Let $ p $ stand for an odd prime and let $ \eta\in \mathbb Z^+ $ (the set of positive integers). Let $ \mathbb F_q $ denote the finite field having $ q = p^\eta $ elements and $ \mathbb F_q^* = \mathbb F_q\setminus \{0\} $. In this paper, when the determinants of exponent matrices are coprime to $ q-1 $, we use the Smith normal form of exponent matrices to derive exact formulas for the numbers of rational points on the affine varieties over $ \mathbb F_q $ defined by
$ \left\{ \begin{aligned} &a_1x_1^{d_{11}}...x_n^{d_{1n}}+... +a_sx_1^{d_{s1}}...x_n^{d_{sn}} = b_1,\\ &a_{s+1}x_1^{d_{s+1,1}}...x_n^{d_{s+1,n}}+... +a_{s+t}x_1^{d_{s+t,1}}...x_n^{d_{s+t,n}} = b_2 \end{aligned} \right. $
and
$ \left\{ \begin{aligned} &c_1x_1^{e_{11}}...x_m^{e_{1m}}+... +c_rx_1^{e_{r1}}...x_m^{e_{rm}} = l_1,\\ &c_{r+1}x_1^{e_{r+1,1}}...x_m^{e_{r+1,m}}+... +c_{r+k}x_1^{e_{r+k,1}}...x_m^{e_{r+k,m}} = l_2,\\ &c_{r+k+1}x_1^{e_{r+k+1,1}}...x_m^{e_{r+k+1,m}}+... +c_{r+k+w}x_1^{e_{r+k+w,1}}...x_m^{e_{r+k+w,m}} = l_3, \end{aligned} \right. $
respectively, where $ d_{ij}, e_{i'j'}\in \mathbb Z^+, a_i, c_{i'}\in \mathbb F_q^*, i = 1, ..., s+t,$ $j = 1, ..., n, i' = 1, ..., r+k+w, j' = 1, ..., m, $ and $ b_1, b_2, l_1, l_2, l_3\in \mathbb F_q $. These formulas extend the theorems obtained by Q. Sun in 1997. Our results also give a partial answer to an open question posed by S.N. Hu, S.F. Hong and W. Zhao [The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory 156 (2015), 135–153].
Citation: Guangyan Zhu, Shiyuan Qiang, Mao Li. Counting rational points of two classes of algebraic varieties over finite fields[J]. AIMS Mathematics, 2023, 8(12): 30511-30526. doi: 10.3934/math.20231559
Let $ p $ stand for an odd prime and let $ \eta\in \mathbb Z^+ $ (the set of positive integers). Let $ \mathbb F_q $ denote the finite field having $ q = p^\eta $ elements and $ \mathbb F_q^* = \mathbb F_q\setminus \{0\} $. In this paper, when the determinants of exponent matrices are coprime to $ q-1 $, we use the Smith normal form of exponent matrices to derive exact formulas for the numbers of rational points on the affine varieties over $ \mathbb F_q $ defined by
$ \left\{ \begin{aligned} &a_1x_1^{d_{11}}...x_n^{d_{1n}}+... +a_sx_1^{d_{s1}}...x_n^{d_{sn}} = b_1,\\ &a_{s+1}x_1^{d_{s+1,1}}...x_n^{d_{s+1,n}}+... +a_{s+t}x_1^{d_{s+t,1}}...x_n^{d_{s+t,n}} = b_2 \end{aligned} \right. $
and
$ \left\{ \begin{aligned} &c_1x_1^{e_{11}}...x_m^{e_{1m}}+... +c_rx_1^{e_{r1}}...x_m^{e_{rm}} = l_1,\\ &c_{r+1}x_1^{e_{r+1,1}}...x_m^{e_{r+1,m}}+... +c_{r+k}x_1^{e_{r+k,1}}...x_m^{e_{r+k,m}} = l_2,\\ &c_{r+k+1}x_1^{e_{r+k+1,1}}...x_m^{e_{r+k+1,m}}+... +c_{r+k+w}x_1^{e_{r+k+w,1}}...x_m^{e_{r+k+w,m}} = l_3, \end{aligned} \right. $
respectively, where $ d_{ij}, e_{i'j'}\in \mathbb Z^+, a_i, c_{i'}\in \mathbb F_q^*, i = 1, ..., s+t,$ $j = 1, ..., n, i' = 1, ..., r+k+w, j' = 1, ..., m, $ and $ b_1, b_2, l_1, l_2, l_3\in \mathbb F_q $. These formulas extend the theorems obtained by Q. Sun in 1997. Our results also give a partial answer to an open question posed by S.N. Hu, S.F. Hong and W. Zhao [The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory 156 (2015), 135–153].
[1] | J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255–261. https://doi.org/10.2307/2373163 doi: 10.2307/2373163 |
[2] | W. Cao, Q. Sun, A reduction for counting the number of zeros of general diagonal equation over finite fields, Finite Fields Appl. 12 (2006), 681–692. https://doi.org/10.1016/j.ffa.2005.07.001 doi: 10.1016/j.ffa.2005.07.001 |
[3] | W. Cao, Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195–202. https://doi.org/10.4064/aa130-2-8 doi: 10.4064/aa130-2-8 |
[4] | L. Carlitz, Pairs of quadratic equations in a finite field, Amer. J. Math., 76 (1954), 137–154. https://doi.org/10.2307/2372405 doi: 10.2307/2372405 |
[5] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. https://doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5 |
[6] | Y. L. Feng, S. F. Hong, Improvements of $p$-adic estimates of exponential sums, Proc. Amer. Math. Soc., 150 (2022), 3687–3698. https://doi.org/10.1090/proc/15995 doi: 10.1090/proc/15995 |
[7] | S. F. Hong, $L$-functions of twisted diagonal exponential sums over finite fields, Proc. Amer. Math. Soc., 135 (2007), 3099–3108. https://doi.org/10.1090/s0002-9939-07-08873-9 doi: 10.1090/s0002-9939-07-08873-9 |
[8] | S. F. Hong, C. X. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697–708. https://doi.org/10.1515/forum-2020-0354 doi: 10.1515/forum-2020-0354 |
[9] | S. N. Hu, S. F. Hong, W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135–153. https://doi.org/10.1016/j.jnt.2015.04.006 doi: 10.1016/j.jnt.2015.04.006 |
[10] | S. N. Hu, X. E. Qin, J. Y. Zhao, Counting rational points of an algebraic variety over finite fields, Results Math., 74 (2019), 37. https://doi.org/10.1007/s00025-019-0962-6 doi: 10.1007/s00025-019-0962-6 |
[11] | S. N. Hu, J. Y. Zhao, The number of rational points of a family of algebraic variety over finite fields, Algebra Colloq., 24 (2017), 705–720. https://doi.org/10.1142/S1005386717000475 doi: 10.1142/S1005386717000475 |
[12] | L. K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin-Heidelberg, 1982. https://mathscinet.ams.org/mathscinet/article?mr = 665428 |
[13] | H. Huang, W. Gao, W. Cao, Remarks on the number of rational points on a class of hypersurfaces over finite fields, Algebra Colloq., 25 (2018), 533–540. https://doi.org/10.1142/S1005386718000366 doi: 10.1142/S1005386718000366 |
[14] | L. K. Hua, H. S. Vandiver, Characters over certain types of rings with applications to the theory of equations in a finite field, Proc. Nat. Acad. Sci., 35 (1949), 94–99. https://doi.org/10.1073/pnas.35.2.94 doi: 10.1073/pnas.35.2.94 |
[15] | G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95–99. https://doi.org/10.1016/0022-314X(79)90023-4 doi: 10.1016/0022-314X(79)90023-4 |
[16] | D. R. Richman, Some remarks on the number of solutions to the equation $f(x_1)+...+f(x_n) = 0$, Stud. Appl. Math., 71 (1984), 263–266. https://doi.org/10.1002/sapm1984713263 doi: 10.1002/sapm1984713263 |
[17] | Q. Sun, On diagonal equations over finite fields, Finite Fields Appl., 3 (1997), 175–179. https://doi.org/10.1006/ffta.1996.0173 doi: 10.1006/ffta.1996.0173 |
[18] | Q. Sun, On the formula of the number of solutions of some equations over finite fields, Chinese Ann. Math. Ser. A, 18 (1997), 403–408. |
[19] | D. Q. Wan, Zeros of diagonal equations over finite fields, Proc. Amer. Math. Soc., 103 (1988), 1049–1052. https://doi.org/10.1090/s0002-9939-1988-0954981-2 doi: 10.1090/s0002-9939-1988-0954981-2 |
[20] | W. S. Wang, Q. Sun, The number of solutions of certain equations over a finite field, Finite Fields Appl., 11 (2005), 182–192. https://doi.org/10.1016/j.ffa.2004.06.004 doi: 10.1016/j.ffa.2004.06.004 |
[21] | W. S. Wang, Q. Sun, An explicit formula of solution of some special equations over a finite field, Chinese Ann. Math. Ser. A, 26 (2005), 391–396. |
[22] | A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA, 34 (1948), 204–207. https://doi.org/10.1073/pnas.34.5.204 doi: 10.1073/pnas.34.5.204 |
[23] | J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247–257. https://doi.org/10.1016/0022-314X(92)90091-3 doi: 10.1016/0022-314X(92)90091-3 |
[24] | J. Wolfmann, New results on diagonal equations over finite fields from cyclic codes, in: Finite Fields: Theory, Applications, and Algorithms (Las Vegas, NV, 1993), Contemp. Math., 168, Amer. Math. Soc., Providence, RI, (1994), 387–395. https://dx.doi.org/10.1090/conm/168 |
[25] | J. Y. Zhao, Y. L. Feng, S. F. Hong, C. X. Zhu, On the number of zeros of diagonal quartic forms over finite fields, Forum Math., 34 (2022), 385–405. https://doi.org/10.1515/forum-2021-0196 doi: 10.1515/forum-2021-0196 |
[26] | C. X. Zhu, Y. L. Feng, S. F. Hong, J. Y. Zhao, On the number of zeros to the equation $f(x_1)+...+f(x_n) = a$ over finite fields, Finite Fields Appl., 78 (2021), 101922. https://doi.org/10.1016/j.ffa.2021.101922 doi: 10.1016/j.ffa.2021.101922 |
[27] | G. Y. Zhu, S. A. Hong, On the number of rational points of certain algebraic varieties over finite fields, Forum Math., 35 (2023), 1511–1532. https://doi.org/10.1515/forum-2022-0324 doi: 10.1515/forum-2022-0324 |