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Abstract: Let p stand for an odd prime and let 7 € Z* (the set of positive integers). Let IF, denote the
finite field having g = p" elements and F, = I, \ {0}. In this paper, when the determinants of exponent
matrices are coprime to ¢ — 1, we use the Smith normal form of exponent matrices to derive exact
formulas for the numbers of rational points on the affine varieties over F, defined by

d d .
alxl“...xZ‘" + ...+ asxl“'...xim = by,
ds+l,l d.wl,n ds+r,l dsﬂ‘,n —
g1 X, A X L x,T = by
and

cixylL x4 X xgm =,

e e, e Crik
Crot X, XX, = 1,

Crik e e " e ,

Cr+k+1x1r+k+1,l.“xn:+k+l,m + ..+ Cr+k+wx1r+k+hl~-~ W:+k+m,m — 13,

respectively, where d;j, ey y € Z*, a;, ¢y € Foi=1,.,s+6,j=1,..n, '=1,.,r+k+w,j=1,...,m,
and by, by, 11,15, 13 € F,. These formulas extend the theorems obtained by Q. Sun in 1997. Our results
also give a partial answer to an open question posed by S.N. Hu, S.F. Hong and W. Zhao [The number
of rational points of a family of hypersurfaces over finite fields, J. Number Theory 156 (2015), 135—
153].
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1. Introduction

Throughout this paper, p will always denote an odd prime, Z* and F, denote the set of positive
integers and the finite field having g = p” elements, respectively, where n € Z*. Then F} := F, \ {0}
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forms a group under the multiplicative operation. For any finite set &, |$| means its cardinality. Let
A,n € Z* and (1) be the set of the first A positive integers. Let xi, ..., x,_; and x,, be n indeterminates in
IF,, and for brevity, let X = (xy, ..., x,,). Let fi(X), ..., fa(x) be the system of n-variable polynomials over
F,, and we denote by V(fi, ..., f1) = V(f1(X), ..., fa(x)) the affine variety determined by the vanishing of
these polynomials. Define

NV) =[x = (x1, . %) €F2 2 fix) = . = fo(x) = 0}

When 4 = 1, one writes N(V) = N(f). Finding an accurate formula for N(V) is a common
and significant subject. However, such a problem is hard in general. In the past 70 years, many
mathematicians were devoted to this subject and made much vital progress (see [1-11, 13-27]).

In 1997, the number N(f) of rational points over FF, on the following affine hypersurface

f=ax(".xl+ . +axt.xm —b=0, e €Z",a; € F,b e Fyi€(s),j€(n)

n

was investigated by Sun [18]. Besides, the accurate formula for the number N(f) of rational points was
found in [18]:

g —(@-1D"+ LlA(n— 1) ifb=0,
N(f) = d

—-A(n) otherwise

provided s = n and gcd(det(e;;), g — 1) = 1, where A(s) := (¢ — 1)’ = (=1)’, Vs € Z*. Eight years later,
the result of [18] was successfully extended by Wang and Sun [21]. Actually, they attained a formula
for the number of (xy, ...x,,) € F;* on the following hypersurface

dnya 4 dn1+ll d, 4

dll dlnl ny, "l"l 11 +1,np dnz, ny.ny
w Lt ag X, Xt Qg1 X X, to X, Xy = b

apx;'".x

withd;; € Z%,a; € Fy, 1 < i, j < ny.

In 2015, Hu, Hong and Zhao [9] gave a uniform generalization to the results of [20,21]. Actually,
they used the Smith normal form to deduce an accurate formula for N(f) of (xi,...x,) € F’;’ on the
hypersurface over F, defined by

t—=1Tjr1-7;
Fom ) = Y > " x0T = b, (1.1)
=0 =1
where the integers ¢t > 0,0=ry <r <n<..<r,1<n <m<..<n,beF,a € F, ande;; € Z",
i € (r), j € (n,). Under some restrictions on f, a little bit simple formula about the number of rational
points on the hypersurface (1.1) was given in [13]. One notices that the result of [9] was extended by
Hu and Zhao [11] from the hypersurface case to certain algebraic variety case.
An open problem was raised at the end of [9, Section 3]. For the case of the variety consisting of
two hypersurfaces, Hu, Qin and Zhao [10] and Zhu and Hong [27] obtained some partial answers to
this problem. In other words, Hu, Qin and Zhao [10] gave an explicit formula for N(V(fi, f>)), where

d ORI 2 el
fi:= Zal,xl R Z al,x1 Xn;"2 b,

i=1 i=r1+1

3 (2) o2 "4 (2) 2

o— e lil3 I Vl4
f2 = E Clz,'fxll . + E Clzlr.xl . - b,

=1 ’=r3+1
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. 1 2
with 1 < ry < l"z,l <n< 1"4,1 <n < I’lz,l < n3 < Hy, 65’].), el(.,’}, c Z+, b],b2 c Fq, and ayi, Ay € F;,

i € (), T €(ry), j € (M), j/ € (nyg). Zhu and Hong [27] used and developed the techniques in [9] to
get an exact formula for the number of rational points on V = V(fi, f>) over F, with

,
A

1 i in
fi = filxr, e x,) = Zag )x1 X = by,

i=1

—1 rj/+|—r_,-/ e(z) 6(2) (1'2)
L _ ) rj/+i’,l rj/+i’,nj;+l
fo=folxr, e xy) = E E a, Xy, — b,
=0 =1

where b; € F,,i = 1,2, t € Z*,0 = nyp < ny < mp < ... < n, ey < n < my for some k € (1),
O=ro<ri<n<..<ra’a’eF,icr),i (e, e eZ*, jen), j € (n).
Inspired by the works of [9, 18,21,27], we consider in this paper the question of counting rational

points on the variety V(f;, f>) with

d
fi:= alx‘li”...xZ’" + ...+ as)cl‘“...xgm - by,
dsi11 dsi1n dyt,1 dsin (1.3)
fimapx]" x5 g x]TLx, = b,
and the variety V(fi, f>, f3) with
. €11 €1m + + €rl Crm _l
fii=caxi.x, O P A it I,
e, e e, (4
o= e XX XX, = D, (1.4)
€. Crik (4 Crik

‘](3 = cr+k+1xl)+k+l,] “‘xn,:+k+],m + .+ cr+k+wxlr+k+w,] .'.xn;+k+w,m _ l3,

where dij,e,vj/ S Z+,Cli,Ci/ S P;,l S <S+l’>,j e (n),i € <I"+k+W>,j, € (m),and by, by, 11,1, 15 € Fq. Let

dll d12 e dln
dsl dsZ e dsn
E, = 1.5
: ds+1,1 dx+1,2 Tt ds+1,n ( )
ds+t,1 ds+t,2 e ds+t,n

with d;;,i € (s + 1), j € (n) being given as in (1.3), and let

€11 €12 e €1im
€rl € e €rm
€ril1,1 €ri12 e €ril,m
€rik,1 €rik2 Tt Crikm
Crik+1,1  €rtk+12  °°° Crik+lm
Crik+w,l  Crik+w2 " Crikywm
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with e; y,i" € (r + k + w), j* € (m) being given as in (1.4).
From [12], it guarantees the existences of unimodular matrices U, and V, with the property
D, 0)

(1.7)

U,E,V, = ( 0 0

where

. E2 E
D2 = dlag(g(l ), ...,g(, 2))
(EZ) (E2) (Ez)

with g, ...,g,* € Z" and g, |...|gi§2). The diagonal matrix on the right side of (1.7) is called Smith
normal form of E,, and abbreviated as SNF(E,). That is,
D, 0)

SNF(E,) = ( 0 0

Fix @ € F, as a primitive element of F;, then for any 8 € F,, one can find a unique integer y €
[1,g — 1] with 8 = «”, and such an integer v is said to be the index of S on the basis . We write
ind,S :=y.

Consider the variety defined by

’
Z Civ; = lla

i=1

r+k

Z civ;i = b, (1.8)
i=r+1

r+k+w

Z civi = I3,

i=r+k+1

where ¢y, [y, b, 13,1’ € (r + k+ w) are given as in (1.4). Let .4 denote the number of rational points
(015 +ves Orsirn) € (F5) 7" on (1.8) satisfying

{god@; = 1,8/ )IK for j e (v')

1.9
(q = DIK for j € (r+k+w)\ (), (19

where
(K, 2 T = Un(inda(91), -oor Indg (0ratn)

r+k+w

We can now state our main results.

Theorem 1.1. Let V be the variety defined by (1.3). If s + t = n and gcd(q — 1,det(E;)) = 1, then

—1)?

qn—(q—l)”+(qq2)A(s—l)A(t—l) if by = by =0,
q-1 .

—A(S)A(t - 1) if by #0,b, =0,

Nvy=4 T (1.10)

qq2 Als = DA(r) if by = 0,b, £ 0,
1
?A(S)A(t) if by #0,b, # 0.
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Theorem 1.2. Let V be the variety defined by (1.4). Then

N(V) :{

where R := (g — 1) ] ged(q — 1, g;EZ)).
j=1

qm—(q—l)m+</VR ifl]:lz:l3:0,
AR

(1.11)

otherwise,

From Theorem 1.2, one can derive the third main result of this paper as follows.

Theorem 1.3. Let V denote the affine variety defined by (1.4). If r+k+w = m and gcd(g—1, det(E,)) =

1, then

N(V) =

g"~(g- 1"+
(q— 1)
q3
(g-1)7
q3
(g-1)°
q3
qg-—1
q3
q-1
q3

q-—1
PE

%A(r)A (K)A(w)
q

(g—1)
3

A(r — DAk — DAw — 1)

A(r — DAk — DA(W)

A(r — DAGAW — 1)

A(MA(k - 1DAw - 1)

A(MARA(wW - 1)

APAk - DAW)

A(r — DAk)A(w)

fli=hLh=5=0,

ifi=0L=0,0%0,

ifi=01=0,L#0,

#11?50,12213:0,
(1.12)

ifll¢0,12¢0,13:0,

if l;#0,[,=0,l3 #0,

if 1, = 0,0, # 0,15 # 0,

ifly #0,5,b #0,3 # 0.

Obviously, Theorems 1.1 to 1.3 also give a partial answer to the open problem proposed at the end
of [9, Section 3].
In Section 2, in order to prove Theorems 1.1 to 1.3, we give several auxiliary results. Then in
Section 3, one presents the details of the proofs of Theorems 1.1 to 1.3. Finally, four examples are
provided in Section 4.

2. Auxiliary results

In this section, we present several preliminary results which are needed in the proofs of Theorems
1.1 to 1.3. We begin with a result due to Zhu and Hong [27].

Lemma 2.1. [27, Lemma 2.6] Let ¢;; € F,, i € (m), j € (£}, c1,...,c,, € Fy. Let N(cy, ..., ¢,,) stand for

the number of (U11, .., Uiy s ooy Uiy ooy Ui

AIMS Mathematics

) € (IF;)m*"'*’ém such that

m

Ciiyy + ... + Cip U1, = Cy

CmiUp + ...+ Cmbp,Umb,, = Cm-
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Then _
( _ 1)|{]St$m:c,:0}| m m
NGt en) = T[] Atk - D [ | Ak,
Li,:=10 cfl;lo
Lemma2.2. Leta; € F, i€ (s+1), by, by € F,. Let N(by, by) denote the number of (wy, ..., Us) € (F;)S”
with
Z a;u; = b],
i=1
» 2.1
Z a;u; = b,.
i=s+1
Then
—1?
g _ VA= DAG-1)  if by = by =0,
q
qg-1 .
—A()ACI - 1) if by #0,b, =0,
Noub)=¢ T 2.2)
4 AGs - DAQ) if by = 0,b, %0,
q
1
?A(S)A(l‘) if by #0,b, # 0.
Proof. The result follows immediately from Lemma 2.1. O

Lemma 2.3. Let ¢; € F, foralli € (r +k+w)andlet ]\, 1, l5 € F,. Let N(ly, 5, l3) denote the number
Of (015 evus Vpikiw) € (F(’;)”“W satisfying (1.8). Then

-1
@ = A = DAG - DAGw - 1) ifli=bh=1=0,
(q—1) .

- AG = DAG = DAGY) ifli=1L =0l %0,
(q-1) .

L A( - DABAW - 1) ifli=15=0, %0,

q
(q-1) )

L AMAK - DAW - 1) ifl, 20, =1 =0,
Ny, b, 1) = ‘11 (2.3)
qq3 AMAG)AMW — 1) if 0,1, # 0,15 =0,

~1
qq3 AMAK - DAW) if 1, #0,1,=0,l5 0,
~1
qq3 A(r = DAKAGW) if 11 =0, % 0,13 #0,
1
SANMARAGY) if 1 20,1 # 0,15 # 0.

AIMS Mathematics Volume 8, Issue 12, 30511-30526.
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Proof. This follows immediately from Lemma 2.1. O

Reference [12] tells us that by using elementary transformation, we can readily find unimodular
matrices U, and V| with the property

(D1 O
where E; is given as in (1.5),
D, = diag(g(lEl), )

with g(lEl), w8V €7 and g(lEl)I...IgiEl). Let ./ represent the number of (uy, ..., wsy,) € (Fy)*™ on (2.1)

under the following additional restrictions:

{gcd(q — L g IR for j € (v) 0s)

(g = DK for j € (s+1)\ (),

where
(B, KEDT = Ur(indy(@y), ..., indg(es4)) "

cees Mgy

As a special case of [27, Theorem 1.2], one has the following result.

Lemma 2.4. Let V be the variety (1.3). Then

q"—(q-1"+.#q-1)"| | ecdg—1,8¥") if by =by =0,
N(V) = ) a
M(g—1)"" H ged(g — 1, g;E')) otherwise.

J=1

Let g;j,6:(i € (), j € (w)) and a be integers. Let Y = (y1,...,y,)" and & = (64, ...,6,)". Then one
forms an ' X u matrix ¢ = (g;;) and the following system of congruences:

Y =% (mod a). (2.6)

From [12], one can use elementary transformation of matrices to find unimodular matrices U and ¢/
with the property

2 0
US?V—SNF(%)—(O 0),
where & := diag(dy, ...,d,) withd; € Z*,i € (1) and d;|d;;,i € (T — 1).

Lemma 2.5. [9, Lemma 2.3] Let # = (61, ey 5;,)T = U, then a necessary and sufficient condition
for the system (2.6) of linear congruences to have a solution is gcd(a, di)llilf foralli e (t) and alli; for

all i € {{y \ (7). In addition, the number of solutions (yi, ..., y.)" of (2.6) equals a*~™ III gcd(a, d)).
i=1

AIMS Mathematics Volume 8, Issue 12, 30511-30526.
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Lemma 2.6. Let r, k and w be positive integers. Then

Z ‘{(Xl, oo X) € (B )™ 2 Xy = 0,0 € (r + k + w}}‘
(01, cver Orpktw) € (]F;)l‘+k+w
(1.8) holds
= - B
= Ag= | [eedg 1. 2.7)
=1

Proof. First of all, for any given (9y, ..., 0,44w) € (IF";‘])’”‘JrW satisfying (1.8), we have the system of
congruences:

> eijindy(x) = indy(0))  (mod g — 1), € (r + k +w), (2.8)

Jj=1

then

[(Gers ooy ) € B 2 X1 Xl = 0y, i € (r + k + m))|
=[{(xr, ooy ) € FD)™ 2 @B UN0D = gD e (r 4 K+ m))|

= [{(x15 o0y i) € (F)" : (2.8) h01ds}|.

However, Lemma 2.5 tells us that the necessary and sufficient condition for (2.8) to have a
solution 1is that (1.9) holds. In addition, if (2.8) has a solution, then the number of the m-tuples
(ind,(x1), ..., ind,(x,,)) € (g — 1)™ satisfying (2.8) is equal to

(g= D" | | gedtg - 1,85

j=1

Namely, if (1.9) is satisfied, then

H(xl, vy X)) € (}FZ)’” Sx X =g i e(r+k+ w)}'

1 m

v

=(q - 1" | | ecdtg - 1,¢).

j=1

Thus, the left hand side of (2.7) is equal to

((@= 1" | ecd(q - 1,¥) x > L (2.9)
J=1 (01, s Ork) € (F)HY
(1.8) and (1.9) hold
However,
N = > 1. (2.10)
(901 oo Opshtw) € (]Fjl)’*k*w such that (1.8) and (1.9) hold
Hence putting (2.10) into (2.9) gives us the wanted result (2.7). O

AIMS Mathematics Volume 8, Issue 12, 30511-30526.
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3. Proofs of Theorems 1.1 to 1.3

In this section, we present the proofs of Theorems 1.1 to 1.3. We begin with the proof of Theorem
1.1.

Proof of Theorem 1.1. Taking determinants on both sides of (2.4), we can deduce that

det(U,) det(E,) det(V,) = g\""...g'EV.

n

Since det(U;) = +1 and det(V,) = 1, the condition
ged(g — 1, det(Ey)) = 1

implies that
ged(g - 1,g5.E‘)) = 1forall j € (n).

So (2.5) holds.
Further, by Lemma 2.2, one has

M = Z 1 = N(by, by) 3.1)

(@155t 54 )E(FG)S* such that (2.1) and (2.5) hold

with N(by, b,) being given as in (2.2). It follows from Lemma 2.4 that

"—(g-1)V"+. 4 ifb, =b, =0,
N(V) = q —(q ) 1 2 ‘ 3.2)
M otherwise.

Thus, putting (3.1) and (3.2) together gives the expected result (1.10).
This completes the proof of Theorem 1.1. O

Proof of Theorem 1.2. 1t is clear that

N(V) = D |l e my i = i e k4w, (3.3)
(015 ooy Opans) € (Bg) HHY
(1.8) holds
One defines the set T'(/;, I, [3) of F,-rational points as follows:
T(h,L,13) :={(01, cous Orshaw) € }F(’;“W : (1.8) holds}. (3.4
Substituting (3.4) into (3.3) yields
N(V) = D e e B =i e ek w)|. (3.5)

(0150s9rk+w)ET (11,12,13)

Define the set T(0) by T(0) := @ if [}, 1, and /5 are not all zero, and if [, = [, = I3 = 0, then T'(0)
consists of the zero vector of dimension r + k + w. For any integer p with 1 < p < r+k+w, one defines
the set 7T'(p) to be the subset of T'(/1, [, [3) consisting of (0y, ..., 0,1x4w) € P{;"*W with exactly p nonzero

AIMS Mathematics Volume 8, Issue 12, 30511-30526.
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components. Noticing that ¢y, ..., 0,444, are simultaneously zero, or simultaneously nonzero, one has
T(p) = @ when 0 < p < r+ k + w. Hence,

r+k+w

Ty, b, 13) = U T(p) = T(OO)U T(r + k + w). (3.6)

p=0

Now, applying Lemma 2.6, we have

{(xl, ey X)) € F;" st = o i e(r+k+ w)}|
(0150 Op ki) ET (r+k+w)
= Z {(xl, vy X)) € IF'Z’ satLxm =i e(r+k+ w)}‘
(91, s k) € (B
(1.8) holds
= (1, s ) € B 2 20 = i € G e+ )|
(91, s k) € (B
(1.8) holds
(since (01, .y Opiprw) € (F;)”“W implying (x1, ..., X,,) € (F,)")
v/
— E
= (g= 1" | | gedg - 1,88, (3.7)
j=1

It readily follows that if at least one of /i, [, and /5 is nonzero, then 7'(0) = @, and so by (3.5) to (3.7),
one has

N(V) = Z {(x1, ooos X)) € B 2 2t xpm = 03,0 € (r + k + Wl
(Vl ~~~~~ ur+k+w)eT(O)UT(}’+]<‘+W)
= Z H(x1s oor X)) € B 2 Xt xpir = 05,0 € (r + k + w)

[CI Or+krw)ET (r+k+w)

=A(q-1"""| | ecd(q - 1,8%).

j=1
If [} = [, = I3 = 0, then by using (3.5) to (3.7), we derive that

N(V) = > X1y s ) € F 2 X0 X600 = g0 € (r 4k + W)
(0150 9r+ksw)ET (OVUT (r+k+w)

= D MG ) €FY X = 0 i € (K W)
(CI Or+k+w)ET (0)
+ > X1y s ) € F 2 X0 X6 = g0 € (r 4k + W)
(915005 Orrirw)ET (r+k+w)

€il

={(x1, eery Xp) € }FZ’ cxtxim = 0,0 €(r+k+wl

v

+ N (g=D" ] ] gedg - 1,4

i=1

=1, o X)) € B xS = O + A (g — D™ ﬂ ged(g - 1,8%)
i=1

AIMS Mathematics Volume 8, Issue 12, 30511-30526.
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v

=1, v X)) € B2 X1y = O} + A (g — D™ ]_[ ged(g - 1,8")
i=1
m m B o v
=§X)m—nmuwym—n [ Jecdg 1,8
j=1

i=1

="~ (g- 1"+ (g=1""[ | ecdg - 1,

i=1

as expected.
This finishes the proof of Theorem 1.2. O

Proof of Theorem 1.3. Taking determinants on both sides of (1.7), one has
det(Us) det(E,) det(V,) = gi™)...g!2.
Because det(U,) = +1 and det(V,) = %1, the condition gcd(qg — 1, det(E,)) = 1 guarantees that
ged(g - 1,8%) = 1 for all i € (m).

This ensures that (1.9) is satisfied.
Noting that

W= Z 1 =N, b, 1) (3.8)

(I v,+k+w)€(Ff1)’+"+w such that (1.8) and (1.9) hold

with N(ly, [, [3) being given as in (2.3), it follows from (1.11) that

qm—(q—l)m+JV if11212:l3,
NV) = 3.9
V) {JV otherwise. (3-9)

Therefore, by the identities (3.8) and (3.9), the desired result (1.12) follows immediately.
This concludes the proof of Theorem 1.3. O

4. Examples

In this section, we give four examples to demonstrate the validity of Theorems 1.1 to 1.3.

Example 4.1. We calculate the number N(V) of rational points on the variety

243,45 2.2 4.5 _
Si(X1, 0y X5) = X1X5X5X4 X5 + X1 X5X3X,%5 — 2 =0,
3.4.2 3 25422 23 202 _
So(x1, s X5) = X[ X5X5X3X5 + X[ X5X3X X5 + XX, Xx3x5X5 = 0

over Fy;.

AIMS Mathematics Volume 8, Issue 12, 30511-30526.
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Clearly, we have
b] = 2, b2 =

and

0,g=11,q9-
1
2
E]Z 3
2
2

1=10,s=2,t=
2 3 45
2 451
4 2 3 1].
542 2
312 2

3,n=25,

Since det(E;) = 9, one derives that gcd(q — 1,det(E;)) = 1. By Theorem 1.1, we can calculate and

obtain that

Ny = 112

— (11 =1y -

(=DH)((11 -

S+ (=DP-1-1)=810.

Example 4.2. We compute the number N(V) of rational points on the variety

1 213,4,5 2245 _
filxr, . x6) = x1x2x3x4x5x(, + X X5X3X,X5X6 = 1,
3.4.2 3 25422
folxi, . x6) = x1x2x3x4x5x6 + XX X3X, X5 X6 = 2, 4.1)
2.2 2.3 2.2
f(x, ..., Xg) = x1x2X3x4x5 6 T X1 XXx3x,x5%6 = 0

over F.

Evidently, we have

L=L=L5=0,g=Tm=6r=k=w=2

and

Hence, det(E,) = —22, one observes that gcd(g — 1, det(E))

—_ N W N =
[\S IRV I \O T \S]

2 3

—_— = RN W

DN W L

2

W N = = N

2

By using Maple, we can find two unimodular matrices

U,

and

AIMS Mathematics

1
3
5

-5

N B~

Vo=

1
-6
-6

6
-5

-10

S OO OO
el elelel

-5
18
16
-15
13
28

SO o= OO

S O = O OO

0
-1
-1

1
-1
-2

o = O O O O

H o= o= = N = =

1.

=7
9
3

-2
3
9

-15
-12
11
-10

10
-26
=21

19
-17
-38
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such that
1 00 0O0 O
01 000O0 O
00100 O
U,E,V, = SNF(E;) = 00010 0
000O0OT1 O
0000 O0 22
Thus,

g(lEz) — g(QEZ) — ggEz) — ggEz) — ggEz) — 1’g(6E2) =22 andV = 6.

Still using Maple, we compute and get that the number .4~ of vectors (o1, ..., 0g) € (IF;)6 with

01+0,=0
03+04=0
0s+0=0

under the extra restriction (1.9) is equal to 108. Thus, by Theorem 1.2, we have
N(V)=7°-6°+ 108 x 2 = 71209.

Example 4.3. We compute the number N(V) of rational points on the variety

23454 11,545 4
Ji(X1, o0y X6) = X1X5X3X4 X3 X + X X3 X303 X5, = 0,
3423 .3 7352 4
Fa(X1, o0y X6) = X7 X5X5X3X5Xg + X XXX, X5% = 0,
_ 263223 8211535 _
B(X1, ey X6) = XTXX3X5X5Xg + X[ X5X3 X3X5xg = 0

over Fis.

Obviously, we have

11212=l3:0,q:13,q—1:12,m:6,r:k:w:2

and
1 2 3 45 4
11 5 4 51 4
E, = 34 2 313
7 3 5 21 4|
2 6 3 2 23
8 2 11 5 3 5

Since det(E,) = 4387 = 41 x 107, we deduce that gcd(g — 1,det(E,)) = 1. By Theorem 1.3, we

compute and obtain that

1
N(V)=13°-12°+ 1—33(122 +12)(12% + 12)(12% + 12) = 1842553,

AIMS Mathematics Volume 8, Issue 12, 30511-30526.



30524

Example 4.4. We calculate the number N(V) of rational points on the variety

1 2,3,4,5.4.5 2545 4.4 _
S1(X15 o0y X7) = X1X5X3X4 X0 X X5 + X[ Xy X3 X, X5 X X7 — 2 = 0,
3423 .32, 2352 45 2632235
So(X1, oy X7) = X X5X5X, X5 X X5 + X] X3 X3XX5Xe X7 + XXy X3X,X5X, %7 = 0,
2233533, 2245353
S3(X15 s X7) = XXXX, XX X5 + X[ X5X5X X5 X%, = 0

over Fy;.

It is clear that

L=2L=01=0,9g=11,g-1=100m=7,r=2,k=3,w=2

and
1 23 45 45
25451 4 4
3423132
E,=(2 3 5 2 1 4 5.
2 6 32235
2233533
22 45353

Thus, det(E,) = 957 which infers that gcd(g — 1, det(E,)) = 1. Therefore, by employing Theorem 1.3,
we compute and obtain that

1

F((“ 1D’ =(=DHA1 =1+ (=D*A1 = D)1 = 1)* + (=1)*(11 = 1)) = 8100.

N(V) =
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