Research article Special Issues

A space-time model for analyzing contagious people based on geolocation data using inverse graphs

  • Received: 11 September 2022 Revised: 18 February 2023 Accepted: 20 February 2023 Published: 27 February 2023
  • MSC : 53B05, 05C85

  • Mobile devices provide us with an important source of data that capture spatial movements of individuals and allow us to derive general mobility patterns for a population over time. In this article, we present a mathematical foundation that allows us to harmonize mobile geolocation data using differential geometry and graph theory to identify spatial behavior patterns. In particular, we focus on models programmed using Computer Algebra Systems and based on a space-time model that allows for describing the patterns of contagion through spatial movement patterns. In addition, we show how the approach can be used to develop algorithms for finding "patient zero" or, respectively, for identifying the selection of candidates that are most likely to be contagious. The approach can be applied by information systems to evaluate data on complex population movements, such as those captured by mobile geolocation data, in a way that analytically identifies, e.g., critical spatial areas, critical temporal segments, and potentially vulnerable individuals with respect to contact events.

    Citation: Salvador Merino, Juergen Doellner, Javier Martínez, Francisco Guzmán, Rafael Guzmán, Juan de Dios Lara. A space-time model for analyzing contagious people based on geolocation data using inverse graphs[J]. AIMS Mathematics, 2023, 8(5): 10196-10209. doi: 10.3934/math.2023516

    Related Papers:

  • Mobile devices provide us with an important source of data that capture spatial movements of individuals and allow us to derive general mobility patterns for a population over time. In this article, we present a mathematical foundation that allows us to harmonize mobile geolocation data using differential geometry and graph theory to identify spatial behavior patterns. In particular, we focus on models programmed using Computer Algebra Systems and based on a space-time model that allows for describing the patterns of contagion through spatial movement patterns. In addition, we show how the approach can be used to develop algorithms for finding "patient zero" or, respectively, for identifying the selection of candidates that are most likely to be contagious. The approach can be applied by information systems to evaluate data on complex population movements, such as those captured by mobile geolocation data, in a way that analytically identifies, e.g., critical spatial areas, critical temporal segments, and potentially vulnerable individuals with respect to contact events.



    加载中


    [1] B. Alsolami, R. Mehmood, A. Albeshri, Hybrid Statistical and Machine Learning Methods for Road Traffic Prediction: A Review and Tutorial, Smart Infrastructure and Applications. EAI/Springer Innovations in Communication and Computing. Springer. 2020. https://doi.org/10.1007/978-3-030-13705-2_5
    [2] W. B. Arthur, W. Polak, The evolution of technology within a simple computer model, Complexity, 11 (2006), 23–31. https://doi.org/10.1002/cplx.20130 doi: 10.1002/cplx.20130
    [3] V. Ayumi, I. Nurhaida, Prediction using Markov for determining location of human mobility, J. Inf. Sci. Technol., 4 (2020), 2550–5114. https://innove.org/ijist/index.php/ijist/article/view/141
    [4] J. Bentley, T. Ottmann, Algoritms for reporting and counting geometric intersections, IEEE T. Comput., C-28 (1979), 643–647. https://doi.org/10.1109/TC.1979.1675432 doi: 10.1109/TC.1979.1675432
    [5] M. R. Benzigar, R. Bhattacharjee, M. Baharfar, G. Liu, Current methods for diagnosis of human coronaviruses: Pros and cons, Anal. Bioanal. Chem., (2020), 1618–2650. https://doi.org/10.1007/s00216-020-03046-0 doi: 10.1007/s00216-020-03046-0
    [6] W. V. Bortel, D. Petric, A. I. Justicia, W. Wint, M. Krit, J. Marian, et al., Assessment of the probability of entry of Rift Valley fever virus into the EU through active or passive movement of vectors, EFSA Supporting Publications, 17 (2020), 1801–1824. https://doi.org/10.2903/sp.efsa.2020.EN-1801 doi: 10.2903/sp.efsa.2020.EN-1801
    [7] A. A. Brincat, F. Pacifici, S. Martinaglia, F. Mazzola, The Internet of Things for Intelligent Transportation Systems in Real Smart Cities Scenarios, IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 2019,128–132. https://doi.org/10.1109/WF-IoT.2019.8767247
    [8] A. A. Brincat, F. Pacifici, F. Mazzola, IoT as a Service for Smart Cities and Nations, Internet Things Magazine IEEE, 2 (2019), 28–31. https://doi.org/10.1109/IOTM.2019.1900014 doi: 10.1109/IOTM.2019.1900014
    [9] J. Cerda, G. Valdivia, John Snow, the cholera epidemic and the foundation of modern epidemiology, Rev. Chil. Infect., 24 (2007), 331–334. https://doi.org/10.4067/s0716-10182007000400014 doi: 10.4067/s0716-10182007000400014
    [10] P. Elliott, D. Wartenberg, Spatial epidemiology: Current approaches and future challenges, Environ. Health. Persp., 112 (2004), 998–1006. https://doi:10.1289/ehp.6735 doi: 10.1289/ehp.6735
    [11] C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 395 (2020), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5 doi: 10.1016/S0140-6736(20)30183-5
    [12] J. G. Lee, M. Kang, Geospatial big data: Challenges and opportunities, Big Data Res., 2 (2015), 74–81. https://doi.org/10.1016/j.bdr.2015.01.003 doi: 10.1016/j.bdr.2015.01.003
    [13] M. Lin, W. J. Hsu, Mining GPS data for mobility patterns: A survey, Pervasive Mob. Comput., 12 (2014), 1–16. https://doi.org/10.1016/j.pmcj.2013.06.005 doi: 10.1016/j.pmcj.2013.06.005
    [14] Y. Lin, N. Lin, Z. Zhao, Mining daily activity chains from Large-Scale mobile phone location data, Cities, 109 (2021), 74–81. https://doi.org/10.1016/j.cities.2020.103013 doi: 10.1016/j.cities.2020.103013
    [15] R. Minetto, N. Volpato, J. Stolfi, R. Gregori, M. da Silva, An optimal algorithm for 3D triangle mesh slicing, Computer-Aided Design., 92 (2017), 1–10. https://doi.org/10.1016/j.cad.2017.07.001 doi: 10.1016/j.cad.2017.07.001
    [16] N. Neumann, F. Phillipson, Finding the Intersection Points of Networks, 17th International Conference on Innovations for Community Services, Comm. Com. Inf. Sc., 717 (2017), 104–118. https://doi.org/10.1007/978-3-319-60447-3_8 doi: 10.1007/978-3-319-60447-3_8
    [17] S. Salimi, Z. Liu, A. Hammad, Occupancy prediction model for open-plan offices using real-time location system and inhomogeneous Markov chain, Build Environ., 152 (2019), 1–16. https://doi.org/10.1016/j.buildenv.2019.01.052 doi: 10.1016/j.buildenv.2019.01.052
    [18] E. M. Shahverdiev, S. Sivaprakasam, K. A. Shore, Inverse anticipating chaos synchronization, Phys. Rev. E. Stat. Nonlin. Soft Matter. Phys., 66 (2002), 172–176. https://doi.org/10.1103/physreve.66.017204 doi: 10.1103/physreve.66.017204
    [19] Q. Shi, D. Dorling, G. Cao, T. Liu, Changes in population movement make COVID-19 spread differently from SARS, Soc. Sci. Med., 255 (2020), 113036. https://doi.org/10.1016/j.socscimed.2020.113036 doi: 10.1016/j.socscimed.2020.113036
    [20] S. Suma, R. Mehmood, A. Albeshri, Automatic event detection in smart cities using big data analytics, Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST, 224 (2018), 111–122. http://dx.doi.org/10.1007/978-3-319-94180-6_13 doi: 10.1007/978-3-319-94180-6_13
    [21] X. Yang, T. Xu, P. Jia, H. Xia, L. Guo, K. Ye, Transportation, Germs, Culture: A Dynamic Graph Model of 2019-nCoV Spread, Preprints, 2020. http://dx.doi.org/10.20944/preprints202002.0063.v1 doi: 10.20944/preprints202002.0063.v1
    [22] P. Zhou, X. Yang, X. Wang, B. Hu, L. Zhang, W. Zhang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579 (2020), 270–273. https://doi.org/10.1038/s41586-020-2012-7 doi: 10.1038/s41586-020-2012-7
    [23] P. Zola, P. Cortez, M. Carpita, Twitter user geolocation using web country noun searches, Decis. Support Syst., 120 (2019), 50–59. https://doi.org/10.1016/j.dss.2019.03.006 doi: 10.1016/j.dss.2019.03.006
    [24] M. Caceres, R. Grant, Geolocation API, W3C Recommendation, 2022. https://www.w3.org/TR/geolocation/
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1452) PDF downloads(80) Cited by(1)

Article outline

Figures and Tables

Figures(11)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog