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1. Introduction

Mechanical systems with impact, heart beats, blood flows, population dynamics, industrial
robotics, biotechnology, economics, etc are real world and applied science phenomena which are
abruptly changed in their states at some time instants due to short time perturbations whose duration
is negligible in comparison with the duration of these phenomena, please see [18]. They are called
impulsive phenomena. A natural framework for mathematical simulation of such phenomena are
impulsive differential equations or impulsive partial differential equations when more factors are
taking into account.
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Whereas impulsive differential equations are well studied, see for example the books [4, 8, 39, 42]
and the references therein, the literature concerning impulsive partial differential equations does not
seem to be very rich. The history of impulsive partial differential equations starts at the end of
the 20th century with the pioneering work [17], in which, impulsive partial differential systems have
been showed to be a natural framework for the mathematical modeling of processes in ecology and
biology, like population growth, see also [10, 11, 13, 31]. We can find studies of first order partial
differential equations with impulses in [5, 23, 32, 40]. Higher-order linear and nonlinear impulsive
partial parabolic equations were considered in [22]. An initial boundary value problem for a nonlinear
parabolic partial differential equation was discussed in [9]. The approximate controllability of an
impulsive semilinear heat equation was proved in [1]. A class of impulsive wave equations was
investigated in [21]. In [29] a class of impulsive semilinear evolution equations with delays is
investigated for existence and uniqueness of solutions. The investigations in [29] includes several
important partial differential equations such as the Burgers equation and the Benjamin-Bona-Mohany
equation with impulses, delays and nonlocal conditions. A class of semilinear neutral evolution
equations with impulses and nonlocal conditions in a Banach space is investigated in [2] for existence
and uniqueness of solutions. To prove the main results in [2] the authors use a Karakostas fixed point
theorem. In [2] an example involving Burger’s equation is provided to illustrate the application of the
main results. Some studies concerning impulsive Burgers equation can be found in [16, 27, 34].

Many classical methods have been successfully applied for solving impulsive partial differential
equations. By using variational method, the existence of solutions for a fourth-order impulsive partial
differential equations with periodic boundary conditions was obtained in [30]. The Krasnoselskii
theorem is used to prove existence and uniqueness of solutions for impulsive Hamilton-Jacobi
equation in [35]. Some other references on impulsive partial differential equations
are: [3, 6, 12, 19, 20, 24–26, 28, 33, 36, 38, 41].

In this paper, we investigate the following impulsive wave equation

utt − ∆xu = f (t, x, u, ut, ux), t ∈ [0,T ], x ∈ Rn,

ut(0, x) = λut(T, x), x ∈ Rn,

u(0, x) = u0(x), x ∈ Rn,

u(tk+, x) = u(tk, x) + Jk(u(tk, x)), x ∈ Rn,

(1.1)

where

(H1) T = tm+1 > tm > . . . > t1 > t0 = 0, J = [0,T ], J0 = J\{tk}
m
k=1, m ∈ N, λ , 1.

(H2) Jk ∈ C([0,T ] × Rn), |Jk(v)| ≤ A|v|rk , v ∈ R, rk > 0, k ∈ {1, . . . ,m}, A > 0 is a constant.

(H3) u0 ∈ C
1(Rn), |u0| ≤ B on Rn.

(H4) f ∈ C([0,T ] × Rn × R × R × Rn),

| f (t, x, u, v,w)| ≤
r∑

j=1

a j(t, x)|u|p j + b j(t, x)|v|q j +

n∑
i=1

c ji(t, x)|wi|
r ji

 ,
t ∈ [0,T ], x ∈ Rn, u, v,w ∈ R, a j, b j, c ji ∈ C([0,T ] × Rn), 0 ≤ a j, b j, c ji ≤ C on [0,T ] × Rn,
C > 0, p j, q j, r ji > 0, j ∈ {1, . . . , r}, i ∈ {1, . . . , n}, r ∈ N.
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Here
ux = (ux1 , . . . , uxn),

u(tk, x) = lim
t→tk−

u,

u(tk+, x) = lim
t→tk+

u.

The main aim of this paper is to investigate the problem (1.1) for existence and non-uniqueness of
solutions. The main objective in this article is to show and develop some topological methods in order
to prove the existence of solutions to the problem from many points of view and angles under different
conditions to give a good and useful data and information on the solutions to the implementers to be
exploited in the best way.

The work is organized as follows. In the next section, we give some preliminary results and tools.
In Section 3, we prove existence of at least one solution for the problem (1.1). In Section 4, we prove
existence of at least one nonnegative solution of the problem (1.1). In Section 5, we prove existence of
at least two nonnegative solutions of the problem (1.1). In Section 6, we give an example that illustrates
our main results.

2. Tools

Some preliminary tools are needed to prove the main results. The following fixed point theorem for
a sum of two operators is used to prove existence of at least one solution to the problem (1.1).

Theorem 2.1. Let ε ∈ (0, 1), B > 0, E be a Banach space and X = {x ∈ E: ‖x‖ ≤ B}. Let also,
T x = −εx, x ∈ X, S : X → E is continuous, (I − S )(X) resides in a compact subset of E and

{x ∈ E : x = λ(I − S )x, ‖x‖ = B} = ∅, (2.1)

for any λ ∈
(
0, 1

ε

)
. Then there exists a x∗ ∈ X so that

T x∗ + S x∗ = x∗.

Here µX = {µx: x ∈ X} for any µ ∈ R.

Proof. Define

r
(
−

1
ε

x
)

=


−1
ε
x, if ‖x‖ ≤ Bε,

Bx
‖x‖ , if ‖x‖ > Bε.

Then r
(
−1
ε
(I − S )

)
: X → X is continuous and compact. Now, we apply the Schauder fixed point

theorem and we conclude that there exists x∗ ∈ X so that

r
(
−

1
ε

(I − S )x∗
)

= x∗.

Assume that −1
ε
(I − S )x∗ < X. Then∥∥∥∥(I − S )x∗

∥∥∥∥ > Bε,
B

‖(I − S )x∗‖
<

1
ε
,
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and

x∗ =
B

‖(I − S )x∗‖
(I − S )x∗ = r

(
−

1
ε

(I − S )x∗
)
,

and hence, ‖x∗‖ = B. This contradicts with (2.1). Therefore −1
ε
(I − S )x∗ ∈ X and

x∗ = r
(
−

1
ε

(I − S )x∗
)

= −
1
ε

(I − S )x∗,

or
−εx∗ + S x∗ = x∗,

or
T x∗ + S x∗ = x∗.

This completes the proof.

Let X be a real Banach space.

Definition 2.1. A mapping K: X → X is said to be completely continuous if it is continuous and maps
bounded sets into relatively compact sets.

The concept for l-set contraction is related to that of the Kuratowski measure of noncompactness
which we recall for completeness.

Definition 2.2. Let ΩX be the class of all bounded sets of X. The Kuratowski measure of
noncompactness α: ΩX → [0,∞) is defined by

α(Y) = inf

δ > 0 : Y =

m⋃
j=1

Y j and diam(Y j) ≤ δ, j ∈ {1, . . . ,m}

 ,
where diam(Y j) = sup{‖x − y‖X: x, y ∈ Y j} is the diameter of Y j, j ∈ {1, . . . ,m}.

For the main properties of measure of noncompactness we refer the reader to [7].

Definition 2.3. A mapping K: X → X is said to be l-set contraction if it is continuous, bounded and
there exists a constant l ≥ 0 such that

α(K(Y)) ≤ lα(Y),

for any bounded set Y ⊂ X. The mapping K is said to be a strict set contraction if l < 1.

Obviously, if K: X → X is a completely continuous mapping, then K is 0-set contraction (see [15]).

Definition 2.4. Let X and Y be real Banach spaces. A mapping K: X → Y is said to be expansive if
there exists a constant h > 1 such that

‖Kx − Ky‖Y ≥ h‖x − y‖X,

for any x, y ∈ X.

Definition 2.5. A closed, convex set P in X is said to be cone if
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(1) αx ∈ P for any α ≥ 0 and for any x ∈ P,

(2) x,−x ∈ P implies x = 0.

Denote P∗ = P\{0}.

Lemma 2.1. Let X be a closed convex subset of a Banach space E and U ⊂ X a bounded open subset
with 0 ∈ U. Assume there exists ε > 0 small enough and that K: U → X is a strict k-set contraction
that satisfies the boundary condition:

Kx < {x, λx} for all x ∈ ∂U and λ ≥ 1 + ε.

Then i (K,U, X) = 1.

Proof. Consider the homotopic deformation H: [0, 1] × U → X defined by

H(t, x) =
1

ε + 1
tKx.

The operator H is continuous and uniformly continuous in t for each x, and the mapping H(t, .) is a
strict set contraction for each t ∈ [0, 1]. In addition, H(t, .) has no fixed point on ∂U. On the contrary,
• If t = 0, there exists some x0 ∈ ∂U such that x0 = 0, contradicting x0 ∈ U.
• If t ∈ (0, 1], there exists some x0 ∈ P∩∂U such that 1

ε+1 tKx0 = x0; then Kx0 = 1+ε
t x0 with 1+ε

t ≥ 1+ε,

contradicting the assumption. From the invariance under homotopy and the normalization properties
of the index, we deduce

i (
1

ε + 1
K,U, X) = i (0,U, X) = 1.

Now, we show that

i (K,U, X) = i (
1

ε + 1
K,U, X).

We have
1

ε + 1
Kx , x, ∀ x ∈ ∂U. (2.2)

Then there exists γ > 0 such that

‖x −
1

ε + 1
Kx‖ ≥ γ, ∀ x ∈ ∂U.

In other hand, we have 1
ε+1 Kx→ Kx as ε → 0, for x ∈ U. So for ε small enough

‖Kx −
1

ε + 1
Kx‖ <

γ

2
, ∀ x ∈ ∂U.

Define the convex deformation G: [0, 1] × U → X by

G(t, x) = tKx + (1 − t)
1

ε + 1
Kx.
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The operator G is continuous and uniformly continuous in t for each x, and the mapping G(t, .) is a
strict set contraction for each t ∈ [0, 1] (since t + 1

ε+1 (1 − t) < t + 1 − t = 1). In addition, G(t, .) has no
fixed point on ∂U. In fact, for all x ∈ ∂U, we have

‖x −G(t, x)‖ = ‖x − tKx − (1 − t) 1
ε+1 Kx‖

≥ ‖x − 1
ε+1 Kx‖ − t‖Kx − 1

ε+1 Kx‖
> γ − γ

2 >
γ

2 .

Then our claim follows from the invariance property by homotopy of the index.

Proposition 2.1. Let P be a cone in a Banach space E. Let also, U be a bounded open subset of P
with 0 ∈ U. Assume that T: Ω ⊂ P → E is an expansive mapping with constant h > 1, S : U → E is a
l-set contraction with 0 ≤ l < h − 1, and S (U) ⊂ (I − T )(Ω). If there exists ε ≥ 0 such that

S x , {(I − T )(x), (I − T )(λx)} for all x ∈ ∂U ∩Ω and λ ≥ 1 + ε,

then the fixed point index i∗ (T + S ,U ∩Ω,P) = 1.

Proof. The mapping (I − T )−1S : U → P is a strict set contraction and it is readily seen that the
following condition is satisfied

(I − T )−1S x < {x, λx}, for all x ∈ ∂U and λ ≥ 1 + ε.

Our claim then follows from the definition of i∗ and the following Lemma 2.1.

The following result will be used to prove existence of at least two nonnegative solutions to the
problem (1.1).

Theorem 2.2. Let P be a cone of a Banach space E; Ω a subset of P and U1,U2 and U3 three open
bounded subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T: Ω → P is an expansive
mapping with constant h > 1, S : U3 → E is a k-set contraction with 0 ≤ k < h − 1 and S (U3) ⊂
(I − T )(Ω). Suppose that (U2 \ U1) ∩Ω , ∅, (U3 \ U2) ∩Ω , ∅, and there exists u0 ∈ P

∗ such that the
following conditions hold:

(i) S x , (I − T )(x − λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω + λu0).

(ii) There exists ε ≥ 0 such that S x , (I − T )(λx), for all λ ≥ 1 + ε, x ∈ ∂U2 and λx ∈ Ω.

(iii) S x , (I − T )(x − λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω + λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩Ω and x2 ∈ (U3 \ U2) ∩Ω,

or
x1 ∈ (U2 \ U1) ∩Ω and x2 ∈ (U3 \ U2) ∩Ω.
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Proof. If
S x = (I − T )x,

for x ∈ ∂U2 ∩Ω, then we get a fixed point x1 ∈ ∂U2 ∩Ω of the operator T + S .
Suppose that

S x , (I − T )x,

for any x ∈ ∂U2 ∩Ω. Without loss of generality, assume that

T x + S x , x on ∂U1 ∩Ω and T x + S x , x on ∂U3 ∩Ω.

Then, by Propositions 2.11 and 2.16 in [14] and Proposition 2.1, we have

i∗ (T + S ,U1 ∩Ω,P) = i∗ (T + S ,U3 ∩Ω,P) = 0 and i∗ (T + S ,U2 ∩Ω,P) = 1.

The additivity property of the index yields

i∗ (T + S , (U2 \ U1) ∩Ω,P) = 1 and i∗ (T + S , (U3 \ U2) ∩Ω,P) = −1.

Consequently, by the existence property of the index, T + S has at least two fixed points x1 ∈

(U2 \ U1) ∩Ω and x2 ∈ (U3 \ U2) ∩Ω.

For l, s ∈ N ∪ {0}, define

PCl([0,T ]) = {g : g(l−1) ∈ PCl−1([0,T ]), ∃g(l),

and it is continuous on (tk, tk+1)∃ lim
t→tk+

g(l)(t) and lim
t→tk

g(l)(t)},

and

PCl([0,T ],Cs(Rn)) = {u : u(·, x) ∈ PCl([0,T ]), x ∈ Rn, u(t, ·) ∈ Cs(Rn), t ∈ [0,T ]}.

In E = PC2([0,T ],C2(Rn)), define a norm

‖u‖ = max{ max
j∈{0,1,...,m}

sup
(t,x)∈[t j,t j+1]×Rn

|u(t, x)|,

max
j∈{0,1,...,m}

sup
(t,x)∈[t j,t j+1]×Rn

|ut(t, x)|,

max
j∈{0,1,...,m}

sup
(t,x)∈[t j,t j+1]×Rn

|utt(t, x)|,

max
j∈{0,1,...,m}

sup
(t,x)∈[t j,t j+1]×Rn

|uxi(t, x)|,

max
j∈{0,1,...,m}

sup
(t,x)∈[t j,t j+1]×Rn

|uxi xi(t, x)|, i ∈ {1, . . . , n}},

provided it exists. Note that E is a Banach space. For u ∈ E, set

f1(t, x, u(t, x), ut(t, x), ux(t, x)) =
λ

1 − λ

∫ T

0
(∆xu(s, x) + f (s, x, u(s, x), ut(s, x), ux(s, x))) ds

+

∫ t

0
(∆xu(s, x) + f (s, x, u(s, x), ut(s, x), ux(s, x))) ds,

t ∈ [0,T ], x ∈ Rn.

AIMS Mathematics Volume 8, Issue 4, 8731–8755.



8738

Lemma 2.2. Suppose (H1) and (H4). Then for any u ∈ E with ‖u‖ ≤ B, we have

| f (t, x, u(t, x), ut(t, x), ux(t, x))| ≤ C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji

 ,
and

| f1(t, x, u(t, x), ut(t, x), ux(t, x))| ≤
(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 ,

for t ∈ [0,T ] and x ∈ Rn.

Proof. We have

| f (t, x, u(t, x), ut(t, x), ux(t, x))| ≤
r∑

j=1

(
a j(t, x)|u(t, x)|p j + b j(t, x)|ut(t, x)|q j

+

n∑
i=1

c ji(t, x)|uxi(t, x)|r ji

)
≤ C

r∑
j=1

Bp j + Bq j +

n∑
i=1

Br ji

 ,
for t ∈ [0,T ], x ∈ Rn. Next,

| f1(t, x, u(t, x), ut(t, x), ux(t, x))|

=

∣∣∣∣∣∣ λ

1 − λ

∫ T

0
(∆xu(s, x) + f (s, x, u(s, x), ut(s, x), ux(s, x))) ds

+

∫ t

0
(∆xu(s, x) + f (s, x, u(s, x), ut(s, x), ux(s, x))) ds

∣∣∣∣∣∣
≤

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣ ∫ T

0
(|∆xu(s, x)| + | f (s, x, u(s, x), ut(s, x), ux(s, x))|) ds

+

∫ t

0
(|∆xu(s, x)| + | f (s, x, u(s, x), ut(s, x), ux(s, x))|) ds

≤

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) ∫ T

0
(|∆xu(s, x)| + | f (s, x, u(s, x), ut(s, x), ux(s, x))|) ds

≤

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 ,

for t ∈ [0,T ], x ∈ Rn. This completes the proof.

For u ∈ E, define

S 1u(t, x) = u(t, x) −
∫ t

0
f1(s, x, u(s, x), ut(s, x), ux(s, x))ds − u0(x) −

∑
0<tk<t

Jk(u(tk, x)), t ∈ [0,T ], x ∈ Rn.
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Lemma 2.3. Suppose (H1)–(H4). If u ∈ E satisfies the equation S 1u = 0 on [0,T ]×Rn, then u satisfies
the problem (1.1).

Proof. We have

u(t, x) =

∫ t

0
f1(s, x, u(s, x), ut(s, x), ux(s, x))ds + u0(x) +

∑
0<tk<t

Jk(u(tk, x)), t ∈ [0,T ], x ∈ Rn.

Then
u(0, x) = u0(x), x ∈ Rn,

and

u(t j+, x) =

∫ t j

0
f1(s, x, u(s, x), ut(s, x), ux(s, x))ds

+ u0(x) +
∑

0<tk<t j+

Jk(u(tk, x)), x ∈ Rn, j ∈ {1, . . . ,m},

and

u(t j, x) =

∫ t j

0
f1(s, x, u(s, x), ut(s, x), ux(s, x))ds

+ u0(x) +
∑

0<tk<t j

Jk(u(tk, x)), x ∈ Rn, j ∈ {1, . . . ,m}.

By the last two equations, we find

u(t j+, x) = u(t j, x) + J j(u(t j, x)), x ∈ Rn, j ∈ {1, . . . ,m}.

Next,

ut(t, x) = f1(t, x, u(t, x), ut(t, x), ux(t, x))

=
λ

1 − λ

∫ T

0
(∆xu(s, x) + f (s, x, u(s, x), ut(s, x), ux(s, x))) ds

+

∫ t

0
(∆xu(s, x) + f (s, x, u(s, x), ut(s, x), ux(s, x))) ds,

and
utt(t, x) = ∆xu(t, x) + f (t, x, u(t, x), ut(t, x), ux(t, x)),

for t ∈ [0,T ], x ∈ Rn. Hence,

ut(0, x) =
λ

1 − λ

∫ T

0
(∆xu(s, x) + f (s, x, u(s, x), ut(s, x), ux(s, x))) ds,

ut(T, x) =
1

1 − λ

∫ T

0
(∆xu(s, x) + f (s, x, u(s, x), ut(s, x), ux(s, x))) ds, x ∈ Rn.

Therefore
ut(0, x) = λut(T, x), x ∈ Rn.

This completes the proof.
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Lemma 2.4. Suppose (H1)–(H4). For u ∈ E, ‖u‖ ≤ B, we have

|S 1u(t, x)| ≤ 2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk , t ∈ [0,T ], x ∈ Rn.

Proof. We have, using Lemma 2.2,

|S 1u(t, x)| =
∣∣∣∣u(t, x) −

∫ t

0
f1(s, x, u(s, x), ut(s, x), ux(s, x))ds − u0(x) −

∑
0<tk<t

Jk(u(tk, x))
∣∣∣∣

≤ |u(t, x)| +
∫ t

0
| f1(s, x, u(s, x), ut(s, x), ux(s, x))|ds + |u0(x)| +

∑
0<tk<t

|Jk(u(tk, x))|

≤ |u(t, x)| +
∫ t

0
| f1(s, x, u(s, x), ut(s, x), ux(s, x))|ds + |u0(x)| + A

∑
0<tk<t

|u(tk, x)|rk

≤ B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + B + A

m∑
k=1

Brk

= 2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji




+ A
m∑

k=1

Brk , t ∈ [0,T ], x ∈ Rn.

This completes the proof.

(H5) Now, suppose that D is a positive constant and g is a nonnegative continuous function on Rn.
Moreover g > 0 on Rn\{∪n

i=1{xi = 0}},

g(0, x2, . . . , xn) = g(x1, 0, x3, . . . , xn) = . . . = g(x1, . . . , xn−1, 0) = 0, x1, . . . , xn ∈ R,

and

216(1 + T + T 2 + T 3)
n∏

j=1

(
1 + |x j| + x2

j + |x j|
3
) ∣∣∣∣∣∫ x

0
g(y)dy

∣∣∣∣∣ ≤ D, x ∈ Rn,

where ∫ x

0
=

∫ x1

0
. . .

∫ xn

0
, dy = dyn . . . dy1.

In the last section, we will give an example for the constant D and the function g that satisfy (H5).
For u ∈ E, define the operator

S 2u(t, x) =

∫ t

0
(t − s)3

∫ x

0

n∏
j=1

(x j − y j)3g(y)S 1u(s, y)dyds, t ∈ [0,T ], x ∈ Rn.
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Lemma 2.5. Suppose (H1)–(H4). If u ∈ E satisfies the equation

S 2u(t, x) = a, t ∈ [0,T ], x ∈ Rn, (2.3)

for some constant a, then u satisfies the problem (1.1).

Proof. We differentiate four times in t and four times in x1, . . ., xn the Eq (2.3) and we get

g(x)S 1u(t, x) = 0, t ∈ [0,T ], x ∈ Rn,

whereupon
S 1u(t, x) = 0, t ∈ [0,T ], x ∈ Rn\{∪n

i=1{xi = 0}}.

Since S 1 is continuous, we get

S 1u(t, 0, x2, . . . , xn) = lim
x1→0

S 1u(t, x1, x2, . . . , xn)
= . . .

= S 1u(t, x1, . . . , xn−1, 0)
= lim

xn→0
S 1u(t, x1, . . . , xn) = 0, x1, . . . , xn ∈ R.

Thus,
S 1u(t, x) = 0, t ∈ [0,T ], x ∈ Rn.

Hence and Lemma 2.3, we conclude that u satisfies the problem (1.1). This completes the proof.

Lemma 2.6. Suppose (H1)–(H5). If u ∈ E and ‖u‖ ≤ B, then

‖S 2u‖ ≤ D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 .
Proof. We have

|S 2u(t, x)| =

∣∣∣∣∣∣
∫ t

0
(t − s)3

∫ x

0

n∏
j=1

(x j − y j)3g(y)S 1u(s, y)dyds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ t

0
(t − s)3

∫ x

0

n∏
j=1

(x j − y j)3g(y)|S 1u(s, y)|dyds

∣∣∣∣∣∣
≤

2B + T

C r∑
j=1

Bp j + Bq j +

n∑
i=1

Br ji

 + nB

 + A
m∑

k=1

Brk


×

∣∣∣∣∣∣
∫ t

0
(t − s)3

∫ x

0

n∏
j=1

(x j − y j)3g(y)dyds

∣∣∣∣∣∣
≤

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk
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×216(1 + T + T 2 + T 3)
n∏

j=1

(
1 + |x j| + x2

j + |x j|
3
) ∣∣∣∣∣∫ x

0
g(y)dy

∣∣∣∣∣
≤ D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 ,
t ∈ [0,T ], x ∈ Rn, and

|(S 2u)t(t, x)| =

∣∣∣∣∣∣3
∫ t

0
(t − s)2

∫ x

0

n∏
j=1

(x j − y j)3g(y)S 1u(s, y)dyds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣3
∫ t

0
(t − s)2

∫ x

0

n∏
j=1

(x j − y j)3g(y)|S 1u(s, y)|dyds

∣∣∣∣∣∣
≤ 3

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk


×

∣∣∣∣∣∣
∫ t

0
(t − s)2

∫ x

0

n∏
j=1

(x j − y j)3g(y)dyds

∣∣∣∣∣∣
≤

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk


×216(1 + T + T 2 + T 3)

n∏
j=1

(
1 + |x j| + x2

j + |x j|
3
) ∣∣∣∣∣∫ x

0
g(y)dy

∣∣∣∣∣
≤ D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 ,
t ∈ [0,T ], x ∈ Rn, and

|(S 2u)tt(t, x)| =

∣∣∣∣∣∣6
∫ t

0
(t − s)

∫ x

0

n∏
j=1

(x j − y j)3g(y)S 1u(s, y)dyds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣6
∫ t

0
(t − s)

∫ x

0

n∏
j=1

(x j − y j)3g(y)|S 1u(s, y)|dyds

∣∣∣∣∣∣
≤ 6

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk


×

∣∣∣∣∣∣
∫ t

0
(t − s)

∫ x

0

n∏
j=1

(x j − y j)3g(y)dyds

∣∣∣∣∣∣
≤

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk
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×216(1 + T + T 2 + T 3)
n∏

j=1

(
1 + |x j| + x2

j + |x j|
3
) ∣∣∣∣∣∫ x

0
g(y)dy

∣∣∣∣∣
≤ D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 ,
t ∈ [0,T ], x ∈ Rn, and

|(S 2u)xl(t, x)| =

∣∣∣∣∣∣3
∫ t

0
(t − s)3

∫ x

0

n∏
j=1, j,l

(x j − y j)3(xl − yl)2g(y)S 1u(s, y)dyds

∣∣∣∣∣∣
≤ 3

∣∣∣∣∣∣
∫ t

0
(t − s)3

∫ x

0

n∏
j=1, j,l

(x j − y j)3(xl − yl)2g(y)|S 1u(s, y)|dyds

∣∣∣∣∣∣
≤ 3

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk


×

∣∣∣∣∣∣
∫ t

0
(t − s)3

∫ x

0

n∏
j=1, j,l

(x j − y j)3(xl − yl)2g(y)dyds

∣∣∣∣∣∣
≤

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk


×216(1 + T + T 2 + T 3)

n∏
j=1

(
1 + |x j| + x2

j + |x j|
3
) ∣∣∣∣∣∫ x

0
g(y)dy

∣∣∣∣∣
≤ D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 ,
t ∈ [0,T ], x ∈ Rn, l ∈ {1, . . . , n}, and

|(S 2u)xl xl(t, x)| =

∣∣∣∣∣∣6
∫ t

0
(t − s)3

∫ x

0

n∏
j=1, j,l

(x j − y j)3(xl − yl)g(y)S 1u(s, y)dyds

∣∣∣∣∣∣
≤ 6

∣∣∣∣∣∣
∫ t

0
(t − s)3

∫ x

0

n∏
j=1, j,l

(x j − y j)3(xl − yl)g(y)|S 1u(s, y)|dyds

∣∣∣∣∣∣
≤ 6

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk


×

∣∣∣∣∣∣
∫ t

0
(t − s)3

∫ x

0

n∏
j=1, j,l

(x j − y j)3(xl − yl)g(y)dyds

∣∣∣∣∣∣
≤

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk
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× 216(1 + T + T 2 + T 3)
n∏

j=1

(
1 + |x j| + x2

j + |x j|
3
) ∣∣∣∣∣∫ x

0
g(y)dy

∣∣∣∣∣
≤ D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 ,
t ∈ [0,T ], x ∈ Rn, l ∈ {1, . . . , n}. Consequently

‖S 2u‖ ≤ D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 .
This completes the proof.

3. Existence of at least one solution

Now, suppose that

(H6) D
(
2B +

(
1 +

∣∣∣ λ
1−λ

∣∣∣) T 2

(
nB + C

r∑
j=1

(
Bp j + Bq j +

n∑
i=1

Br ji

))
+ A

m∑
k=1

Brk

)
< B.

(H7) ε
(
B + D

(
2B +

(
1 +

∣∣∣ λ
1−λ

∣∣∣) T 2

(
nB + C

r∑
j=1

(
Bp j + Bq j +

n∑
i=1

Br ji

))
+ A

m∑
k=1

Brk

))
≤ B.

Let X2 be the set of all equi-continuous families in E, X3 = X2 ∪ {u0}, X̃ = X3. Let also,

X = {u ∈ X̃ : ‖u‖ ≤ B}.

For u ∈ E, define the operators

Tu(t, x) = −εu(t, x),
S u(t, x) = (1 + ε)u(t, x) + εS 2u(t, x), t ∈ [0,T ], x ∈ Rn.

By Lemma 2.5, it follows that any fixed point of the operator T + S is a solution to the problem
(1.1).

Lemma 3.1. Suppose that (H1)–(H7) hold. For u ∈ X, we have

‖(I − S )u‖ ≤ B and ‖((1 + ε)I − S )u‖ < εB.

Proof. By Lemma 2.6, we get

‖(I − S )u‖ = ‖ − εu − εS 2u‖ ≤ ε‖u‖ + ε‖S 2u‖

≤ ε

B + D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk




≤ B,
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and

‖((1 + ε)I − S )u‖ = ‖εS 2u‖ = ε‖S 2u‖

≤ εD

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk


< εB.

This completes the proof.

Our main result in this section is as follows.

Theorem 3.1. Suppose that (H1)–(H7) hold. Then the problem (1.1) has at least one solution.

Proof. By Lemma 3.1, it follows that I − S : X → X and it is continuous. Since the continuous map of
equi-continuous families are equi-continuous families, we conclude that (I−S )(X) resides in a compact
subset of E. Now, assume that there is an u ∈ ∂X and λ ∈

(
0, 1

ε

)
so that

λ(I − S )u = u,

or
1
λ

u = −εu − εS 2u,

or (
1
λ

+ ε

)
u = −εS 2u = ((1 + ε)I − S )u,

whereupon

εB <

(
1
λ

+ ε

)
B =

(
1
λ

+ ε

)
‖u‖ = ε‖S 2u‖ = ‖((1 + ε)I − S )u‖ < εB.

This is a contradiction. Hence and Theorem 2.1, it follows that the operator T + S has a fixed point
and the problem (1.1) has at least one solution.

4. Existence of at least one nonnegative solution

Let
X1 = {u ∈ X̃ : u ≥ 0, ‖u‖ ≤ B}.

Below, suppose that

(H8)

D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 + B ≤ r̃,

ε
(
B + D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 + r̃
)
≤ B,

D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 + r̃ < 2B.
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For u ∈ E, define the operator

S̃ u(t, x) = (1 + ε)u(t, x) + εS 2u(t, x) − ε r̃, t ∈ [0,T ], x ∈ Rn.

Lemma 4.1. Suppose that (H1)–(H5) and (H8) hold. If u ∈ E is a fixed point of the operator T + S̃ ,
then it satisfies the problem (1.1).

Proof. We have

u(t, x) = Tu(t, x) + S̃ u(t, x) = −εu(t, x) + (1 + ε)u(t, x) + εS 2u(t, x) − ε r̃, t ∈ [0,T ], x ∈ Rn,

whereupon
0 = S 2u(t, x) − r̃, t ∈ [0,T ], x ∈ Rn.

Now, we apply Lemma 2.5 and we get the desired result. This completes the proof.

Lemma 4.2. Suppose that (H1)–(H5) and (H8) hold. Then I − S̃ : X1 → X1,

‖(I − S̃ )u‖ ≤ B and ‖((1 + ε)I − S̃ )u‖ < 2εB, u ∈ X1.

Proof. Take u ∈ X1 arbitrarily. Then

(I − S̃ )u = −εu − εS 2u + ε r̃.

Since

‖ − εu − εS 2u‖ ≤ ε‖u‖ + ε‖S 2u‖

≤ ε

B + D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk




≤ ε r̃,

where we have used the first inequality of (H8), we conclude that (I − S̃ )u ≥ 0. Next, using the second
inequality of (H8), we get

‖(I − S̃ )u‖ = ‖ − εu − εS 2u + ε r̃‖

≤ ε‖u‖ + ε‖S 2u‖ + ε r̃

≤ ε

B + D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 + r̃


≤ B.

Thus, I − S̃ : X1 → X1. Moreover,

‖((1 + ε)I − S̃ )u‖ = ‖ − εS 2u + ε r̃‖

≤ ε‖S 2u‖ + ε r̃

≤ ε

D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 + r̃


< 2εB,

where we have used the third inequality of (H8). This completes the proof.
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Our main result in this section is as follows.

Theorem 4.1. Suppose that (H1)–(H5) and (H8) hold. Then the problem (1.1) has at least one
nonnegative solution.

Proof. By Lemma 4.2, we have that I − S̃ : X1 → X1 and it is continuous and (I − S̃ )(X1) resides in a
compact subset of E. Now, assume that there are an u ∈ ∂X1 and λ ∈

(
0, 1

ε

)
so that

λ(I − S̃ )u = u,

or
1
λ

u = (I − S̃ )u = −εu − εS 2u + εR̃,

or (
1
λ

+ ε

)
u = −εS 2u + ε r̃ = ((I + ε)I − S̃ )u.

Hence, applying Lemma 4.2, we get

2εB <

(
1
λ

+ ε

)
B =

(
1
λ

+ ε

)
‖u‖ = ‖((1 + ε)I − S̃ )u‖ < 2εB.

This is a contradiction. From here, applying Lemma 4.1 and Theorem 2.1, we get that the problem
(1.1) has at least one nonnegative solution. This completes the proof.

5. Existence of at least two nonnegative solutions

Suppose

(H9) Let m > 0 be large enough and A, B, ˜̃r, L, R1 be positive constants that satisfy the following
conditions ˜̃r < L < R1, ε > 0, R1 >

(
2

5m
+ 1

)
L,

D

2R1 +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nR1 + C
r∑

j=1

Rp j

1 + Rq j

1 +

n∑
i=1

Rr ji

1


 + A

m∑
k=1

Rrk
1

 < L
5
.

For u ∈ E, define the operators

T1u(t, x) = (1 + mε)u(t, x) − ε
L
10
,

S 3u(t, x) = −εS 2u(t, x) − mεu(t, x) − ε
L
10
, t ∈ [0,T ], x ∈ Rn.

Our main result in this section is as follows.

Theorem 5.1. Suppose that (H1)–(H5) and (H9) hold. Then the problem (1.1) has at least two
nonnegative solutions.
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Proof. Define

P = {u ∈ E : u ≥ 0 on [0,T ] × Rn},

P∗ = P\{0},
U1 = P˜̃r = {v ∈ P : ‖v‖ < ˜̃r},
U2 = PL = {v ∈ P : ‖v‖ < L},

U3 = PR1 = {v ∈ P : ‖v‖ < R1},

R2 = R1 +
D
m

2R1 +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nR1 + C
r∑

j=1

Rp j

1 + Rq j

1 +

n∑
i=1

Rr ji

1


 + A

m∑
k=1

Rrk
1

 +
L

5m
,

Ω = PR2 = {v ∈ P : ‖v‖ ≤ R2}.

(1) For v1, v2 ∈ Ω, we have

‖T1v1 − T1v2‖ = (1 + mε)‖v1 − v2‖,

whereupon T1: Ω→ E is an expansive operator with a a constant 1
mε .

(2) For v ∈ PR1 , we get

‖S 3v‖ ≤ ε‖S 2v‖ + mε‖v‖ + ε
L
10

≤ ε
(
D

2R1 +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nR1 + C
r∑

j=1

Rp j

1 + Rq j

1 +

n∑
i=1

Rr ji

1


 + A

m∑
k=1

Rrk
1


+ mR1 +

L
10

)
.

Therefore S 3(PR1) is uniformly bounded. Since S 3 : PR1 → E is continuous, we have that S 3(PR1)
is equi-continuous. Consequently S 3: PR1 → E is a 0-set contraction.

(3) Let v1 ∈ PR1 . Set

v2 = v1 +
1
m

S 2v1 +
L

5m
.

Note that S 2v1 + L
5 ≥ 0 on [a, b]. We have v2 ≥ 0 on [a, b] and

‖v2‖ ≤ ‖v1‖ +
1
m
‖S 2v1‖ +

L
5m

≤ R1 +
D
m

2R1 +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nR1 + C
r∑

j=1

Rp j

1 + Rq j

1 +

n∑
i=1

Rr ji

1


 + A

m∑
k=1

Rrk
1

 +
L

5m

= R2.

Therefore v2 ∈ Ω and

−εmv2 = −εmv1 − εS 2v1 − ε
L
10
− ε

L
10
,
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or

(I − T1)v2 = −εmv2 + ε
L
10

= S 3v1.

Consequently S 3(PR1) ⊂ (I − T1)(Ω).

(4) Assume that for any u0 ∈ P
∗ there exist λ ≥ 0 and u ∈ ∂Pr ∩ (Ω + λu0) or u ∈ ∂PR1 ∩ (Ω + λu0)

such that
S 3u = (I − T1)(u − λu0).

Then
−εS 2u − mεu − ε

L
10

= −mε(u − λu0) + ε
L
10
,

or
−S 2u = λmu0 +

L
5
.

Hence,

‖S 2u‖ =

∥∥∥∥∥λmu0 +
L
5

∥∥∥∥∥ > L
5
.

This is a contradiction.

(5) Suppose that for any ε1 ≥ 0 small enough there exist a u1 ∈ ∂PL and λ1 ≥ 1+ε1 such that λ1u1 ∈ PR1

and
S 3u1 = (I − T1)(λ1u1). (5.1)

In particular, for ε1 >
2

5m , we have u1 ∈ ∂PL, λ1u1 ∈ PR1 , λ1 ≥ 1+ε1 and (5.1) holds. Since u1 ∈ ∂PL

and λ1u1 ∈ PR1 , it follows that (
2

5m
+ 1

)
L < λ1L = λ1‖u1‖ ≤ R1.

Moreover,

−εS 2u1 − mεu1 − ε
L
10

= −λ1mεu1 + ε
L
10
,

or
S 2u1 +

L
5

= (λ1 − 1)mu1.

From here,

2
L
5
≥

∥∥∥∥∥S 2u1 +
L
5

∥∥∥∥∥ = (λ1 − 1)m‖u1‖ = (λ1 − 1)mL

and
2

5m
+ 1 ≥ λ1,

which is a contradiction.
Therefore all conditions of Theorem 2.2 hold. Hence, the problem (1.1) has at least two solutions

u1 and u2 so that
‖u1‖ = L < ‖u2‖ < R1,

or
r < ‖u1‖ < L < ‖u2‖ < R1.

This completes the proof.
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6. An example

Let T = 1, n = 1, m = 3, t1 = 1
4 , t2 = 1

3 , t3 = 1
2 . Consider the problem

utt − uxx = u2, t ∈
[
0,

1
4

)
∪

(
1
4
,

1
3

)
∪

(
1
3
,

1
2

)
∪

(
1
2
, 1

]
, x ∈ R,

ut(0, x) = 2ut(1, x), x ∈ Rn,

u(0, x) =
1

1 + x2 , x ∈ R,

u(tk+, x) = u(tk, x) + (u(tk, x))4, x ∈ R, k ∈ {1, 2, 3}.

Here
A = 1, B = 1, C = 1, r = 1, λ = 2.

Then

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk = 2 + 3(1 + 3) + 3 = 17.

Take
D = ε =

1
1050 , r̃ =

3
2
, R1 = 1, ˜̃r =

1
8
, L +

1
2
, m = 1050.

Then,

D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 =
17

1050 < 1 = B,

and

ε

B + D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk




=
1

1050

(
1 +

17
1050

)
< 1 = B.

Thus, (H6) and (H7) hold. Hence and Theorem 3.1, it follows that the considered problem has at
least one solution. Next,

D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 + B =
17

1050 + 1 <
3
2

= r̃,

and

ε

B + D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 + r̃
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=
1

1050

(
1 +

17
1050 +

3
2

)
< 1 = B,

and

D

2B +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nB + C
r∑

j=1

Bp j + Bq j +

n∑
i=1

Br ji


 + A

m∑
k=1

Brk

 +
3
2

=
17

1050 +
3
2
< 2 = 2B.

Therefore (H8) holds. By Theorem 4.1, it follows that the considered problem has at least one
nonnegative solution. Moreover,

˜̃r < L < r1, R1 = 1 >
(

2
5 · 1050 + 1

)
1
2

=

(
2

5m
+ 1

)
L,

and

D

2R1 +

(
1 +

∣∣∣∣∣ λ

1 − λ

∣∣∣∣∣) T 2

nR1 + C
r∑

j=1

Rp j

1 + Rq j

1 +

n∑
i=1

Rr ji

1


 + A

m∑
k=1

Rrk
1

 =
17

1050 <
1
10

=
L
5
.

Consequently (H9) holds. By Theorem 5.1, it follows that the considered problem has at least two
nonnegative solutions.

Now, we will construct a function g for arbitrary n. Let

h(x) = log
1 + s11

√
2 + s22

1 − s11
√

2 + s22
, l(s) = arctan

s11
√

2
1 − s22 , s ∈ R.

Then

h′(s) =
22
√

2s10(1 − s22)

(1 − s11
√

2 + s22)(1 + s11
√

2 + s22)
,

l′(s) =
11
√

2s10(1 + s20)
1 + s40 , s ∈ R.

Therefore

−∞ < lim
s→±∞

(1 + |s| + s2 + |s|3)h(s) < ∞,

−∞ < lim
s→±∞

(1 + |s| + s2 + |s|3)l(s) < ∞.

Hence, there exists a positive constant C1 so that

(1 + |s| + s2 + |s|3)
 1

44
√

2
log

1 + s11
√

2 + s22

1 − s11
√

2 + s22
+

1

22
√

2
arctan

s11
√

2
1 − s22

 ≤ C1,

(1 + |s| + s2 + |s|3)
 1

44
√

2
log

1 + s11
√

2 + s22

1 − s11
√

2 + s22
+

1

22
√

2
arctan

s11
√

2
1 − s22

 ≤ C1,
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s ∈ R. Note that by [37], we have∫
dz

1 + z4 =
1

4
√

2
log

1 + z
√

2 + z2

1 − z
√

2 + z2
+

1

2
√

2
arctan

z
√

2
1 − z2 .

Let

Q(s) =
s10

(1 + s2)4(1 + s44)(1 + s + s2)2 , s ∈ R,

and
g1(x) = Q(x1)Q(x2) . . .Q(xn), x ∈ Rn.

Then there exists a positive constant C2 so that

216(1 + T + T 2 + T 3)
n∏

j=1

(
1 + |x j| + x2

j + |x j|
3
) ∣∣∣∣∣∫ x

0
g1(y)dy

∣∣∣∣∣ ≤ C2, x ∈ Rn.

Take g(x) = D
C2

g1(x), x ∈ Rn. Hence,

216(1 + T + T 2 + T 3)
n∏

j=1

(
1 + |x j| + x2

j + |x j|
3
) ∣∣∣∣∣∫ x

0
g(y)dy

∣∣∣∣∣ ≤ D, x ∈ Rn.

7. Conclusions

In this paper, we investigate initial value problems for impulsive nonlinear wave equations. We
reduce the considered problem to a suitable integral equation. Then, we define two operators and
show that any fixed point of their sum is a solution of the considered problem. After this, we apply
recent fixed point theorems and we show that the considered problem has at least one and at least
two classical solutions. The proposed approach can be applied for other classes impulsive partial
differential equations.
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