Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Existence and energy decay rate of the solutions for the wave equation with a nonlinear distributed delay

  • Received: 07 December 2022 Revised: 20 February 2023 Accepted: 22 February 2023 Published: 02 March 2023
  • MSC : 35A01, 35B35, 35B40, 35L05

  • This paper is concerned with the wave equation having a nonlinear distributed delay. First, we prove the local existence of the solutions by using the semigroup theory, where the source term is globally Lipschitz. Next, we establish the global existence of solutions and the energy decay result under the local Lipschitz source and suitable conditions on the initial data.

    Citation: Tae Gab Ha, Seyun Kim. Existence and energy decay rate of the solutions for the wave equation with a nonlinear distributed delay[J]. AIMS Mathematics, 2023, 8(5): 10513-10528. doi: 10.3934/math.2023533

    Related Papers:

    [1] Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252
    [2] Hicham Saber, Fares Yazid, Fatima Siham Djeradi, Mohamed Bouye, Khaled Zennir . Decay for thermoelastic laminated beam with nonlinear delay and nonlinear structural damping. AIMS Mathematics, 2024, 9(3): 6916-6932. doi: 10.3934/math.2024337
    [3] Abdelkader Moumen, Fares Yazid, Fatima Siham Djeradi, Moheddine Imsatfia, Tayeb Mahrouz, Keltoum Bouhali . The influence of damping on the asymptotic behavior of solution for laminated beam. AIMS Mathematics, 2024, 9(8): 22602-22626. doi: 10.3934/math.20241101
    [4] Keltoum Bouhali, Sulima Ahmed Zubair, Wiem Abedelmonem Salah Ben Khalifa, Najla ELzein AbuKaswi Osman, Khaled Zennir . A new strict decay rate for systems of longitudinal $ m $-nonlinear viscoelastic wave equations. AIMS Mathematics, 2023, 8(1): 962-976. doi: 10.3934/math.2023046
    [5] Abdelkader Moumen, Abderrahmane Beniani, Tariq Alraqad, Hicham Saber, Ekram. E. Ali, Keltoum Bouhali, Khaled Zennir . Energy decay of solution for nonlinear delayed transmission problem. AIMS Mathematics, 2023, 8(6): 13815-13829. doi: 10.3934/math.2023707
    [6] Qian Li . General and optimal decay rates for a viscoelastic wave equation with strong damping. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006
    [7] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Mohammad Kafini . Asymptotic behavior of the wave equation solution with nonlinear boundary damping and source term of variable exponent-type. AIMS Mathematics, 2024, 9(11): 30638-30654. doi: 10.3934/math.20241479
    [8] Soh E. Mukiawa, Tijani A. Apalara, Salim A. Messaoudi . Stability rate of a thermoelastic laminated beam: Case of equal-wave speed and nonequal-wave speed of propagation. AIMS Mathematics, 2021, 6(1): 333-361. doi: 10.3934/math.2021021
    [9] Mohamed Biomy . Decay rate for systems of $ m $-nonlinear wave equations with new viscoelastic structures. AIMS Mathematics, 2021, 6(6): 5502-5517. doi: 10.3934/math.2021326
    [10] Fatima Siham Djeradi, Fares Yazid, Svetlin G. Georgiev, Zayd Hajjej, Khaled Zennir . On the time decay for a thermoelastic laminated beam with microtemperature effects, nonlinear weight, and nonlinear time-varying delay. AIMS Mathematics, 2023, 8(11): 26096-26114. doi: 10.3934/math.20231330
  • This paper is concerned with the wave equation having a nonlinear distributed delay. First, we prove the local existence of the solutions by using the semigroup theory, where the source term is globally Lipschitz. Next, we establish the global existence of solutions and the energy decay result under the local Lipschitz source and suitable conditions on the initial data.



    In this paper, we consider the following wave equation with nonlinear distributed delay:

    {uttΔu+μ0f(ut)+τ2τ1μ(s)g(ut(x,ts))ds=h(u)inΩ×(0,),u=0inΩ×(0,),u(x,0)=u0(x)andut(x,0)=u1(x)inΩ,ut(x,t)=f0(x,t)inΩ×(0,τ2), (1.1)

    where ΩRn, n1 is a bounded domain with smooth boundary Ω, μ(s)L([τ1,τ2];R+) with τ2>τ1>0, and μ0 is for some positive constant that will be specified later.

    Time delay effect occurs in many various phenomena depending on past states as well as on present situations, so time delay problem is widely applied in many engineering and biology fields [1,21]. Hence the partial differential equations with such circumstance have been studied by many researchers (see [3,4,10,11,12,13,14,15,16,22,23] and a list on references therein). For example, Nicaise and Pignotti [13] considered the wave equation with a delay concentrated at a time

    uΔu+μ0u+μ1u(x,ts)=0.

    They proved that this equation is either exponentially stable under condition μ0>μ1 or unstable under condition μ0μ1. Benaissa et al. [4] studied the global existence and energy decay of solutions to a viscoelastic wave equation with delay term in the nonlinear internal feedback. They proved the global existence result using Galerkin's method and the asymptotic behavior of solutions using a perturbed energy method. While there are many results dealing with a delay concentrated at a time, there are relatively few researches dealing with a distributed delay. The distributed delay is important and has been studied in many problems (see [6,7,8,14,19]). For instance, Nicaise and Pignotti [14] has studied the wave equation with linear distributed delay

    uΔu+μ0u+τ2τ1a(x)μ(s)u(x,ts)ds=0.

    They proved the global well-posedness by the semigroup theory and the exponential stability under the assumption

    μ0>aτ2τ1μ(s)ds.

    Raposo et al. [19] proved the well-posedness using the semigroup theory and the exponential stability exploiting the dissipative properties of the linear operator associated to damped model using the Gearhart-Huang-Pruss theorem for the wave equation with frictional damping and nonlocal time-delayed condition. Recently, Choucha et al. [7] studied a coupled Lame system with distributed delay, viscoelastic, and logarithmic source terms. They proved an exponential decay of solutions by using Lyapunov functional method. But, the above mentioned references were considered a linear distributed delay. There is none, as far as we know, well-posedness result dealing with a nonlinear distributed delay.

    Motivated by previous works, the goal of the paper is to study the existence and energy decay of the solutions for the wave equation with a nonlinear distributed delay. We prove the local existence of the solutions by using the semigroup theory, where the source term is globally Lipschitz and then establish the global existence of solutions and the energy decay result under the local Lipschitz source and suitable conditions on the initial data.

    Throughout this paper, we use standard functional spaces and Lp(Ω)-norm is denoted by p, and (u,v)=Ωu(x)v(x)dx. The following assumptions are made on the nonlinear functions f and g.

    (A1) f:RR is a continuous monotone increasing function with f(0)=0.

    (A2) There exist positive constants ν, M1, M2 and a convex increasing function H:R+R+ of the class HC1(R+)C2((0,)) satisfying H(0)=0, and H is linear in [0,ν] or H(0)=0 and H>0 on (0,ν] such that

    M1s2sf(s)M2s2for|s|>ν,s2+f2(s)H1(sf(s))for|s|ν.

    (A3) g is an odd nondecreasing Lipschitz function.

    (A4) α1sg(s)G(s)α2sf(s), where α1,α2 are some positive constants, and G(s)=s0g(r)dr.

    We first deal with the case where the source h is globally Lipschitz from H10(Ω) into L2(Ω). We will prove the problem (1.1) are well-posed using the semigroup theory.

    Let us set ut(x,tρs):=y(x,ρ,t,s), ρ(0,1), s(τ1,τ2). Then the problem (1.1) is transformed into

    {uttΔu+μ0f(ut)+τ2τ1μ(s)g(y(x,1,t,s))ds=h(u)inΩ×(0,),syt(x,ρ,t,s)+yρ(x,ρ,t,s)=0inΩ×(0,1)×(0,)×(τ1,τ2),u=0inΩ×(0,),y(x,0,t,s)=ut(x,t)inΩ×(0,)×(τ1,τ2),u(x,0)=u0(x)andut(x,0)=u1(x)inΩ,y(x,ρ,0,s)=f0(x,ρs)inΩ×(0,1)×(τ1,τ2). (2.1)

    If we set ut:=v. and U:=(u,v,y)T, then (2.1) can be rewritten as

    {U+AU=0,U(0)=(u0,v0,f0)T, (2.2)

    where the operator A is defined by

    A[uvy]=[vΔu+μ0f(v)+τ2τ1μ(s)g(y(.,1,s))dsh(u)s1yρ]

    with D(A):={(u,v,y)T(H2(Ω)H10)×H10(Ω)×L2(Ω×(τ1,τ2); H1(0,1)):v(x)=y(x,0,s)inΩ}. So we see that in order to obtain the existence of the solutions to the problem (1.1), it is sufficient to show that the problem (2.2) admits a solution.

    We define the Hilbert space H

    H:=H10(Ω)×L2(Ω)×L2(Ω×(0,1)×(τ1,τ2))

    with inner product

    (uvy),(˜u˜v˜y)H:=Ωu˜u+v˜vdx+Ωτ2τ110sμ(s)y(x,ρ,s)˜y(x,ρ,s)dρdsdx.

    Theorem 2.1. Assume that (A1) and (A3) hold. In addition, h is globally Lipschitz from H10(Ω) into L2(Ω). Then (2.2) has a unique solution

    uC(0,;H10(Ω))C1(0,;L2(Ω))

    for (u0,v0,f0)TH.

    Proof. First, we will show that the operator A is w-accretive on H. Let U=(ξ,η,y)T,V=(˜ξ,˜η,˜y)TD(A). Then we get

    (A+wI)U(A+wI)V,UVH=Ω(η˜η)(ξ˜ξ)dx+wΩ(ξ˜ξ)2dxΩΔ(ξ˜ξ)(η˜η)dx+μ0Ω(f(η)f(˜η))(η˜η)dxΩ(h(ξ)h(˜ξ))(η˜η)dx+wη˜η2+Ωτ2τ1μ(s)(g(y(x,1,s))g(˜y(x,1,s))ds(η˜η)dx+Ωτ2τ110μ(s)(yρ˜yρ)(y˜y)dρdsdx+wΩτ2τ110sμ(s)(y˜y)2dρdsdx.

    Using Hölder's and Young's inequalities, we obtain for sufficiently large w and small ε,

    (A+wI)U(A+wI)V,UVHwcξ˜ξ2H1L2h2ξ˜ξ2H112η˜η22+wη˜η22C2μ(s)η˜η22C(ε)η˜η22L2gεΩτ2τ1μ(s)(y(x,1,s)˜y(x,1,s))2dsdx+12Ωτ2τ1μ(s)(y(x,1,s)˜y(x,1,s))2dsdx(wcL2h2)ξ˜ξ2H1+(12L2gε)Ωτ2τ1μ(s)(y(x,1,s)˜y(x,1,s))2dsdx+(wC2μ(s)12C(ε))η˜η220,

    where Lh and Lg are Lipschitz constants for h and g, respectively. Thus A is w-accretive.

    Next, we will show that A+wI is a maximal monotone operator. To this end, it is sufficient to show that R(λI+A)=H for sufficiently large constant λ.

    Given (k,l,m)H, We seek U=(ξ,η,y)TD(A) satisfying

    λξη=k, (2.3)
    ληΔξ+μ0f(η)+τ2τ1μ(s)g(y(x,1,s))dsh(ξ)=l, (2.4)
    λy+s1yρ=m. (2.5)

    From (2.3) and (2.5) with y(x,0,s)=η(x), we have y(x,1,s)=η(x)eλs+X0, where

    X0:=seλs10m(x,τ)eλτsdτ.

    Hence, by (2.4) we obtain

    Tη:=λη1λΔη+μ0f(η)+τ2τ1μ(s)g(η(x)eλs+X0)dsh(η+kλ)=l+1λΔk.

    We will show that T:H10(Ω)H1(Ω) is surjective. Let ˆη:=ηeλs+X0, and let

    Bη=μ0f(η),Cη=1λΔη+τ2τ1μ(s)g(ˆη)ds+ληh(η+kλ).

    It easy to see that B is maximal monotone. From the fact that g and h are global Lipschitz, and λI1λΔ is continuous and coercive, we infer that, for large constant λ>0,

    (Cη1Cη2,η1η2)2=λη1η222+1λ(Δη1+Δη2,η1η2)L2(h(η1+kλ)h(η2+kλ),η1η2)L2+(τ2τ1μ(s)(g(^η1)g(^η2))ds,η1η2)L2λη1η222Lgμ(s)τ2τ1eλsdsη1η22L2h2λ2η1η22H112η1η222+cλη1η22H10,

    where c is positive constant. Therefore C is maximal monotone operator and coercive. Thus B+C is maximal monotone, which implies that T is surjective. So we obtain

    ξ=η+kλH10,
    y(x,ρ,s)=η(x)eλρs+seλρsρ0meλτsdτL2(Ω×(τ1,τ2);H1(0,1)),
    y(x,0,s)=η(x),
    Δξ=lλημ0f(η)τ2τ1μ(s)g(g(y(x,1,t,s)))ds+h(ξ)L2(Ω).

    Thus we have (ξ,η,y)TD(A), consequently, the operator A+wI is maximal monotone.

    From the fact the density of D(A) in H and the nonlinear semigroup theory [2,20], the proof of Theorem 2.1 is completed.

    In this subsection, we loosen the globally Lipschitz condition on the source by allowing h to be locally Lipschitz continuous. We first introduce the Legendre transformation. Let G be conjugate of convex function G. It is defined by G(s)=suptR+(stG(t)). G is called Legendre transform of G. By definition, we have

    G(s)=s(G)1(s)G[(G)1(s)],s0, (2.6)

    and

    stG(s)+G(t),s,t0. (2.7)

    By the assumption (A4) and (2.6), we obtain

    G(g(y(x,1,t,s)))=y(x,1,t,s)g(y(x,1,t,s))G(y(x,1,t,s))(1α1)y(x,1,t,s)g(y(x,1,t,s)). (2.8)

    Let us define functional

    ξ(t)=12Ω|ut|2+|u|2dx+ξ0Ωτ2τ110sG(y(x,ρ,t,s))dρdsdx, (2.9)

    where

    ξ0>1α1α1μ(s). (2.10)

    To estimate this subsection, we need the following additional assumption:

    μ0ξ0α2(τ2τ1)α2τ2τ1μ(s)ds>0. (2.11)

    Theorem 2.2. Assume that (A1), (A3), (A4), (2.10) and (2.11) hold, and let h:H10(Ω)L2(Ω) be local Lipschitz continuous function. Then (1.1) has unique local solution for (u0,v0,f0)TH such that

    uC(0,Tmax;H10(Ω))C1(0,Tmax;L2(Ω)).

    Proof. Define

    hk(u):={h(u),ifuH1k,h(kuuH1),ifuH1k,

    where k is a positive constant. With this truncated function hk, we consider the following problem:

    {uttΔu+μ0f(ut)+τ2τ1μ(s)g(y(x,1,t,s))ds=hk(u)inΩ×(0,),u=0inΩ×(0,),u(0)=u0H10(Ω)and ut(0)=u1L2(Ω)inΩ. (2.12)

    Since hk:H10(Ω)L2(Ω) is global Lipschitz with Lipschitz constant Lhk for each k (see [9]), by Theorem 2.1, the problem (2.12) has a unique solution ukC(0,;H10(Ω))C1(0,;L2(Ω)). To simplify the notation in the rest of the proof, we shall express uk as u. We will use the following notation: Q=T0Ω, dQ=dΩdt.

    Multiplying (2.12) by ut, we obtain

    12ddt(u22+ut22)+μ0Ωf(ut)utdx+Ωτ2τ1μ(s)ut(x,t)g(y(x,1,t,s))dsdx=Ωhk(u)utdx.

    Since

    ξ0ddtΩτ2τ110sG(y(x,ρ,t,s))dρdsdx=ξ0Ωτ2τ110ddρG(y(x,ρ,t,s))dρdsdx=ξ0Ωτ2τ1[G(y(x,1,t,s))G(y(x,0,t,s))]dsdx,

    we have

    12ddt(u22+ut22)+ξ0ddtΩτ2τ110sG(y(x,ρ,t,s))dρdsdx=μ0Ωf(ut)utdxΩτ2τ1μ(s)ut(x,t)g(y(x,1,t,s))dsdx+Ωhk(u)utdxξ0Ωτ2τ1[G(y(x,1,t,s))G(y(x,0,t,s))]dsdx. (2.13)

    Integrating (2.13) over (0, T) and using (2.9), we get

    ξ(T)ξ(0)=μ0Qf(ut)utdQQτ2τ1μ(s)ut(x,t)g(y(x,1,t,s))dsdQ+Qhk(u)utdQξ0Qτ2τ1[G(y(x,1,s))G(y(x,0,s))]dsdQ.

    By using (2.7) and (2.8), we deduce that

    ξ(T)ξ(0)μ0Qf(ut)utdQQτ2τ1μ(s)ut(x,t)g(y(x,1,t,s))dsdQ+Qhk(u)utdQ+ξ0α2Qτ2τ1utf(ut)dsdQξ0α1Qτ2τ1y(x,1,t,s)g(y(x,1,t,s))dsdQμ0Qf(ut)utdQ+ξ0α2Qτ2τ1utf(ut)dsdQ+Qτ2τ1μ(s)[G(|ut|)+G(|g(y(x,1,t,s))|)]dsdQ+Qhk(u)utdQξ0α1Qτ2τ1y(x,1,t,s)g(y(x,1,t,s))dsdQμ0Qf(ut)utdQ+ξ0α2Qτ2τ1utf(ut)dsdQ+α2Qτ2τ1μ(s)utf(ut)dsdQ+Qτ2τ1μ(s)(1α1)y(x,1,t,s)g(y(x,1,t,s))dsdQξ0α1Qτ2τ1y(x,1,t,s)g(y(x,1,t,s))dsdQ+Qhk(u)utdQ=[μ0ξ0α2(τ2τ1)α2τ2τ1μ(s)ds]Qf(ut)utdQ+Qτ2τ1(μ(s)(1α1)ξ0α1)y(x,1,t,s)g(y(x,1,t,s))dsdQ+Qhk(u)utdQ. (2.14)

    From the assumptions (2.10), (2.11), and using the Young inequality, (2.14) is rewritten as

    12(ut(T)22+u(T)2H1)Qhk(u)utdQ+ξ(0)T0hk(u)2ut2dt+ξ(0)Lh(k)T0uH1ut2dt+T0hk(0)2ut2dt+ξ(0)(L2h(k)+1)T0u2H1+ut22dt+ChkT+ξ(0).

    Hence, by Gronwall's inequality, we obtain

    (ut(t)22+u(t)2H1)(2ξ(0)+2ChkT)e2T(L2h(k)+1).

    If we choose T such that 2ξ(0)+2ChkT<k2, there exists

    Tk=min{T,12(L2h(k)+1)ln(k22ξ(0)+2ChkT)}

    such that u(t)H1<k for all t<Tk. Hence the original problem same as problem (2.12) for t<Tk. By repeating the same process with initial data u(Tk) and for large k, we have maximal time Tmax. Thus the proof of Theorem 2.2 is completed.

    In this section, we prove the global existence and energy decay of the solutions to the problem (1.1) when

    h(u)=u|u|p22<p2n2n2ifn3,2<p<ifn=1,2.

    Since h:H10(Ω)L2(Ω) is locally Lipschitz, Theorem 2.2 allows of this polynomial growth source. In the following section, the symbol C is a generic positive constant, which may be different in various occurrences. The energy associated to the problem (1.1) is defined by

    E(t)=12ut22+12u22+ξ0Ωτ2τ110sG(y(x,ρ,t,s))dρdsdx1pupp.

    Then from (2.13) and (2.14), we have

    E(t)=μ0Ωf(ut)utdxΩτ2τ1μ(s)ut(x,t)g(y(x,1,t,s))dsdxξ0Ωτ2τ1[G(y(x,1,t,s))G(y(x,0,t,s))]dsdx[μ0ξ0α2(τ2τ1)α2τ2τ1μ(s)ds]Ωf(ut)utdx+Ωτ2τ1(μ(s)(1α1)ξ0α1)y(x,1,t,s)g(y(x,1,t,s))dsdx0, (3.1)

    which implies that E(t) is a nonincreasing function.

    We now set

    J(u)=12u221pupp,
    I(u)=u22upp

    and

    N={uH10(Ω):I(u)=0,u20}.

    Then we know that [18]

    d=infuH10(Ω)/{0}supλ0J(λu)=infuNJ(u)=p22p(1Cp)2p2,

    where

    C=supupu2.

    From the relationship J(u)=12I(u)+p22pupp, the energy E(t) is rewritten as

    E(t)=12ut2+J(u)+ξ0Ωτ2τ110sG(y)dρdsdx=12ut2+12I(u)+p22pupp+ξ0Ωτ2τ110sG(y)dρdsdx. (3.2)

    Lemma 3.1. If E(0)<d and I(u0)>0, then I(u(t))>0 for all t[0,Tmax).

    Proof. The proof is same as that of [17, Lemma 4.1], so we omit it here.

    Theorem 3.1. Under the assumptions on Theorem 2.2 and Lemma 3.1, (1.1) has a unique global solution for (u0,v0,f0)TH.

    Proof. It suffices to show that ut22+u22 is bounded independent of t. By Lemma 3.1 and (3.2), we get

    ut222E(t)2E(0)2d

    and

    p22pu22p22pI(u)+p22pupp2E(t)2E(0)2d.

    Under the assumption Lemma 3.1 and by definition of energy, we easily obtain

    upp(p22p+ϵ)1E(t), for t (3.3)

    where \epsilon is a for some sufficiently small positive constant. Now we recall the technical lemma which will play an essential role when establishing the energy decay.

    Lemma 3.2. (see [5]) Let E:\mathbb{R_{+}}\rightarrow \mathbb{R_{+}} be a non-increasing differentiable function and \Psi:\mathbb{R_{+}}\rightarrow \mathbb{R_{+}} be a convex and increasing function s.t \Psi(0) = 0 . Assume that

    \begin{equation*} \int_{S}^{T} \Psi(E(t))dt \le C E(S), \quad \forall 0 \le S \le T, \; \; \mathit{\text{for some positive constant C.}} \end{equation*}

    Then E satisfies the following estimate:

    \begin{equation*} E(t)\le \psi ^{-1}\left(h(t)+\psi(E(0))\right), \quad \forall t \ge 0, \end{equation*}

    where \psi(t) = \int_{t}^{1}\frac{1}{\Psi(s)}ds for t > 0, h(t) = 0 for 0\le t \le \frac{E(0)}{\Psi(E(0))}, and

    \begin{equation*} h^{-1}(t) = t+\frac{\psi^{-1}\left(t+\psi(E(0))\right)}{\Psi\left(\psi^{-1}(t+\psi(E(0)))\right)}, \quad \forall t > 0. \end{equation*}

    Thanks to [3] idea, we obtain following theorem.

    Theorem 3.2. Under the assumptions on Theorem 3.1, we obtain the following energy decay property:

    \begin{equation*} E(t)\le \psi ^{-1}\left(h(t)+\psi(E(0))\right), \quad \forall t > 0, \end{equation*}

    where \psi(t) = \int_{t}^{1}\frac{1}{\omega\varphi(s)}ds for t > 0, h(t) = 0 for 0\le t \le \frac{E(0)}{\omega\varphi(E(0))}, and

    \begin{equation*} h^{-1}(t) = t+\frac{\psi^{-1}\left(t+\psi(E(0))\right)}{\omega\varphi\left(\psi^{-1}(t+\psi(E(0)))\right)}, \quad \forall t > 0 \end{equation*}

    for some positive constant \omega , and

    \begin{equation*} \varphi(s) = \begin{cases} s & \mathit{\mbox{if}}\quad H \quad \mathit{\mbox{is linear on}} \quad [0, \nu], \\ sH'(\varepsilon_{0}s) & \mathit{\mbox{if}}\quad H'(0) = 0 \quad \mathit{\mbox{and}} \quad H'' > 0 \quad \mathit{\mbox{on}} \quad (0, \nu] \end{cases} \end{equation*}

    for some positive constant \epsilon_0 .

    Proof. We multiply the first equation of (2.1) by A\frac{\varphi(E)}{E}u where A = e^{-2\tau_{2}} , and then integrate the obtained result over (S, T) \times \Omega . Then we have

    \begin{align*} 0& = A\left[\frac{\varphi(E)}{E}(u, u_t)\right]_{S}^{T}-A\int_{S}^{T}\frac{\varphi(E)}{E} \Vert u_t\Vert^{2}_2dt-A\int_{S}^{T}\left(\frac{\varphi(E)}{E}\right)'(u, u_t)dt+A\int_{S}^{T}\frac{\varphi(E)}{E}\Vert \nabla u \Vert^{2}_2dt \\ & \quad +\mu_{0}A\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}uf(u_t)dxdt+A\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\mu(s)ug(y(x, 1, t, s))dsdxdt \\ & \quad -A\int_{S}^{T}\frac{\varphi(E)}{E}\Vert u \Vert_{p}^{p}dt. \end{align*}

    Similarly, multiplying the second equation of (2.1) by \xi_{0}\frac{\varphi(E)}{E}e^{-2s\rho}g(y(x, \rho, t, s)) , and integrating over (S, T) \times \Omega \times (\tau_{1}, \tau_{2}) \times (0, 1) , we obtain

    \begin{align*} 0& = \xi_{0}\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}g(y)y_t+e^{-2s\rho}g(y)y_{\rho}d\rho dsdxdt \\ & = \xi_{0}\left[\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}G(y)d\rho dsdx\right]_{S}^{T}-\xi_{0}\int_{S}^{T}\left(\frac{\varphi(E)}{E}\right)'\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}G(y)d\rho dsdxdt \\ & \quad +\xi_{0}\left[\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}e^{-2s\rho}G(y)dsdxdt\right]_{0}^{1}+2\xi_{0}\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}G(y)d\rho dsdxdt. \end{align*}

    Combining the above two equations, we get the following equation:

    \begin{equation} \begin{aligned} 2A\int_{S}^{T}\varphi(E)dt &\le 2A\int_{S}^{T}\frac{\varphi(E)}{E}\Vert u_t\Vert ^{2}_2dt-A\left[\frac{\varphi(E)}{E}(u, u_t)\right]_{S}^{T} + A\int_{S}^{T}\left(\frac{\varphi(E)}{E}\right)'(u, u_t)dt \\ & \quad -\mu_{0}A\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}uf(u_t)dxdt - A\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\mu(s)ug(y(x, 1, t, s))dsdxdt \\ & \quad + \frac{(p-2)A}{p} \int_{S}^{T}\frac{\varphi(E)}{E}\Vert u \Vert_{p}^{p}dt - \xi_{0}\left[\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}G(y)d\rho ds dx \right]_{S}^{T} \\ & \quad +\xi_{0}\int_{S}^{T}\left(\frac{\varphi(E)}{E}\right)'\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}G(y)d\rho dsdxdt \\ & \quad -\xi_{0}\left(\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\left[e^{-2s}G(y(1))-G(y(0))\right]dsdxdt\right) \\ &: = I_{1}+I_{2}+I_{3}+I_{4}+I_{5}+I_{6}+I_{7}+I_{8}+I_{9}. \end{aligned} \end{equation} (3.4)

    Now we are going to estimate terms on the right hand side of (3.4).

    From (3.2) and (3.3), we have

    \begin{equation} I_{6} : = \frac{(p-2)A}{p} \int_{S}^{T}\frac{\varphi(E)}{E}\Vert u \Vert_{p}^{p}dt \le \frac{(p-2)A}{p} \left(\frac{p-2}{2p} + \epsilon\right)^{-1} \int_{S}^{T}\varphi(E)dt. \end{equation} (3.5)

    We know by assumption of \varphi(s) , \frac{\varphi(s)}{s} is nondecreasing and E is nonnegative and decreasing. Also by using Young's inequality and Poincaré inequality, we obtain

    \begin{align} I_{2} :& = -A\left[\frac{\varphi(E)}{E}(u, u_t)\right]_{S}^{T} \\& = -A\frac{\varphi(E(T))}{E(T)}(u(T), u_{t}(T))+\frac{\varphi(E(S))}{E(S)}(u(S), u_{t}(S)) \\ & \ \leqslant C_{1}\frac{\varphi(E(T))}{E(T)}E(T)+C_{2}\frac{\varphi(E(S))}{E(S)}E(S)\\ & \ \leqslant C\varphi(E(S)). \end{align} (3.6)
    \begin{equation} \begin{aligned} I_{3} : = A\int_{S}^{T}\left(\frac{\varphi(E)}{E}\right)'(u, u_t)dt \le C\int_{S}^{T}\left|\frac{\varphi'(E)E'E-\varphi(E)E'}{E^{2}}\right|E dt\\ \le C\int_{S}^{T}-\varphi'(E)E'dt+C\int_{S}^{T}-\frac{\varphi(E)}{E}E'dt \le C\varphi(E(S)). \end{aligned} \end{equation} (3.7)
    \begin{equation} \begin{aligned} \left|I_{4}\right| &: = A\left| -\mu_{0}\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}uf(u_t)dxdt \right| \\ &\le C \int_{S}^{T}\frac{\varphi(E)}{E}\left( \varepsilon \Vert \nabla u \Vert ^{2}_2+ C(\varepsilon)\Vert f(u_t)\Vert^{2}_2\right) dt\\& \le C\varepsilon \int_{S}^{T} \varphi(E)dt +C\int_{S}^{T}\frac{\varphi(E)}{E}\Vert f(u_t)\Vert_{2}^{2}dt. \end{aligned} \end{equation} (3.8)

    Since g is a nondecreasing odd Lipschitz function and g^{2}(y(x, 1, t, s) \leqslant L_{g}g(y(x, 1, t, s))y(x, 1, t, s) , we have

    \begin{equation} \begin{aligned} \left|I_{5}\right| & : = A\left| - \int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\mu(s)ug(y(x, 1, t, s))dsdxdt \right| \\ &\le C\varepsilon\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}} \left|\nabla u \right|^{2}dsdxdt + C(\varepsilon) \int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}g^{2}(y(x, 1, t, s))dsdxdt \\ &\le C\varepsilon \int_{S}^{T}\frac{\varphi(E)}{E}\int_{\tau_{1}}^{\tau_{2}} E(t)dsdt + C\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\tau_{1}}^{\tau_{2}}-E'(t)dsdt \\ &\le C\varepsilon \int^T_S \varphi(E) dt + C\varphi(E(S)). \end{aligned} \end{equation} (3.9)
    \begin{equation} \begin{aligned} I_{7} &: = - \xi_{0}\left[\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}G(y)d\rho ds dx \right]_{S}^{T} \\ & = \xi_{0}\frac{\varphi(E(S))}{E(S)}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}G(y(S))d\rho dsdx-\xi_{0}\frac{\varphi(E(T))}{E(T)}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}G(y(T))d\rho dsdx \\ & \le C\varphi(E(S)). \end{aligned} \end{equation} (3.10)
    \begin{equation} I_{8} : = \xi_{0}\int_{S}^{T}\left(\frac{\varphi(E)}{E}\right)'\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\int_{0}^{1}se^{-2s\rho}G(y)d\rho dsdxdt \le \xi_{0} \int_{S}^{T}\left(\frac{\varphi(E)}{E}\right)' E(t)dt \le C\varphi(E(S)). \end{equation} (3.11)

    By assumption (A4) and (3.1), we obtain

    \begin{equation} \begin{aligned} I_{9} &: = -\xi_{0}\left(\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}\left[e^{-2s}G(y(1))-G(y(0))\right]dsdxdt\right) \\ &\le C\xi_{0}\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}\int_{\tau_{1}}^{\tau_{2}}f(u_t)u_t dsdxdt \le C\xi_{0} \int_{S}^{T}\frac{\varphi(E)}{E}(-E'(t))dt \le C\varphi(E(S)). \end{aligned} \end{equation} (3.12)

    Replacing (3.5)–(3.12) in (3.4) and taking \epsilon sufficiently small, we arrive at

    \begin{equation} \int_{S}^{T}\varphi(E)dt \le C\varphi(E(S))+C\int_{S}^{T}\frac{\varphi(E)}{E}\Vert f(u_t)\Vert^{2}_2dt+C\int_{S}^{T}\frac{\varphi(E)}{E} \Vert u_t\Vert^{2}_2dt. \end{equation} (3.13)

    We are now going to estimate the last two terms of right-hand side of (3.13). We consider the two cases with respect to the conditions on H .

    Case 1. H is linear on [0, \nu] .

    From the assumption (A2) and the definition of the energy E(t) , we have

    \begin{equation*} \int_{S}^{T}\frac{\varphi(E)}{E}\Vert u_t \Vert ^{2}_2 dt \le C\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}u_tf(u_t)dxdt \le C\int_{S}^{T}\frac{\varphi(E)}{E}(-E')dt \le C\varphi(E(S)). \end{equation*}

    Put

    \begin{equation*} \Omega_{1} = \left\{x\in \Omega:\left|u_t\right| > \nu\right\}, \ \Omega_{2} = \left\{x\in \Omega:\left|u_t\right| \le \nu \right\}. \end{equation*}

    By assumption (A1), (A2) and using (3.1), we have

    \begin{align*} \int_{S}^{T}& \frac{\varphi(E)}{E} \Vert f(u')\Vert_{2}^{2} dt \\ & = \int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega_{1}} \left|f(u')\right|^{2} dxdt +\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega_{2}}\left|f(u')\right|^{2}dxdt\\ & \quad \leqslant \max\{M_{1}, M_{2}\}\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega_{1}} f(u')u'dxdt +C_{1}\int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega_{2}}f(u')u'dxdt \\ & \quad \leqslant C_{2} \int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega} f(u')u'dxdt \\ & \quad \leqslant C_{2} \int_{S}^{T}\frac{\varphi(E)}{E} (-E')dt \\ & \quad \leqslant C\varphi(E(S)). \end{align*}

    Case 2. H'(0) = 0, H'' > 0 \ on\ (0, \nu] . By the assumption (A2), we obtain

    \int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega_{1}} |u_t|^{2}+\left |f(u_t)\right|^{2}dxdt \leq C \int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega}u_tf(u_t)dxdt \le C\int_{S}^{T}\frac{\varphi(E)}{E}(-E')dt \le C\varphi(E(S)).

    On the other hand, by applying Jensen's inequality for concave function we deduce that

    \begin{align*} \int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega_{2}} |u_t|^{2}+\left |f(u_t)\right|^{2}dxdt &\le \int_{S}^{T}\frac{\varphi(E)}{E}\int_{\Omega_{2}} H^{-1}(u_tf(u_t))dxdt \\ &\le C\int_{S}^{T}\frac{\varphi(E)}{E}H^{-1}\left(\frac{1}{meas(\Omega_{2})}\int_{\Omega_{2}}u_tf(u_t)dx\right)dt. \end{align*}

    By using Legendre transform (2.6) and (2.7) for H and \varphi(s): = sH'(\varepsilon_{0}s) , we obtain

    \begin{align*} \int_{S}^{T}\frac{\varphi(E)}{E}H^{-1}\left(\frac{1}{meas(\Omega_{2})}\int_{\Omega_{2}}u_tf(u_t)dx\right)dt & \le C \int_{S}^{T}H^{*}\left(\frac{\varphi(E)}{E}\right)dt +C\int_{S}^{T}\int_{\Omega}u_tf(u_t)dxdt \\ & \le \varepsilon_{0}C\int_{S}^{T}\varphi(E)dt + CE(S). \end{align*}

    Therefore, choosing \varepsilon_{0} small enough we get in both cases

    \begin{equation*} \int_{S}^{T}\varphi(E)dt \le C \left(E(S) + \varphi(E(S))\right) \leq C \left(1+\frac{\varphi(E(S))}{E(S)}\right)E(S) \le CE(S). \end{equation*}

    Thus, applying Lemma 3.2 with \Psi(t) = \omega\varphi(t) , the proof of Theorem 3.2 is completed.

    This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2022R1I1A3055309).

    The authors declare no conflict of interest.



    [1] W. Aiello, H. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139–153. https://doi.org/10.1016/0025-5564(90)90019-U doi: 10.1016/0025-5564(90)90019-U
    [2] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Dordrecht: Springer, 1976.
    [3] A. Benaissa, A. Benaissa, S. Messaoudi, Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks, J. Math. Phys., 53 (2012), 123514. https://doi.org/10.1063/1.4765046 doi: 10.1063/1.4765046
    [4] A. Benaissa, A. Benguessoum, S. Messaoudi, Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the non–linear internal feedback, Int. J. Dyn. Syst. Differ., 5 (2014), 1–26. https://doi.org/10.1504/IJDSDE.2014.067080 doi: 10.1504/IJDSDE.2014.067080
    [5] A. Benaissa, A. Guesmia, Energy decay for wave equations of \varphi-Laplacian type with weakly nonlinear dissipation, Electron. J. Differ. Eq., 2008 (2008), 1–22.
    [6] L. Bouzettouta, F. Hebhoub, K. Ghennam, S. Benferdi, Exponential stability for a nonlinear Timoshenko system with distributed delay, Int. J. Anal. Appl., 19 (2021), 77–90. https://doi.org/10.28924/2291-8639-19-2021-77 doi: 10.28924/2291-8639-19-2021-77
    [7] A. Choucha, S. Boulaaras, D. Ouchenane, Exponential decay of solutions for a viscoelastic coupled lame system with logarithmic source and distributed delay terms, Math. Methods Appl. Sci., 44 (2021), 4858–4880. https://doi.org/10.1002/mma.7073 doi: 10.1002/mma.7073
    [8] A. Choucha, D. Ouchenane, S. Boulaaras, Well posedness and stability result for a thermoelastic laminated Timoshenko beam with distributed delay term, Math. Methods Appl. Sci., 43 (2020), 9983–10004. https://doi.org/10.1002/mma.6673 doi: 10.1002/mma.6673
    [9] I. Chueshov, M. Eller, I. Lasiecka, On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation, Commun. Part. Diff. Eq., 27 (2002), 1901–1951. https://doi.org/10.1081/PDE-120016132 doi: 10.1081/PDE-120016132
    [10] R. Datko, J. Lagnese, M. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152–156. https://doi.org/10.1137/0324007 doi: 10.1137/0324007
    [11] B. Feng, Global well-posedness and stability for a viscoelastic plate equation with a time delay, Math. Probl. Eng., 2015 (2015), 585021. https://doi.org/10.1155/2015/585021 doi: 10.1155/2015/585021
    [12] N. Mezouar, S. Boulaaras, A. Allahem, Global existence of solutions for the viscoelastic Kirchhoff equation with logarithmic source terms, Complexity, 2020 (2020), 7105387. https://doi.org/10.1155/2020/7105387 doi: 10.1155/2020/7105387
    [13] S. Nicaise, C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks, SIAM J. Control Optim., 45 (2006), 1561–1585. https://doi.org/10.1137/060648891 doi: 10.1137/060648891
    [14] S. Nicaise, C. Pignotti, Stabilization of the wave equation with boundary or internal distributed delay, Differ. Integral Equ., 21 (2008), 935–958. https://doi.org/10.57262/die/1356038593 doi: 10.57262/die/1356038593
    [15] S. Nicaise, C. Pignotti, J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Cont. Dyn.-S, 4 (2011), 693–722. https://doi.org/10.3934/dcdss.2011.4.693 doi: 10.3934/dcdss.2011.4.693
    [16] S. Nicaise, J. Valein, E. Fridaman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Cont. Dyn.-S, 2 (2009), 559–581. https://doi.org/10.3934/dcdss.2009.2.559 doi: 10.3934/dcdss.2009.2.559
    [17] S. Park, Global existence, energy decay and blow-up of solutions for wave equations with time delay and logarithmic source, Adv. Differ. Equ., 2020 (2020), 631. https://doi.org/10.1186/s13662-020-03037-6 doi: 10.1186/s13662-020-03037-6
    [18] L. Payne, D. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303. https://doi.org/10.1007/BF02761595 doi: 10.1007/BF02761595
    [19] C. Raposo, H. Nguyen, J. Ribeiro, V. Barros, Well-posedness and exponential stability for a wave equation with nonlocal time-delay condition, Electron. J. Differ. Eq., 2017 (2017), 279.
    [20] R. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence: American Mathematical Society, 1997.
    [21] H. Suh, Z. Bien, Use of time-delay actions in the controller design, IEEE T. Automat. Contr., 25 (1980), 600–603. https://doi.org/10.1109/TAC.1980.1102347 doi: 10.1109/TAC.1980.1102347
    [22] Y. Xie, G. Xu, Exponential stability of 1-d wave equation with the boundary time delay based on the interior control, Discrete Cont. Dyn.-S, 10 (2017), 557–579. https://doi.org/10.3934/dcdss.2017028 doi: 10.3934/dcdss.2017028
    [23] X. Yang, J. Zhang, Y. Lu, Dynamics of the nonlinear Timoshenko system with variable delay, Appl. Math. Optim., 83 (2021), 297–326. https://doi.org/10.1007/s00245-018-9539-0 doi: 10.1007/s00245-018-9539-0
  • This article has been cited by:

    1. Tae Gab Ha, Sun-Hye Park, Global nonexistence for viscoelastic equations with distributed delay and variable exponents, 2024, 0003-6811, 1, 10.1080/00036811.2024.2426218
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1408) PDF downloads(76) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog