Research article Special Issues

Existence of solutions for impulsive wave equations

  • Received: 30 September 2022 Revised: 16 January 2023 Accepted: 25 January 2023 Published: 07 February 2023
  • MSC : 35L05, 35R12, 55M20

  • We study a class of initial value problems for impulsive nonlinear wave equations. A new topological approach is applied to prove the existence of at least one and at least two nonnegative classical solutions. To prove our main results we give a suitable integral representation of the solutions of the considered problem. Then, we construct two operators so that any fixed point of their sum is a solution.

    Citation: Svetlin G. Georgiev, Khaled Zennir, Keltoum Bouhali, Rabab alharbi, Yousif Altayeb, Mohamed Biomy. Existence of solutions for impulsive wave equations[J]. AIMS Mathematics, 2023, 8(4): 8731-8755. doi: 10.3934/math.2023438

    Related Papers:

  • We study a class of initial value problems for impulsive nonlinear wave equations. A new topological approach is applied to prove the existence of at least one and at least two nonnegative classical solutions. To prove our main results we give a suitable integral representation of the solutions of the considered problem. Then, we construct two operators so that any fixed point of their sum is a solution.



    加载中


    [1] A. Acosta, H. Leiva, Robustness of the controllability for the heat equation under the influence of multiple impulses and delays, Quaest. Math., 41 (2018), 761–772. https://doi.org/10.2989/16073606.2017.1399941 doi: 10.2989/16073606.2017.1399941
    [2] R. P. Agarwal, H. Leiva, L. Riera, S. Lalvay, Existence of solutions for impulsive neutral semilinear evolution equations with nonlocal conditions, Discontinuity, Nonlinearity Complexity, 11 (2022), 1–18.
    [3] A. T. Asanova, Z. M. Kadirbayeva, É. A. Bakirova, On the unique solvability of a nonlocal boundary-value problem for systems of loaded hyperbolic equations with impulsive actions, Ukr. Math. J., 69 (2018), 1175–1195. https://doi.org/10.1007/s11253-017-1424-5 doi: 10.1007/s11253-017-1424-5
    [4] D. Bainov, P. Simeonov, Impulsive differential equations: periodic solutions and applications, Chapman and Hall/CRC, 1993.
    [5] D. Bainov, Z. Kamont, E. Minchev, Periodic boundary value problem for impulsive hyperbolic partial differential equations of first order, Appl. Math. Comput., 68 (1995), 95–104. https://doi.org/10.1016/0096-3003(94)00083-G doi: 10.1016/0096-3003(94)00083-G
    [6] D. Bainov, D. Kolev, K. Nakagawa, The control of the blowing-up time for the solution of the semilinear parabolic equation with impulsive effect, J. Korean Math. Soc., 37 (2000), 793–802.
    [7] J. Banas, K. Goebel, Measures of noncompactness in Banach spaces, Bull. London Math. Soc., 13 (1981), 583–584. https://doi.org/10.1112/blms/13.6.583b doi: 10.1112/blms/13.6.583b
    [8] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, Hindawi Publishing Corporation, 2006. https://doi.org/10.1155/9789775945501
    [9] A. Boucherif, A. S. Al-Qahtani, B. Chanane, Existence of solutions for impulsive parabolic partial differential equations, Numer. Funct. Anal. Optim., 36 (2015), 730–747. https://doi.org/10.1080/01630563.2015.1031381 doi: 10.1080/01630563.2015.1031381
    [10] E. de Mello Bonotto, P. Kalita, On attractors of generalized semiflows with impulses, J. Geom. Anal., 30 (2020), 1412–1449. https://doi.org/10.1007/s12220-019-00143-0 doi: 10.1007/s12220-019-00143-0
    [11] C. Y. Chan, L. Ke, Remarks on impulsive quenching problems, Proc. Dyn. Syst. Appl., 1 (1994), 59–62.
    [12] C. Y. Chan, K. Deng, Impulsive effects on global existence of solutions of semi-linear heat equations, Nonlinear Anal., 26 (1996), 1481–1489. https://doi.org/10.1016/0362-546X(95)00026-R doi: 10.1016/0362-546X(95)00026-R
    [13] S. Dashkovskiy, P. Feketa, O. Kapustyan, I. Romaniuk, Invariance and stability of global attractors for multi-valued impulsive dynamical systems, J. Math. Anal. Appl., 458 (2018), 193–218. https://doi.org/10.1016/j.jmaa.2017.09.001 doi: 10.1016/j.jmaa.2017.09.001
    [14] S. Djebali, K. Mebarki, Fixed point index theory for perturbation of expansive mappings by $k$-set contractions, Topol. Methods Nonlinear Anal., 54 (2019), 613–640. https://doi.org/10.12775/tmna.2019.055 doi: 10.12775/tmna.2019.055
    [15] P. Drabek, J. Milota, Methods in nonlinear analysis, applications to differential equations, Birkhäuser, 2007. https://doi.org/10.1007/978-3-0348-0387-8
    [16] C. Duque, J. Uzcátegui, H. Leiva, O. Camacho, Controllability of the Burgers equation under the influence of impulses, delay and nonlocal condition, Int. J. Appl. Math., 33 (2020), 573–583. https://doi.org/10.12732/ijam.v33i4.2 doi: 10.12732/ijam.v33i4.2
    [17] L. H. Erbe, H. I. Freedman, X. Z. Liu, J. H. Wu, Comparison principles for impulsive parabolic equations with applications to models of single species growth, Anziam J., 32 (1991), 382–400. https://doi.org/10.1017/S033427000000850X doi: 10.1017/S033427000000850X
    [18] P. Feketa, V. Klinshovb, L. Lucken, A survey on the modeling of hybrid behaviors: How to account for impulsive jumps properly, Commun. Nonlinear Sci. Numer. Simul., 103 (2022), 105955. https://doi.org/10.1016/j.cnsns.2021.105955 doi: 10.1016/j.cnsns.2021.105955
    [19] J. da Costa Ferreira, M. C. Pereira, A nonlocal Dirichlet problem with impulsive action: estimates of the growth for the solutions, C. R. Math., 358 (2020), 1119–1128. https://doi.org/10.5802/crmath.109 doi: 10.5802/crmath.109
    [20] W. Gao, J. Wang, Estimates of solutions of impulsive parabolic equations under Neumann boundary condition, J. Math. Anal. Appl., 283 (2003), 478–490. https://doi.org/10.1016/S0022-247X(03)00275-0 doi: 10.1016/S0022-247X(03)00275-0
    [21] S. G. Georgiev, K. Zennir, Existence of solutions for a class of nonlinear impulsive wave equations, Ric. Mate., 71 (2022), 211–225. https://doi.org/10.1007/s11587-021-00649-2 doi: 10.1007/s11587-021-00649-2
    [22] A. Georgieva, S. Kostadinov, G. T. Stamov, J. O. Alzabut, $L_{p}(k)-$equivalence of impulsive differential equations and its applications to partial impulsive differential equations, Adv. Differ. Equations, 2012 (2012), 144. https://doi.org/10.1186/1687-1847-2012-144 doi: 10.1186/1687-1847-2012-144
    [23] E. M. Hern$\acute{a}$ndez, S. M. T. Aki, H. Henr$\acute{i}$quez, Global solutions for impulsive abstract partial differential equations, Comput. Math. Appl., 56 (2008), 1206–1215. https://doi.org/10.1016/j.camwa.2008.02.022 doi: 10.1016/j.camwa.2008.02.022
    [24] I. M. Isaryuk, I. D. Pukalskyi, Boundary-value problem with impulsive conditions and degeneration for parabolic equations, Ukr. Math. J., 57 (2016), 1515–1526. https://doi.org/10.1007/s11253-016-1169-6 doi: 10.1007/s11253-016-1169-6
    [25] M. Kirane, Y. V. Rogovchenko, Comparison results for systems of impulse parabolic equations with applications to population dynamics, Nonlinear Anal., 28 (1997), 263–276. https://doi.org/10.1016/0362-546X(95)00159-S doi: 10.1016/0362-546X(95)00159-S
    [26] V. Lakshmikantham, Y. Yin, Existence and comparison principle for impulsive parabolic equations with variable times, Nonlinear World, 4 (1997), 145–156.
    [27] H. Leiva, P. Sundar, Approximate controllability of the Burgers equation with impulses and delay, Far East J. Math. Sci., 102 (2017), 2291–2306. https://doi.org/10.17654/MS102102291 doi: 10.17654/MS102102291
    [28] H. Leiva, Z. Sivoli, Existence, stability and smoothness of bounded solutions for an impulsive semilinear system of parabolic equations, Afr. Mat., 29 (2018), 1225–1235. https://doi.org/10.1007/s13370-018-0617-x doi: 10.1007/s13370-018-0617-x
    [29] H. Leiva, Karakostas fixed point theorem and the existence of solutions for impulsive semilinear evolution equations with delays and nonlocal conditions, Commun. Math. Anal., 21 (2018), 68–91.
    [30] H. Li, Y. Zhang, Variational method to nonlinear fourth-order impulsive partial differential equations, Adv. Mater. Res., 2011 (2011), 878–882. https://doi.org/10.4028/www.scientific.net/AMR.261-263.878 doi: 10.4028/www.scientific.net/AMR.261-263.878
    [31] Z. Liu, Z. Yang, Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness, Discrete Cont. Dyn. Syst. B, 25 (2020), 223–240. https://doi.org/10.3934/dcdsb.2019179 doi: 10.3934/dcdsb.2019179
    [32] J. H. Liu, Nonlinear impulsive evolution equations, Dyn. Cont. Discrete Impuls. Syst., 6 (1999), 77–85.
    [33] K. Nakagawa, Existence of a global solution for an impulsive semilinear parabolic equation and its asymptotic behaviour, Commun. Appl. Anal., 4 (2000), 403–409.
    [34] E. E. Ndiyo, J. J. Etuk, U. S. Jim, Distribution solutions for impulsive evolution partial differential equations, Br. J. Math. Comput. Sci., 9 (2015), 407–417. https://doi.org/10.9734/BJMCS/2015/8209 doi: 10.9734/BJMCS/2015/8209
    [35] E. Ndiyo, J. Etuk, A. Aaron, Existence and uniqueness of solution of impulsive Hamilton-Jacobi equation, Palest. J. Math., 8 (2019), 103–106.
    [36] A. Özbekler, K. U. Işler, A Sturm comparison criterion for impulsive hyperbolic equations, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math., 114 (2020), 86. https://doi.org/10.1007/s13398-020-00813-7 doi: 10.1007/s13398-020-00813-7
    [37] A. D. Polyanin, A. V. Manzhirov, Handbook of integral equations, CRC Press, 1998.
    [38] I. D. Pukalskyi, B. O. Yashan, Boundary-value problem with impulsive action for a parabolic equation with degeneration, Ukr. Math. J., 71 (2019), 735–748. https://doi.org/10.1007/s11253-019-01674-z doi: 10.1007/s11253-019-01674-z
    [39] I. Rachunková, J. Tomeček, State-dependent impulses, Springer, 2015.
    [40] Y. V. Rogovchenko, Nonlinear impulse evolution systems and applications to population models, J. Math. Anal. Appl., 207 (1997), 300–315. https://doi.org/10.1006/jmaa.1997.5245 doi: 10.1006/jmaa.1997.5245
    [41] G. Song, Estimates of solutions of impulsive parabolic equations and application, Int. J. Biomath., 1 (2008), 257–266. https://doi.org/10.1142/S1793524508000217 doi: 10.1142/S1793524508000217
    [42] I. Stamova, Stability analysis of impulsive functional differential equations, Gruyter Expos. Math., 52 (2009), 203. https://doi.org/10.1515/9783110221824 doi: 10.1515/9783110221824
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1287) PDF downloads(89) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog