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Abstract: Let p stand for an odd prime and let η ∈ Z+ (the set of positive integers). Let Fq denote the
finite field having q = pη elements and F∗q = Fq \ {0}. In this paper, when the determinants of exponent
matrices are coprime to q − 1, we use the Smith normal form of exponent matrices to derive exact
formulas for the numbers of rational points on the affine varieties over Fq defined bya1xd11

1 ...x
d1n
n + ... + asx

ds1
1 ...x

dsn
n = b1,

as+1xds+1,1
1 ...xds+1,n

n + ... + as+tx
ds+t,1
1 ...xds+t,n

n = b2

and 
c1xe11

1 ...x
e1m
m + ... + cr xer1

1 ...x
erm
m = l1,

cr+1xer+1,1
1 ...xer+1,m

m + ... + cr+kxer+k,1
1 ...xer+k,m

m = l2,

cr+k+1xer+k+1,1
1 ...xer+k+1,m

m + ... + cr+k+wxer+k+w,1
1 ...xer+k+w,m

m = l3,

respectively, where di j, ei′ j′ ∈ Z
+, ai, ci′ ∈ F

∗
q, i = 1, ..., s+ t, j = 1, ..., n, i′ = 1, ..., r + k +w, j′ = 1, ...,m,

and b1, b2, l1, l2, l3 ∈ Fq. These formulas extend the theorems obtained by Q. Sun in 1997. Our results
also give a partial answer to an open question posed by S.N. Hu, S.F. Hong and W. Zhao [The number
of rational points of a family of hypersurfaces over finite fields, J. Number Theory 156 (2015), 135–
153].
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1. Introduction

Throughout this paper, p will always denote an odd prime, Z+ and Fq denote the set of positive
integers and the finite field having q = pη elements, respectively, where η ∈ Z+. Then F∗q := Fq \ {0}
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forms a group under the multiplicative operation. For any finite set S, |S| means its cardinality. Let
λ, n ∈ Z+ and ⟨λ⟩ be the set of the first λ positive integers. Let x1, ..., xn−1 and xn be n indeterminates in
Fq, and for brevity, let x = (x1, ..., xn). Let f1(x), ..., fλ(x) be the system of n-variable polynomials over
Fq, and we denote by V( f1, ..., fλ) = V( f1(x), ..., fλ(x)) the affine variety determined by the vanishing of
these polynomials. Define

N(V) =
∣∣∣{x = (x1, ..., xn) ∈ Fn

q : f1(x) = ... = fλ(x) = 0}
∣∣∣ .

When λ = 1, one writes N(V) = N( f ). Finding an accurate formula for N(V) is a common
and significant subject. However, such a problem is hard in general. In the past 70 years, many
mathematicians were devoted to this subject and made much vital progress (see [1–11, 13–27]).

In 1997, the number N( f ) of rational points over Fq on the following affine hypersurface

f = a1xe11
1 ...x

e1n
n + ... + asx

es1
1 ...x

esn
n − b = 0, ei j ∈ Z

+, ai ∈ F
∗
q, b ∈ Fq, i ∈ ⟨s⟩, j ∈ ⟨n⟩

was investigated by Sun [18]. Besides, the accurate formula for the number N( f ) of rational points was
found in [18]:

N( f ) =


qn − (q − 1)n +

q − 1
q

A(n − 1) if b = 0,

1
q

A(n) otherwise

provided s = n and gcd(det(ei j), q − 1) = 1, where A(s) := (q − 1)s − (−1)s, ∀s ∈ Z+. Eight years later,
the result of [18] was successfully extended by Wang and Sun [21]. Actually, they attained a formula
for the number of (x1, ...xn2) ∈ F

n2
q on the following hypersurface

a1xd11
1 ...x

d1n1
n1
+ ... + an1 x

dn1 ,1

1 ...x
dn1 ,n1
n1 + an1+1x

dn1+1,1

1 ...x
dn1+1,n2
n2 + ... + an2 x

dn2 ,1

1 ...x
dn2 ,n2
n2 = b

with di j ∈ Z
+, ai ∈ F

∗
q, 1 ≤ i, j ≤ n2.

In 2015, Hu, Hong and Zhao [9] gave a uniform generalization to the results of [20, 21]. Actually,
they used the Smith normal form to deduce an accurate formula for N( f ) of (x1, ...xnt) ∈ F

nt
q on the

hypersurface over Fq defined by

f := f (x1, ..., xnt) =
t−1∑
j=0

r j+1−r j∑
i=1

ar j+ix
er j+i,1

1 ...x
er j+i,n j+1
n j+1 − b, (1.1)

where the integers t > 0, 0 = r0 < r1 < r2 < ... < rt, 1 ≤ n1 < n2 < ... < nt, b ∈ Fq, ai ∈ F
∗
q and ei j ∈ Z

+,
i ∈ ⟨rt⟩, j ∈ ⟨nt⟩. Under some restrictions on f , a little bit simple formula about the number of rational
points on the hypersurface (1.1) was given in [13]. One notices that the result of [9] was extended by
Hu and Zhao [11] from the hypersurface case to certain algebraic variety case.

An open problem was raised at the end of [9, Section 3]. For the case of the variety consisting of
two hypersurfaces, Hu, Qin and Zhao [10] and Zhu and Hong [27] obtained some partial answers to
this problem. In other words, Hu, Qin and Zhao [10] gave an explicit formula for N(V( f1, f2)), where

f1 :=
r1∑

i=1

a1ix
e(1)

i1
1 ...x

e(1)
i,n1

n1 +

r2∑
i=r1+1

a1ix
e(1)

i1
1 ...x

e(1)
i,n2

n2 − b1

f2 :=
r3∑

i′=1

a2i′ x
e(2)

i′1
1 ...x

e(2)
i,n3

n3 +

r4∑
i′=r3+1

a2i′ x
e(2)

i′1
1 ...x

e(2)
i′ ,n4

n4 − b2
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with 1 ≤ r1 < r2, 1 ≤ r3 < r4, 1 ≤ n1 < n2, 1 ≤ n3 < n4, e(1)
i, j , e(2)

i′, j′ ∈ Z
+, b1, b2 ∈ Fq, and a1i, a2i′ ∈ F

∗
q,

i ∈ ⟨r2⟩, i′ ∈ ⟨r4⟩, j ∈ ⟨n2⟩, j′ ∈ ⟨n4⟩. Zhu and Hong [27] used and developed the techniques in [9] to
get an exact formula for the number of rational points on V = V( f1, f2) over Fq with

f1 := f1(x1, ..., xnt) =
r∑

i=1

a(1)
i x

e(1)
i1

1 ...x
e(1)

in
n − b1,

f2 := f2(x1, ..., xnt) =
t−1∑
j′=0

r j′+1−r j′∑
i′=1

a(2)
r j′+i′ x

e(2)
r j′+i′ ,1

1 ...x
e(2)

r j′+i′ ,n j′+1
n j′+1

− b2,

(1.2)

where bi ∈ Fq, i = 1, 2, t ∈ Z+, 0 = n0 < n1 < n2 < ... < nt, nk−1 < n ≤ nk for some k ∈ ⟨t⟩,
0 = r0 < r1 < r2 < ... < rt, a(1)

i , a
(2)
i′ ∈ F

∗
q, i ∈ ⟨r⟩, i

′ ∈ ⟨rt⟩,e
(1)
i, j , e(2)

i′, j′ ∈ Z
+, j ∈ ⟨n⟩, j′ ∈ ⟨nt⟩.

Inspired by the works of [9, 18, 21, 27], we consider in this paper the question of counting rational
points on the variety V( f1, f2) with f1 := a1xd11

1 ...x
d1n
n + ... + asx

ds1
1 ...x

dsn
n − b1,

f2 := as+1xds+1,1
1 ...xds+1,n

n + ... + as+tx
ds+t,1
1 ...xds+t,n

n − b2,
(1.3)

and the variety V( f1, f2, f3) with
f1 := c1xe11

1 ...x
e1m
m + ... + cr xer1

1 ...x
erm
m − l1,

f2 := cr+1xer+1,1
1 ...xer+1,m

m + ... + cr+kxer+k,1
1 ...xer+k,m

m − l2,

f3 := cr+k+1xer+k+1,1
1 ...xer+k+1,m

m + ... + cr+k+wxer+k+w,1
1 ...xer+k+w,m

m − l3,

(1.4)

where di j, ei′ j′ ∈ Z
+, ai, ci′ ∈ F

∗
q, i ∈ ⟨s+ t⟩, j ∈ ⟨n⟩, i′ ∈ ⟨r+ k+w⟩, j′ ∈ ⟨m⟩, and b1, b2, l1, l2, l3 ∈ Fq. Let

E1 =



d11 d12 · · · d1n
...

...
...

ds1 ds2 · · · dsn

ds+1,1 ds+1,2 · · · ds+1,n
...

...
...

ds+t,1 ds+t,2 · · · ds+t,n


(1.5)

with di j, i ∈ ⟨s + t⟩, j ∈ ⟨n⟩ being given as in (1.3), and let

E2 =



e11 e12 · · · e1m
...

...
...

er1 er2 · · · erm

er+1,1 er+1,2 · · · er+1,m
...

...
...

er+k,1 er+k,2 · · · er+k,m

er+k+1,1 er+k+1,2 · · · er+k+1,m
...

...
...

er+k+w,1 er+k+w,2 · · · er+k+w,m



(1.6)
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with ei′ j′ , i′ ∈ ⟨r + k + w⟩, j′ ∈ ⟨m⟩ being given as in (1.4).
From [12], it guarantees the existences of unimodular matrices U2 and V2 with the property

U2E2V2 =

(
D2 0
0 0

)
, (1.7)

where
D2 := diag(g(E2)

1 , ..., g
(E2)
v′ )

with g(E2)
1 , ..., g

(E2)
v′ ∈ Z

+ and g(E2)
1 |...|g

(E2)
v′ . The diagonal matrix on the right side of (1.7) is called Smith

normal form of E2, and abbreviated as SNF(E2). That is,

SNF(E2) =
(
D2 0
0 0

)
.

Fix α ∈ F∗q as a primitive element of Fq, then for any β ∈ F∗q, one can find a unique integer γ ∈
[1, q − 1] with β = αγ, and such an integer γ is said to be the index of β on the basis α. We write
indαβ := γ.

Consider the variety defined by 

r∑
i=1

civi = l1,

r+k∑
i=r+1

civi = l2,

r+k+w∑
i=r+k+1

civi = l3,

(1.8)

where ci′ , l1, l2, l3, i′ ∈ ⟨r + k + w⟩ are given as in (1.4). Let N denote the number of rational points
(v1, ..., vr+k+w) ∈ (F∗q)r+k+w on (1.8) satisfying gcd(q − 1, g(E2)

j )|h(E2)
j for j ∈ ⟨v′⟩

(q − 1)|h(E2)
j for j ∈ ⟨r + k + w⟩ \ ⟨v′⟩,

(1.9)

where
(h(E2)

1 , ..., h
(E2)
r+k+w)T := U2(indα(v1), ..., indα(vr+k+w))T.

We can now state our main results.

Theorem 1.1. Let V be the variety defined by (1.3). If s + t = n and gcd(q − 1, det(E1)) = 1, then

N(V) =



qn − (q − 1)n +
(q − 1)2

q2 A(s − 1)A(t − 1) if b1 = b2 = 0,

q − 1
q2 A(s)A(t − 1) if b1 , 0, b2 = 0,

q − 1
q2 A(s − 1)A(t) if b1 = 0, b2 , 0,

1
q2 A(s)A(t) if b1 , 0, b2 , 0.

(1.10)
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Theorem 1.2. Let V be the variety defined by (1.4). Then

N(V) =

qm − (q − 1)m +N R if l1 = l2 = l3 = 0,
N R otherwise,

(1.11)

where R := (q − 1)m−v′
v′∏
j=1

gcd(q − 1, g(E2)
j ).

From Theorem 1.2, one can derive the third main result of this paper as follows.

Theorem 1.3. Let V denote the affine variety defined by (1.4). If r+k+w = m and gcd(q−1, det(E2)) =
1, then

N(V) =



qm − (q − 1)m +
(q − 1)3

q3 A(r − 1)A(k − 1)A(w − 1) if ll = l2 = l3 = 0,

(q − 1)2

q3 A(r − 1)A(k − 1)A(w) if ll = l2 = 0, l3 , 0,

(q − 1)2

q3 A(r − 1)A(k)A(w − 1) if ll = l3 = 0, l2 , 0,

(q − 1)2

q3 A(r)A(k − 1)A(w − 1) if l1 , 0, l2 = l3 = 0,

q − 1
q3 A(r)A(k)A(w − 1) if ll , 0, l2 , 0, l3 = 0,

q − 1
q3 A(r)A(k − 1)A(w) if ll , 0, l2 = 0, l3 , 0,

q − 1
q3 A(r − 1)A(k)A(w) if l1 = 0, l2 , 0, l3 , 0,

1
q3 A(r)A(k)A(w) if l1 , 0, l2 , 0, l3 , 0.

(1.12)

Obviously, Theorems 1.1 to 1.3 also give a partial answer to the open problem proposed at the end
of [9, Section 3].

In Section 2, in order to prove Theorems 1.1 to 1.3, we give several auxiliary results. Then in
Section 3, one presents the details of the proofs of Theorems 1.1 to 1.3. Finally, four examples are
provided in Section 4.

2. Auxiliary results

In this section, we present several preliminary results which are needed in the proofs of Theorems
1.1 to 1.3. We begin with a result due to Zhu and Hong [27].

Lemma 2.1. [27, Lemma 2.6] Let ci j ∈ F
∗
q, i ∈ ⟨m⟩, j ∈ ⟨ki⟩, c1, ..., cm ∈ Fq. Let N(c1, ..., cm) stand for

the number of (u11, ..., u1k1 , ..., um1, ..., umkm) ∈ (F∗q)k1+...+km such that
c11u11 + ... + c1k1u1k1 = c1

...

cm1um1 + ... + cmkmumkm = cm.

AIMS Mathematics Volume 8, Issue 12, 30511–30526.
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Then

N(c1, ..., cm) =
(q − 1)|{1≤i≤m:ci=0}|

qm

m∏
i=1

ci=0

A(ki − 1)
m∏
i=1

ci,0

A(ki).

Lemma 2.2. Let ai ∈ F
∗
q, i ∈ ⟨s+t⟩, b1, b2 ∈ Fq. Let N(b1, b2) denote the number of (u1, ...,us+t) ∈ (F∗q)s+t

with 

s∑
i=1

aiui = b1,

s+t∑
i=s+1

aiui = b2.

(2.1)

Then

N(b1, b2) =



(q − 1)2

q2 A(s − 1)A(t − 1) if b1 = b2 = 0,

q − 1
q2 A(s)A(t − 1) if b1 , 0, b2 = 0,

q − 1
q2 A(s − 1)A(t) if b1 = 0, b2 , 0,

1
q2 A(s)A(t) if b1 , 0, b2 , 0.

(2.2)

Proof. The result follows immediately from Lemma 2.1. □

Lemma 2.3. Let ci ∈ F
∗
q for all i ∈ ⟨r + k + w⟩ and let l1, l2, l3 ∈ Fq. Let N(l1, l2, l3) denote the number

of (v1, ..., vr+k+w) ∈ (F∗q)r+k+w satisfying (1.8). Then

N(l1, l2, l3) =



(q − 1)3

q3 A(r − 1)A(k − 1)A(w − 1) if ll = l2 = l3 = 0,

(q − 1)2

q3 A(r − 1)A(k − 1)A(w) if ll = l2 = 0, l3 , 0,

(q − 1)2

q3 A(r − 1)A(k)A(w − 1) if ll = l3 = 0, l2 , 0,

(q − 1)2

q3 A(r)A(k − 1)A(w − 1) if l1 , 0, l2 = l3 = 0,

q − 1
q3 A(r)A(k)A(w − 1) if ll , 0, l2 , 0, l3 = 0,

q − 1
q3 A(r)A(k − 1)A(w) if ll , 0, l2 = 0, l3 , 0,

q − 1
q3 A(r − 1)A(k)A(w) if l1 = 0, l2 , 0, l3 , 0,

1
q3 A(r)A(k)A(w) if l1 , 0, l2 , 0, l3 , 0.

(2.3)
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Proof. This follows immediately from Lemma 2.1. □

Reference [12] tells us that by using elementary transformation, we can readily find unimodular
matrices U1 and V1 with the property

U1E1V1 =

(
D1 0
0 0

)
, (2.4)

where E1 is given as in (1.5),
D1 := diag(g(E1)

1 , ..., g
(E1)
v )

with g(E1)
1 , ..., g

(E1)
v ∈ Z+ and g(E1)

1 |...|g
(E1)
v . Let M represent the number of (u1, ...,us+t) ∈ (F∗q)s+t on (2.1)

under the following additional restrictions: gcd(q − 1, g(E1)
j )|h(E1)

j for j ∈ ⟨v⟩

(q − 1)|h(E1)
j for j ∈ ⟨s + t⟩ \ ⟨v⟩,

(2.5)

where
(h(E1)

1 , ..., h
(E1)
s+t )T := U1(indα(u1), ..., indα(us+t))T.

As a special case of [27, Theorem 1.2], one has the following result.

Lemma 2.4. Let V be the variety (1.3). Then

N(V) =


qn − (q − 1)n +M (q − 1)n−v

v∏
j=1

gcd(q − 1, g(E1)
j ) if b1 = b2 = 0,

M (q − 1)n−v
v∏

j=1

gcd(q − 1, g(E1)
j ) otherwise.

Let gi j, bi(i ∈ ⟨l⟩, j ∈ ⟨u⟩) and a be integers. Let Y = (y1, ..., yu)T and B = (b1, ..., bl)T. Then one
forms an l × u matrix G = (gi j) and the following system of congruences:

G Y ≡ B (mod a). (2.6)

From [12], one can use elementary transformation of matrices to find unimodular matrices U and V

with the property

UGV = SNF(G ) =
(
D 0
0 0

)
,

where D := diag(d1, ..., dτ) with di ∈ Z
+, i ∈ ⟨τ⟩ and di|di+1, i ∈ ⟨τ − 1⟩.

Lemma 2.5. [9, Lemma 2.3] Let B
′

= (b
′

1, ..., b
′

l
)T = UB, then a necessary and sufficient condition

for the system (2.6) of linear congruences to have a solution is gcd(a, di)|b
′

i for all i ∈ ⟨τ⟩ and a |b
′

i for

all i ∈ ⟨l⟩ \ ⟨τ⟩. In addition, the number of solutions (y1, ..., yu)T of (2.6) equals au−τ
τ∏

i=1
gcd(a, di).

AIMS Mathematics Volume 8, Issue 12, 30511–30526.



30518

Lemma 2.6. Let r, k and w be positive integers. Then∑
(v1 , ..., vr+k+w) ∈ (F∗q)r+k+w

(1.8) holds

∣∣∣∣{(x1, ..., xm) ∈ (F∗q)m : xei1
1 ...x

eim
m = vi, i ∈ ⟨r + k + w⟩

}∣∣∣∣
= N (q − 1)m−v′

v′∏
j=1

gcd(q − 1, g(E2)
j ). (2.7)

Proof. First of all, for any given (v1, ..., vr+k+w) ∈ (F∗q)r+k+w satisfying (1.8), we have the system of
congruences:

m∑
j=1

ei jindα(xi) ≡ indα(vi) (mod q − 1), i ∈ ⟨r + k + w⟩, (2.8)

then ∣∣∣{(x1, ..., xm) ∈ (F∗q)m : xei1
1 ...x

eim
m = vi, i ∈ ⟨r + k + m⟩}

∣∣∣
=

∣∣∣{(x1, ..., xm) ∈ (F∗q)m : α
∑m

j=1 ei jindα(xi) = αindα(vi), i ∈ ⟨r + k + m⟩}
∣∣∣

=
∣∣∣{(x1, ..., xm) ∈ (F∗q)m : (2.8) holds}

∣∣∣ .
However, Lemma 2.5 tells us that the necessary and sufficient condition for (2.8) to have a

solution is that (1.9) holds. In addition, if (2.8) has a solution, then the number of the m-tuples
(indα(x1), ..., indα(xm)) ∈ ⟨q − 1⟩m satisfying (2.8) is equal to

(q − 1)m−v′
v′∏
j=1

gcd(q − 1, g(E2)
j ).

Namely, if (1.9) is satisfied, then∣∣∣∣{(x1, ..., xm) ∈ (F∗q)m : xei1
1 ...x

eim
m = vi, i ∈ ⟨r + k + w⟩

}∣∣∣∣
=(q − 1)m−v′

v′∏
j=1

gcd(q − 1, g(E2)
j ).

Thus, the left hand side of (2.7) is equal to

(
(q − 1)m−v′

v′∏
j=1

gcd(q − 1, g(E2)
j )

)
×

∑
(v1 , ..., vr+k+w) ∈ (F∗q)r+k+w

(1.8) and (1.9) hold

1. (2.9)

However,

N =
∑

(v1 , ..., vr+k+w) ∈ (F∗q)r+k+w such that (1.8) and (1.9) hold

1. (2.10)

Hence putting (2.10) into (2.9) gives us the wanted result (2.7). □
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3. Proofs of Theorems 1.1 to 1.3

In this section, we present the proofs of Theorems 1.1 to 1.3. We begin with the proof of Theorem
1.1.

Proof of Theorem 1.1. Taking determinants on both sides of (2.4), we can deduce that

det(U1) det(E1) det(V1) = g(E1)
1 ...g

(E1)
n .

Since det(U1) = ±1 and det(V1) = ±1, the condition

gcd(q − 1, det(E1)) = 1

implies that
gcd(q − 1, g(E1)

j ) = 1 for all j ∈ ⟨n⟩.

So (2.5) holds.
Further, by Lemma 2.2, one has

M =
∑

(u1,...,us+t)∈(F∗q)s+t such that (2.1) and (2.5) hold

1 = N(b1, b2) (3.1)

with N(b1, b2) being given as in (2.2). It follows from Lemma 2.4 that

N(V) =

qn − (q − 1)n +M if b1 = b2 = 0,
M otherwise.

(3.2)

Thus, putting (3.1) and (3.2) together gives the expected result (1.10).
This completes the proof of Theorem 1.1. □

Proof of Theorem 1.2. It is clear that

N(V) =
∑

(v1 , ..., vr+k+w) ∈ (Fq)r+k+w

(1.8) holds

∣∣∣∣{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = vi, i ∈ ⟨r + k + w⟩

}∣∣∣∣ . (3.3)

One defines the set T (l1, l2, l3) of Fq-rational points as follows:

T (l1, l2, l3) := {(v1, ..., vr+k+w) ∈ Fr+k+w
q : (1.8) holds}. (3.4)

Substituting (3.4) into (3.3) yields

N(V) =
∑

(v1,...,vr+k+w)∈T (l1,l2,l3)

∣∣∣∣{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = vi, i ∈ ⟨r + k + w⟩

}∣∣∣∣ . (3.5)

Define the set T (0) by T (0) := ∅ if l1, l2 and l3 are not all zero, and if l1 = l2 = l3 = 0, then T (0)
consists of the zero vector of dimension r+ k+w. For any integer ρ with 1 ≤ ρ ≤ r+ k+w, one defines
the set T (ρ) to be the subset of T (l1, l2, l3) consisting of (v1, ..., vr+k+w) ∈ Fr+k+w

q with exactly ρ nonzero
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components. Noticing that v1, ..., vr+k+w are simultaneously zero, or simultaneously nonzero, one has
T (ρ) = ∅ when 0 < ρ < r + k + w. Hence,

T (l1, l2, l3) =
r+k+w⋃
ρ=0

T (ρ) = T (0) ∪ T (r + k + w). (3.6)

Now, applying Lemma 2.6, we have∑
(v1,...,vr+k+w)∈T (r+k+w)

∣∣∣∣{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = vi, i ∈ ⟨r + k + w⟩

}∣∣∣∣
=

∑
(v1 , ..., vr+k+w) ∈ (F∗q)r+k+w

(1.8) holds

∣∣∣∣{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = vi, i ∈ ⟨r + k + w⟩

}∣∣∣∣
=

∑
(v1 , ..., vr+k+w) ∈ (F∗q)r+k+w

(1.8) holds

∣∣∣∣{(x1, ..., xm) ∈ (F∗q)m : xei1
1 ...x

eim
m = vi, i ∈ ⟨r + k + w⟩

}∣∣∣∣
(since (v1, ..., vr+k+w) ∈ (F∗q)r+k+w implying (x1, ..., xm) ∈ (F∗q)m)

=N (q − 1)m−v′
v′∏
j=1

gcd(q − 1, g(E2)
j ). (3.7)

It readily follows that if at least one of l1, l2 and l3 is nonzero, then T (0) = ∅, and so by (3.5) to (3.7),
one has

N(V) =
∑

(v1,...,vr+k+w)∈T (0)∪T (r+k+w)

|{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = vi, i ∈ ⟨r + k + w⟩}|

=
∑

(v1,...,vr+k+w)∈T (r+k+w)

|{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = vi, i ∈ ⟨r + k + w⟩}|

=N (q − 1)m−v′
v′∏
j=1

gcd(q − 1, g(E2)
j ).

If l1 = l2 = l3 = 0, then by using (3.5) to (3.7), we derive that

N(V) =
∑

(v1,...,vr+k+w)∈T (0)∪T (r+k+w)

|{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = vi, i ∈ ⟨r + k + w⟩}|

=
∑

(v1,...,vr+k+w)∈T (0)

|{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = vi, i ∈ ⟨r + k + w⟩}|

+
∑

(v1,...,vr+k+w)∈T (r+k+w)

|{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = vi, i ∈ ⟨r + k + w⟩}|

=|{(x1, ..., xm) ∈ Fm
q : xei1

1 ...x
eim
m = 0, i ∈ ⟨r + k + w⟩}|

+N (q − 1)m−v′
v′∏

i=1

gcd(q − 1, g(E2)
i )

=|{(x1, ..., xm) ∈ Fm
q : xe11

1 ...x
e1m
m = 0}| +N (q − 1)m−v′

v′∏
i=1

gcd(q − 1, g(E2)
i )

AIMS Mathematics Volume 8, Issue 12, 30511–30526.



30521

=|{(x1, ..., xm) ∈ Fm
q : x1...xm = 0}| +N (q − 1)m−v′

v′∏
i=1

gcd(q − 1, g(E2)
i )

=

m∑
j=1

(
m
j

)
(q − 1)m− j +N (q − 1)m−v′

v′∏
i=1

gcd(q − 1, g(E2)
i )

=qm − (q − 1)m +N (q − 1)m−v′
v′∏

i=1

gcd(q − 1, g(E2)
i )

as expected.
This finishes the proof of Theorem 1.2. □

Proof of Theorem 1.3. Taking determinants on both sides of (1.7), one has

det(U2) det(E2) det(V2) = g(E2)
1 ...g

(E2)
m .

Because det(U2) = ±1 and det(V2) = ±1, the condition gcd(q − 1, det(E2)) = 1 guarantees that

gcd(q − 1, g(E2)
i ) = 1 for all i ∈ ⟨m⟩.

This ensures that (1.9) is satisfied.
Noting that

N =
∑

(v1,...,vr+k+w)∈(F∗q)r+k+w such that (1.8) and (1.9) hold

1 = N(l1, l2, l3) (3.8)

with N(l1, l2, l3) being given as in (2.3), it follows from (1.11) that

N(V) =

qm − (q − 1)m +N if l1 = l2 = l3,

N otherwise.
(3.9)

Therefore, by the identities (3.8) and (3.9), the desired result (1.12) follows immediately.
This concludes the proof of Theorem 1.3. □

4. Examples

In this section, we give four examples to demonstrate the validity of Theorems 1.1 to 1.3.

Example 4.1. We calculate the number N(V) of rational points on the variety f1(x1, ..., x5) = x1x2
2x3

3x4
4x5

5 + x2
1x2

2x4
3x5

4x5 − 2 = 0,
f2(x1, ..., x5) = x3

1x4
2x2

3x3
4x5 + x2

1x5
2x4

3x2
4x2

5 + x2
1x3

2x3x2
4x2

5 = 0

over F11.
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Clearly, we have

b1 = 2, b2 = 0, q = 11, q − 1 = 10, s = 2, t = 3, n = 5,

and

E1 =


1 2 3 4 5
2 2 4 5 1
3 4 2 3 1
2 5 4 2 2
2 3 1 2 2


.

Since det(E1) = 9, one derives that gcd(q − 1, det(E1)) = 1. By Theorem 1.1, we can calculate and
obtain that

N(V) =
1

112

(
(11 − 1)2 − (−1)2)((11 − 1)3 + (−1)3 · (11 − 1)

)
= 810.

Example 4.2. We compute the number N(V) of rational points on the variety
f1(x1, ..., x6) = x1x2

2x3
3x4

4x5
5x6 + x2

1x2
2x4

3x5
4x5x6 = 1,

f2(x1, ..., x6) = x3
1x4

2x2
3x3

4x5x2
6 + x2

1x5
2x4

3x2
4x2

5x6 = 2,
f3(x1, ..., x6) = x1x2

2x3x2
4x3

5x6 + x2
1x3

2x3x2
4x2

5x6 = 0
(4.1)

over F7.

Evidently, we have
l1 = l2 = l3 = 0, q = 7,m = 6, r = k = w = 2

and

E2 =



1 2 3 4 5 1
2 2 4 5 1 1
3 4 2 3 1 2
2 5 4 2 2 1
1 2 1 2 3 1
2 3 1 2 2 1


.

Hence, det(E2) = −22, one observes that gcd(q − 1, det(E2)) , 1.
By using Maple, we can find two unimodular matrices

U2 =



1 1 −5 0 −7 10
3 −6 18 −1 9 −26
5 −6 16 −1 3 −21
−5 6 −15 1 −2 19
4 −5 13 −1 3 −17
7 −10 28 −2 9 −38


and

V2 =



1 0 0 0 0 5
0 1 0 0 0 −15
0 0 1 0 0 −12
0 0 0 1 0 11
0 0 0 0 1 −10
0 0 0 0 0 1
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such that

U2E2V2 = SNF
(
E2

)
=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 22


.

Thus,
g(E2)

1 = g(E2)
2 = g(E2)

3 = g(E2)
4 = g(E2)

5 = 1, g(E2)
6 = 22 and v′ = 6.

Still using Maple, we compute and get that the number N of vectors (v1, ..., v6) ∈ (F∗q)6 with
v1 + v2 = 0
v3 + v4 = 0
v5 + v6 = 0

under the extra restriction (1.9) is equal to 108. Thus, by Theorem 1.2, we have

N(V) = 76 − 66 + 108 × 2 = 71209.

Example 4.3. We compute the number N(V) of rational points on the variety
f1(x1, ..., x6) = x1x2

2x3
3x4

4x5
5x4

6 + x11
1 x5

2x4
3x5

4x5x4
6 = 0,

f2(x1, ..., x6) = x3
1x4

2x2
3x3

4x5x3
6 + x7

1x3
2x5

3x2
4x5x4

6 = 0,
f3(x1, ..., x6) = x2

1x6
2x3

3x2
4x2

5x3
6 + x8

1x2
2x11

3 x5
4x3

5x5
6 = 0

over F13.

Obviously, we have

l1 = l2 = l3 = 0, q = 13, q − 1 = 12,m = 6, r = k = w = 2

and

E2 =



1 2 3 4 5 4
11 5 4 5 1 4
3 4 2 3 1 3
7 3 5 2 1 4
2 6 3 2 2 3
8 2 11 5 3 5


.

Since det(E2) = 4387 = 41 × 107, we deduce that gcd(q − 1, det(E2)) = 1. By Theorem 1.3, we
compute and obtain that

N(V) = 136 − 126 +
1

133 (122 + 12)(122 + 12)(122 + 12) = 1842553.
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Example 4.4. We calculate the number N(V) of rational points on the variety
f1(x1, ..., x7) = x1x2

2x3
3x4

4x5
5x4

6x5
7 + x2

1x5
2x4

3x5
4x5x4

6x4
7 − 2 = 0,

f2(x1, ..., x7) = x3
1x4

2x2
3x3

4x5x3
6x2

7 + x2
1x3

2x5
3x2

4x5x4
6x5

7 + x2
1x6

2x3
3x2

4x2
5x3

6x5
7 = 0,

f3(x1, ..., x7) = x2
1x2

2x3
3x3

4x5
5x3

6x3
7 + x2

1x2
2x4

3x5
4x3

5x5
6x3

7 = 0

over F11.

It is clear that

l1 = 2, l2 = l3 = 0, q = 11, q − 1 = 10,m = 7, r = 2, k = 3,w = 2

and

E2 =



1 2 3 4 5 4 5
2 5 4 5 1 4 4
3 4 2 3 1 3 2
2 3 5 2 1 4 5
2 6 3 2 2 3 5
2 2 3 3 5 3 3
2 2 4 5 3 5 3


.

Thus, det(E2) = 957 which infers that gcd(q − 1, det(E2)) = 1. Therefore, by employing Theorem 1.3,
we compute and obtain that

N(V) =
1

113

(
(11 − 1)2 − (−1)2)((11 − 1)3 + (−1)3(11 − 1)

)(
(11 − 1)2 + (−1)2(11 − 1)

)
= 8100.
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