holomorphic vector bundle \mathcal{E}_{ν} on X, by Chern-Weil theory [19], its degree is given by

$$\deg(\mathcal{E}_{\nu}) = \frac{1}{\operatorname{Vol}(X)} \int_{Y} \operatorname{tr}(\sqrt{-1}\Lambda_{\omega}F_{H_{\nu}}),$$

where $F_{H_{\nu}}$ is the curvature of the Chern connection $D_{H_{\nu}}$ with respect to the metric H_{ν} on \mathcal{E}_{ν} , and $\operatorname{Vol}(X)$ is the volume of the manifold X. The (σ, τ) -degree and (σ, τ) -slope of holomorphic Q-bundle

 $\mathcal{R} = (\mathcal{E}, \phi)$ are given by

$$\deg_{\sigma,\tau}(\mathcal{R}) = \sum_{v \in \mathcal{Q}_0} (\sigma_v \deg(\mathcal{E}_v) - \tau_v \operatorname{rank}(\mathcal{E}_v)), \qquad \mu_{\sigma,\tau}(\mathcal{R}) = \frac{\deg_{\sigma,\tau}(\mathcal{R})}{\sum_{v \in \mathcal{Q}_0} \sigma_v \operatorname{rank}(\mathcal{E}_v)},$$

respectively. The quiver bundle $\mathcal{R} = (\mathcal{E}, \phi)$ is called (σ, τ) -semi-stable if for all proper Q-subsheaves \mathcal{R}' of \mathcal{R} ,

$$\mu_{\sigma,\tau}(\mathcal{R}') \leq \mu_{\sigma,\tau}(\mathcal{R}).$$

3. Proof of Theorem 1.1

At first, we fix a proper background Hermitian metric H_0 on $\mathcal{R} = (\mathcal{E}, \phi)$. For simplicity, we denote by $H_{\varepsilon,v} = H_{0,v}h_{\varepsilon}$. For each $v \in Q_0$, we consider the following perturbed equation

$$L_{(\sigma,\tau)\nu}^{\varepsilon}(h_{\varepsilon}) := \Phi(H_{\varepsilon,\nu}) + \varepsilon \sigma_{\nu}(\log h_{\varepsilon,\nu}) = 0, \tag{3.1}$$

where

$$\Phi(H_{\varepsilon,v}) = \sigma_v \sqrt{-1} \Lambda_{\omega} F_{H_{\varepsilon,v}} + \sum_{a \in h^{-1}(v)} \phi_a \circ \phi_a^{*H_{\varepsilon,v}} - \sum_{a \in t^{-1}(v)} \phi_a^{*H_{\varepsilon,v}} \circ \phi_a - \tau_v \cdot \operatorname{Id}_{\mathcal{E}_v}.$$

Following the techniques in [6, 10], it is not hard to show that (3.1) is solvable for all $\varepsilon \in (0, 1]$. We omit this step here, since it is standard and tedious. Using the assumption of (σ, τ) -semi-stability, we can show that

$$\lim_{\varepsilon\to 0}\varepsilon\sigma_{\nu}\max_{X}|\log h_{\varepsilon,\nu}|_{H_{0,\nu}}=0.$$

This implies that $\max_{\mathbf{x}} |\Phi(H_{\varepsilon,\mathbf{y}})|_{H_{\varepsilon,\mathbf{y}}}$ converges to zero as $\varepsilon \to 0$.

By an appropriate conformal change, we can assume that H_0 satisfies

$$\sum_{v \in Q_0} \operatorname{tr}(\Phi(H_{0,v})) = 0.$$

Then, using the maximum principle, we have

$$\sum_{v \in O_0} \sigma_v \operatorname{tr}(\log h_{\varepsilon,v}) = 0.$$

We denote

$$\operatorname{Herm}(\mathcal{E}_{\nu}, H_{0,\nu}) = \{ \eta \in \operatorname{End}(\mathcal{E}_{\nu}) | \eta^{*H_{0,\nu}} = \eta \}$$

and

$$\operatorname{Herm}^+(\mathcal{E}_{\nu}, H_{0,\nu}) = \{ \rho \in \operatorname{Herm}(\mathcal{E}_{\nu}, H_{0,\nu}) | \rho > 0 \}.$$

By Moser's iteration method, it is not hard to prove the following lemma, which is similar to [10].

Lemma 3.1. If $h_{\varepsilon,\nu} \in \text{Herm}^+(\mathcal{E}_{\nu}, H_{0,\nu})$ satisfies $L^{\varepsilon}_{(\sigma,\tau)\nu}(h_{\varepsilon}) = 0$ for some $\varepsilon > 0$, then

$$\sigma_{v} \max_{X} |\log h_{\varepsilon,v}|_{H_{0,v}} \leq C_{1}(\sum_{v \in O_{0}} \sigma_{v} ||\log h_{\varepsilon,v}||_{L^{2}} + \max_{X} \sum_{v \in O_{0}} |\Phi(H_{0,v})|_{H_{0,v}}),$$

where C_1 is a constant which only depends on g and H_0 .

From [10, Page 237], for any $\eta \in \text{Herm}(\mathcal{E}_{\nu}, H_{0,\nu})$, there is an open subset $W \subset X$, such that for every $y \in W$, we have

$$\eta(y) = \sum_{i=1}^{r} \lambda_i(y) \cdot e_i(y) \otimes e^i(y),$$

where $\lambda_1, \lambda_2, \dots, \lambda_r$ are smooth functions, $\{e_i\}_{i=1}^r$ is a unitary basis for \mathcal{E}_{ν} and $\{e^i\}_{i=1}^r$ denotes the dual basis of \mathcal{E}_{ν}^* . Before giving the detailed proof, we introduce some notations. Let $\varphi \in C^{\infty}(\mathbb{R}, \mathbb{R})$, $\Psi \in C^{\infty}(\mathbb{R} \times \mathbb{R}, \mathbb{R})$ and $A = \sum_{i,j=1}^r A_j^i e_i \otimes e^j \in \operatorname{End}(\mathcal{E}_{\nu})$, where we also assume $\operatorname{rank}(\mathcal{E}_{\nu}) = r$. We denote $\varphi(\eta)$ and $\Psi(\eta)(A)$ by [14, p. 880]

$$\varphi(\eta)(y) = \sum_{i=1}^{r} \varphi(\lambda_i) e_i \otimes e^i$$

and

$$\Psi(\eta)(A)(y) = \sum_{i,j=1}^r \Psi(\lambda_j, \lambda_i) A_j^i e_i \otimes e^j.$$

Now, we are ready to prove the following identity.

Proposition 3.1. If $h_{\varepsilon,v} \in \operatorname{Herm}^+(\mathcal{E}_v, H_{0,v})$ solves (3.1) for some $\varepsilon > 0$ and each $v \in Q_0$, then it holds

$$\sum_{v \in Q_0} \left(\int_X \operatorname{tr}(\Phi(H_{0,v}) s_{\varepsilon,v}) + \sigma_v \int_X \langle \Psi(s_{\varepsilon,v}) (\overline{\partial}_{\mathcal{E}_v} s_{\varepsilon,v}), \overline{\partial}_{\mathcal{E}_v} s_{\varepsilon,v} \rangle_{H_{0,v}} \right) \leq -\varepsilon \sum_{v \in Q_0} \sigma_v ||s_{\varepsilon,v}||_{L^2}^2,$$

where $s_{\varepsilon,v} = \log h_{\varepsilon,v}$ and

$$\Psi(x,y) = \begin{cases} \frac{e^{y-x}-1}{y-x}, & x \neq y; \\ 1, & x = y. \end{cases}$$

Proof. Direct calculations yield

$$\sum_{\nu \in Q_{0}} \int_{X} \operatorname{tr} \left((\Phi(H_{\varepsilon,\nu}) - \Phi(H_{0,\nu})) s_{\varepsilon,\nu} \right) \\
\geq \sum_{\nu \in Q_{0}} \int_{X} \sigma_{\nu} \left\langle \sqrt{-1} \Lambda_{\omega} \overline{\partial}_{\varepsilon_{\nu}} (h_{\varepsilon,\nu}^{-1} \partial_{H_{0,\nu}} h_{\varepsilon,\nu}), s_{\varepsilon,\nu} \right\rangle_{H_{0,\nu}} \\
= \sum_{\nu \in Q_{0}} \sigma_{\nu} \int_{X} \langle \Psi(s_{\varepsilon,\nu}) (\overline{\partial}_{\varepsilon_{\nu}} s_{\varepsilon,\nu}), \overline{\partial}_{\varepsilon_{\nu}} s_{\varepsilon,\nu} \rangle_{H_{0,\nu}}, \tag{3.2}$$

in which the first inequality used [1, Lemma 3.5]

$$\begin{split} & \sum_{v \in Q_0} \langle \sum_{a \in h^{-1}(v)} \phi_a \circ \phi_a^{*H_{\varepsilon,v}} - \sum_{a \in t^{-1}(v)} \phi_a^{*H_{\varepsilon,v}} \circ \phi_a, s_{\varepsilon,v} \rangle \\ \geq & \sum_{v \in Q_0} \langle \sum_{a \in h^{-1}(v)} \phi_a \circ \phi_a^{*H_{0,v}} - \sum_{a \in t^{-1}(v)} \phi_a^{*H_{0,v}} \circ \phi_a, s_{\varepsilon,v} \rangle \end{split}$$

and the second equality derived from [12, Proposition 3.1].

Hence, we complete the proof by combining (3.1) and (3.2).

Now, we are ready to prove Theorem 1.1.

Let $\{h_{\varepsilon,\nu}\}_{0<\varepsilon\leq 1}$ be the solutions of Eq (3.1) with the background metric $H_{0,\nu}$.

Case 1. There exists a constant $C_2 > 0$, such that $\sigma_v \|\log h_{\varepsilon,v}\|_{L^2} < C_2 < +\infty$ for each $v \in Q_0$. From Lemma 3.1, we have

$$\max_X |\Phi(H_{\varepsilon,v})|_{H_{\varepsilon,v}} = \varepsilon \sigma_v \max_X |\log h_{\varepsilon,v}|_{H_{\varepsilon,v}} < \varepsilon C_1(C_2|Q_0| + \max_X \sum_{v \in Q_0} |\Phi(H_{0,v})|_{H_{0,v}}).$$

Then, it follows that $\max_{X} |\Phi(H_{\varepsilon,\nu})|_{H_{\varepsilon,\nu}} \to 0$ as $\varepsilon \to 0$.

Case 2. $\overline{\lim_{\varepsilon \to 0}} \sum_{v \in Q_0} \sigma_v || \log h_{\varepsilon,v} ||_{L^2} \to \infty$.

Claim If $\mathcal{R} = (\mathcal{E}, \phi)$ is (σ, τ) -semi-stable, then for each $v \in Q_0$ it holds

$$\lim_{\varepsilon \to 0} \max_{X} |\Phi(H_{\varepsilon,\nu})|_{H_{\varepsilon,\nu}} = 0. \tag{3.3}$$

If the claim does not hold, then there exist $\delta > 0$ and a subsequence $\varepsilon_i \to 0$, $i \to +\infty$, such that

$$\sum_{v \in Q_0} \sigma_v \|\log h_{\varepsilon_i,v}\|_{L^2} \to +\infty$$

and

$$\max_{X} \sum_{v \in Q_0} |\Phi(H_{\varepsilon_i,v})|_{H_{\varepsilon_i,v}} = \varepsilon_i \max_{X} \sum_{v \in Q_0} \sigma_v |\log h_{\varepsilon_i,v}|_{H_{\varepsilon_i,v}} \ge \delta.$$
(3.4)

Setting

$$s_{\varepsilon_i,v} = \log h_{\varepsilon_i,v}, \quad l_{i,v} = ||s_{\varepsilon_i,v}||_{L^2}, \quad u_{\varepsilon_i,v} = \frac{s_{\varepsilon_i,v}}{l_{i,v}},$$

it follows that $\sum_{v \in Q_0} \operatorname{tr}(\sigma_v u_{\varepsilon_i,v}) = 0$ and $||u_{\varepsilon_i,v}||_{L^2} = 1$. Then, combining (3.4) with Lemma 3.1, we have

$$\sum_{v \in O_0} \sigma_v l_{i,v} \ge \frac{\delta}{\varepsilon_i C_3} - \max_X \sum_{v \in O_0} |\Phi(H_{0,v})|_{H_{0,v}}$$

$$\tag{3.5}$$

and

$$\max_{X} |u_{\varepsilon_{i},\nu}| \le \frac{C_{4}}{l_{i,\nu}} (\sum_{\nu \in Q_{0}} \sigma_{\nu} l_{i,\nu} + \max_{X} \sum_{\nu \in Q_{0}} |\Phi(H_{0,\nu})|_{H_{0}}) < C_{5} < +\infty,$$
(3.6)

where C_3 , C_4 and C_5 are constants.

Step 1. We will show that $||u_{\varepsilon_i,v}||_{L_1^2}$ are uniformly bounded. Since $||u_{\varepsilon_i,v}||_{L^2} = 1$, we only need to prove $||du_{\varepsilon_i,v}||_{L^2}$ are uniformly bounded.

By Proposition 3.1, for each h_{ε_i} , it holds

$$\sum_{v \in Q_{0}} \left(\int_{X} \operatorname{tr}(\Phi(H_{0,v}) u_{\varepsilon_{i},v}) + \sigma_{v} \int_{X} l_{i,v} \langle \Psi(l_{i,v} u_{\varepsilon_{i},v}) (\overline{\partial}_{\varepsilon_{v}} u_{\varepsilon_{i},v}), \overline{\partial}_{\varepsilon_{v}} u_{\varepsilon_{i},v} \rangle_{H_{0,v}} \right) \\
\leq -\varepsilon_{i} \sum_{v \in Q_{0}} \sigma_{v} l_{i,v}, \tag{3.7}$$

Substituting (3.5) into (3.7), we have

$$\frac{\delta}{C_{3}} + \sum_{v \in Q_{0}} \left(\int_{X} \operatorname{tr}(\Phi(H_{0,v})u_{\varepsilon_{i},v}) + \sigma_{v} \int_{X} l_{i,v} \langle \Psi(l_{i,v}u_{\varepsilon_{i},v})(\overline{\partial}_{\mathcal{E}_{v}}u_{\varepsilon_{i},v}), \overline{\partial}_{\mathcal{E}_{v}}u_{\varepsilon_{i},v} \rangle_{H_{0,v}} \right) \\
\leq \varepsilon_{i} \sum_{v \in Q_{0}} \max_{X} |\Phi(H_{0,v})|_{H_{0,v}}.$$
(3.8)

Consider the function

$$l\Psi(lx, ly) = \begin{cases} l, & x = y; \\ \frac{e^{l(y-x)}-1}{y-x}, & x \neq y. \end{cases}$$

From (3.6), we may assume that $(x, y) \in [-C_6, C_6] \times [-C_6, C_6]$, where C_6 is a constant. It is easy to check that

$$l\Psi(lx, ly) \to \begin{cases} (x - y)^{-1}, & x > y; \\ +\infty, & x \le y, \end{cases}$$
(3.9)

increases monotonically as $l \to +\infty$. Let $\zeta \in C^{\infty}(\mathbb{R} \times \mathbb{R}, \mathbb{R}^+)$ satisfying $\zeta(x, y) < (x - y)^{-1}$ whenever x > y. From (3.8), (3.9) and the arguments in [14, Lemma 5.4], we have

$$\frac{\delta}{C_{3}} + \sum_{v \in Q_{0}} \left(\int_{X} \operatorname{tr}(\Phi(H_{0,v}) u_{\varepsilon_{i},v}) + \sigma_{v} \int_{X} \langle \zeta(u_{\varepsilon_{i},v}) (\overline{\partial}_{\mathcal{E}_{v}} u_{\varepsilon_{i},v}), \overline{\partial}_{\mathcal{E}_{v}} u_{\varepsilon_{i},v} \rangle_{H_{0,v}} \right) \\
\leq \varepsilon_{i} \sum_{v \in Q_{0}} \max_{X} |\Phi(H_{0,v})|_{H_{0,v}}$$
(3.10)

for $i \gg 1$. In particular, we take $\zeta(x,y) = \frac{1}{3C_6}$. It is obvious that when $(x,y) \in [-C_6, C_6] \times [-C_6, C_6]$ and x > y, $\frac{1}{3C_6} < \frac{1}{x-y}$. This implies that

$$\begin{split} &\frac{\delta}{C_3} + \sum_{v \in Q_0} \Big(\int_X \operatorname{tr}(\Phi(H_{0,v}) u_{\varepsilon_i,v}) + \sigma_v \int_X \frac{1}{3C_6} |\overline{\partial}_{\mathcal{E}_v} u_{\varepsilon_i,v}|_{H_{0,v}}^2 \Big) \\ &\leq \varepsilon_i \sum_{v \in O_0} \max_X |\Phi(H_{0,v})|_{H_{0,v}} \end{split}$$

for $i \gg 1$. Then we have

$$\sum_{v \in Q_0} \int_X |\overline{\partial}_{\mathcal{E}_v} u_{\varepsilon_i,v}|_{H_{0,v}}^2 \frac{\omega^n}{n!} \le C_7 \sum_{v \in Q_0} \max_X |\Phi(H_{0,v})|_{H_{0,v}} \text{Vol}(X),$$

where C_7 is a constant. Thus, $u_{\varepsilon_i,\nu}$ are bounded in L_1^2 . Then we can choose a subsequence $\{u_{\varepsilon_{i_j},\nu}\}$, such that $u_{\varepsilon_{i_j},\nu} \to u_{\infty,\nu}$ weakly in L_1^2 . For simplicity, we still denoted by $\{u_{\varepsilon_i,\nu}\}$. Noting that $L_1^2 \hookrightarrow L^2$, we have

$$1 = \int_{Y} |u_{\varepsilon_{i},v}|_{H_{0,v}}^{2} \to \int_{Y} |u_{\infty,v}|_{H_{0,v}}^{2}.$$

This indicates that $||u_{\infty,\nu}||_{L^2} = 1$ and $u_{\infty,\nu}$ is non-trivial.

Using (3.10) and following a similar discussion as in [14, Lemma 5.4], it holds

$$\frac{\delta}{C_3} + \sum_{v \in Q_0} \left(\int_X \operatorname{tr}(\Phi(H_{0,v}) u_{\infty,v}) + \sigma_v \int_X \langle \zeta(u_{\infty,v}) (\overline{\partial}_{\mathcal{E}_v} u_{\infty,v}), \overline{\partial}_{\mathcal{E}_v} u_{\infty,v} \rangle_{H_{0,v}} \right) \\
\leq 0.$$
(3.11)

Step 2. Using Uhlenbeck and Yau's trick from [15], we construct a subsheaf that contradicts the (σ, τ) semi-stability of $\mathcal{R} = (\mathcal{E}, \phi)$.

From (3.11) and the technique in [14, Lemma 5.5], we conclude that the eigenvalues of $u_{\infty,y}$ are constant almost everywhere. Let $\lambda_{1,\nu} < \lambda_{2,\nu} < \dots < \lambda_{l,\nu}$ be the distinct eigenvalues of $u_{\infty,\nu}$. The facts that $\sum_{v \in Q_0} \operatorname{tr}(\sigma_v u_{\infty,v}) = 0$ and $||u_{\infty,v}||_{L^2} = 1$ force $2 \le l \le r$. For each $\lambda_{j,v}$ $(1 \le j \le l-1)$, we construct a function

$$P_{iv}: \mathbb{R} \to \mathbb{R}$$

such that

$$P_{j,\nu} = \begin{cases} 1, & x \le \lambda_{j,\nu}, \\ 0, & x \ge \lambda_{j+1,\nu}. \end{cases}$$

Setting $\pi_{j,\nu} = P_{j,\nu}(u_{\infty,\nu})$ and $\mathcal{E}_{j,\nu} = \pi_{j,\nu}(\mathcal{E}_{\nu})$, from [14], we have

$$\begin{array}{l} (1) \ \pi_{j,\nu} \in L^2_1; \\ (2) \ \pi^2_{j,\nu} = \pi_{j,\nu} = \pi^{*H_{0,\nu}}_{j,\nu}; \end{array}$$

(3)
$$(\operatorname{Id}_{\mathcal{E}_{i,v}} - \pi_{i,v}) \overline{\partial}_{\mathcal{E}_{i,v}} \pi_{i,v} = 0.$$

By Uhlenbeck and Yau's regularity statement of L_1^2 -subbundle [15], $\{\pi_{j,\nu}\}_{i=1}^{l-1}$ determine l-1 coherent sub-sheaves of \mathcal{E}_{ν} . Since

$$\sum_{v \in O_0} \operatorname{tr}(\sigma_v u_{\infty,v}) = 0$$

and

$$u_{\infty,\nu} = \lambda_{l,\nu} \operatorname{Id}_{\mathcal{E}_{\nu}} - \sum_{j=1}^{l-1} (\lambda_{j+1,\nu} - \lambda_{j,\nu}) \pi_{j,\nu},$$

it holds

$$\sum_{v \in Q_0} (\sigma_v \lambda_{l,v} \operatorname{rk}(\mathcal{E}_v) - \sum_{j=1}^{l-1} (\lambda_{j+1,v} - \lambda_{j,v}) \sigma_v \operatorname{rk}(\mathcal{E}_{j,v})) = 0.$$
(3.12)

Denote by

$$\lambda_{l,\widetilde{v}} = \max_{v \in Q_0} \lambda_{l,v}, \quad \sum_{i=1}^{l-1} (\lambda_{j+1,\widehat{v}} - \lambda_{j,\widehat{v}}) = \min_{v \in Q_0} \sum_{i=1}^{l-1} (\lambda_{j+1,v} - \lambda_{j,v}).$$

Then from (3.12), we have

$$\sum_{v \in Q_0} \sigma_v \lambda_{l, \overline{v}} \operatorname{rank}(\mathcal{E}_v) \ge \sum_{v \in Q_0} \sum_{j=1}^{l-1} (\lambda_{j+1, \widehat{v}} - \lambda_{j, \widehat{v}}) \sigma_v \operatorname{rank}(\mathcal{E}_{j, v}). \tag{3.13}$$

Construct

$$\chi = \operatorname{Vol}(X) \Big(\lambda_{l,\widetilde{\nu}} \deg_{\sigma,\tau}(\mathcal{R}) - \sum_{i=1}^{l-1} (\lambda_{j+1,\widehat{\nu}} - \lambda_{j,\widehat{\nu}}) \deg_{\sigma,\tau}(\mathcal{R}_j) \Big).$$
 (3.14)

On one hand, substituting (3.13) into (3.14), we have

$$\chi \ge \operatorname{Vol}(X) \sum_{j=1}^{l-1} (\lambda_{j+1,\widehat{\nu}} - \lambda_{j,\widehat{\nu}}) \sum_{\nu \in Q_0} \sigma_{\nu} \operatorname{rank}(\mathcal{E}_{j,\nu}) (\mu_{\sigma,\tau}(\mathcal{R}) - \mu_{\sigma,\tau}(\mathcal{R}_j)). \tag{3.15}$$

On the other hand, from [1, 14, 15], we have the following Chern-Weil formula

$$\operatorname{Vol}(X)\operatorname{deg}(\mathcal{E}_{j,\nu}) = \sum_{\nu \in O_0} \Big(\int_X \langle \sqrt{-1} \Lambda_{\omega} F_{H_{0,\nu}}, \pi_{j,\nu} \rangle_{H_{0,\nu}} - \int_X |\overline{\partial}_{\mathcal{E}_{\nu}} \pi_{j,\nu}|_{H_{0,\nu}}^2 \Big). \tag{3.16}$$

Substituting (3.16) into χ , we have

$$\chi = \sum_{v \in Q_{0}} \int_{X} \left\langle \sigma_{v} \sqrt{-1} \Lambda_{\omega} F_{H_{0,v}}, \lambda_{l,v} \operatorname{Id}_{\mathcal{E}_{v}} - \sum_{j=1}^{l-1} (\lambda_{j+1,v} - \lambda_{j,v}) \pi_{j,v} \right\rangle_{H_{0,v}} + \sum_{v \in Q_{0}} \sigma_{v} \sum_{j=1}^{l-1} (\lambda_{j+1,v} - \lambda_{j,v}) \operatorname{rank}(\mathcal{E}_{j,v}) \\
- \lambda_{j,v} ||\overline{\partial}_{\mathcal{E}_{v}} \pi_{j,v}||_{L^{2}}^{2} - \sum_{v \in Q_{0}} \tau_{v} \operatorname{Vol}(X) \left(\lambda_{l,v} \operatorname{rank}(\mathcal{E}_{v}) - \sum_{j=1}^{l-1} (\lambda_{j+1,v} - \lambda_{j,v}) \operatorname{rank}(\mathcal{E}_{j,v}) \right) \\
+ \sum_{v \in Q_{0}} \int_{X} \left\langle \sigma_{v} \sqrt{-1} \Lambda_{\omega} F_{H_{0,v}}, (\lambda_{l,\widetilde{v}} - \lambda_{l,v}) \operatorname{Id}_{\mathcal{E}_{v}} + (\sum_{j=1}^{l-1} (\lambda_{j+1,v} - \lambda_{j,v}) - \sum_{j=1}^{l-1} (\lambda_{j+1,\widetilde{v}} - \lambda_{j,\widetilde{v}})) \pi_{j,v} \right\rangle_{H_{0,v}} \\
+ \sum_{v \in Q_{0}} \sigma_{v} \left[\sum_{j=1}^{l-1} (\lambda_{j+1,\widetilde{v}} - \lambda_{j,\widetilde{v}}) - \sum_{j=1}^{l-1} (\lambda_{j+1,v} - \lambda_{j,v}) \right] ||\overline{\partial}_{\mathcal{E}_{v}} \pi_{j,v}||_{L^{2}}^{2} \\
+ \sum_{v \in Q_{0}} \tau_{v} \operatorname{Vol}(X) \left((\lambda_{l,v} - \lambda_{l,\widetilde{v}}) \operatorname{rank}(\mathcal{E}_{v}) + (\sum_{j=1}^{l-1} (\lambda_{j+1,\widetilde{v}} - \lambda_{j,\widetilde{v}}) - \sum_{j=1}^{l-1} (\lambda_{j+1,v} - \lambda_{j,v})) \operatorname{rank}(\mathcal{E}_{j,v}) \right) \\
\leq \sum_{v \in Q_{0}} \int_{X} \left(\left\langle \Phi(H_{0,v}), u_{\infty,v} \right\rangle_{H_{0,v}} + \left\langle \sigma_{v} \sum_{j=1}^{l-1} (\lambda_{j+1,v} - \lambda_{j,v}) (\operatorname{d}P_{j,v})^{2} (u_{\infty,v}) (\overline{\partial}_{\mathcal{E}_{v}} u_{\infty,v}), \overline{\partial}_{\mathcal{E}_{v}} u_{\infty,v} \right\rangle_{H_{0,v}} \right)$$

where the function $dP_{j,v}: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is defined by

$$dP_{j,\nu}(x,y) = \begin{cases} \frac{P_{j,\nu}(x) - P_{j,\nu}(y)}{x - y}, & x \neq y; \\ P'_{j,\nu}(x), & x = y. \end{cases}$$

By (3.11) and the same arguments in [9, p. 793-794], it holds that

$$\chi \le -\frac{\delta}{C_3}.\tag{3.17}$$

Combining (3.15) with (3.17), we arrive at a contradiction to (σ, τ) -semi-stability on the quiver bundle $\mathcal{R} = (\mathcal{E}, \phi)$.

4. Conclusions

In this paper, by constructing a new quantity χ (see (3.14)), we are able to prove the existence of the approximate (σ, τ) -Hermitian Yang-Mills structure on the (σ, τ) -semi-stable quiver bundle $\mathcal{R} = (\mathcal{E}, \phi)$ over compact Gauduchon manifolds. We believe that this observation can be used to study the Hermitian Yang-Mills equations on the quiver bundle over other manifolds.

Acknowledgments

This project is supported by the 2023 Training Program for College Students Innovation and Entrepreneurship in Anhui University [Grant Number 0024]. The forth author is supported by the Natural Science Foundation of China [Grant Number 12201001], the Natural Science Foundation of Anhui Province [Grant Number 2108085QA17] and the Natural Science Foundation of Universities of Anhui Province [Grant Number KJ2020A0009].

Conflict of interest

The authors have no conflict of interest.

References

- 1. L. Álvarez-Cónsul, O. García-Prada, Hitchin-Kobayashi correspondence, quivers, and vortices, *Commun. Math. Phys.*, **238** (2003), 1–33. https://doi.org/10.1007/s00220-003-0853-1
- 2. I. Biswas, H. Kasuya, Higgs bundles and flat connections over compact Sasakian manifolds, *Commun. Math. Phys.*, **385** (2021), 267–290. https://doi.org/10.1007/s00220-021-04056-4
- 3. U. Bruzzo, B. G. Otero, Metrics on semistable and numerically effective Higgs bundles, *J. Reine Angew. Math.*, **2007** (2007), 59–79. https://doi.org/10.1515/CRELLE.2007.084
- 4. X. Chen, R. Wentworth, A Donaldson-Uhlenbeck-Yau theorem for normal varieties and semistable bundles on degenerating families, *Math. Ann.*, **2023** (2023). https://doi.org/10.1007/s00208-023-02565-2
- 5. S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, *P. Lond. Math. Soc.*, **s3-50** (1985), 1–26. https://doi.org/10.1112/plms/s3-50.1.1
- Z. Hu, P. Huang, The Hitchin-Kobayashi correspondence for quiver bundles over generalized Kähler manifolds, J. Geom. Anal., 30 (2020), 3641–3671. https://doi.org/10.1007/s12220-019-00210-6
- 7. S. Kobayashi, Differential geometry of complex vector bundles, Japan: Mathematical Society, 1987.
- 8. C. Li, C. Zhang, X. Zhang, Mean curvature negativity and HN-negativity of holomorphic vector bundles, 2021, arXiv: 2112.00488.
- 9. J. Y. Li, X. Zhang, Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles, *Calc. Var.*, **52** (2015), 783–795. https://doi.org/10.1007/s00526-014-0733-x
- 10. M. Lübke, A. Teleman, The Kobayashi-Hitchin correspondence, World Scientific, 1995.
- 11. T. Mochizuki, Wild harmonic bundles and wild pure twistor *D*-modules, *Astérisque*, **340** (2011).
- 12. Y. Nie, X. Zhang, Semistable Higgs bundles over compact Gauduchon manifolds, *J. Geom. Anal.*, **28** (2018), 627–642. https://doi.org/10.1007/s12220-017-9835-y
- 13. W. Ou, Admissible metrics on compact Kähler varieties, 2022, arXiv: 2201.04821.
- 14. C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, *J. Amer. Math. Soc.*, **1** (1988), 867–918. https://doi.org/10.2307/1990994

- Yau, 15. K. Uhlenbeck, S. T. On the existence of Hermitian-Yang-Mills connections stable vector bundles, Commun. Pur. Appl. Math., **39** (1986),S257-S293. https://doi.org/10.1002/cpa.3160390714
- 16. D. Wu, X. Zhang, Higgs bundles over foliation manifolds, *Sci. China Math.*, **64** (2021), 399–420. https://doi.org/10.1007/s11425-019-1736-4
- 17. C. Zhang, P. Zhang, X. Zhang, Higgs bundles over non-compact Gauduchon manifolds, *Trans. Amer. Math. Soc.*, **374** (2021), 3735–3759. https://doi.org/10.1090/tran/8323
- 18. P. Zhang, Semi-stable holomorphic vector bundles over generalized Kähler manifolds, *Complex Var. Elliptic*, **67** (2022), 1481–1495. https://doi.org/10.1080/17476933.2021.1882436
- 19. W. Zhang, Lectures on Chern-Weil theory and Witten deformations, World Scientific, 2001.

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)