Research article

Counting rational points of two classes of algebraic varieties over finite fields

Guangyan Zhu ${ }^{1}$, Shiyuan Qiang ${ }^{2, *}$ and Mao $\mathbf{L i}^{3}$

${ }^{1}$ School of Teacher Education, Hubei Minzu University, Enshi 445000, China
${ }^{2}$ Mathematical College, Sichuan University, Chengdu 610064, China
${ }^{3}$ School of Mathematics and Statistics, Southwest University, Chongqing 400715, China

* Correspondence: Email: syqiang23@163.com.

Abstract: Let p stand for an odd prime and let $\eta \in \mathbb{Z}^{+}$(the set of positive integers). Let \mathbb{F}_{q} denote the

 finite field having $q=p^{\eta}$ elements and $\mathbb{F}_{q}^{*}=\mathbb{F}_{q} \backslash\{0\}$. In this paper, when the determinants of exponent matrices are coprime to $q-1$, we use the Smith normal form of exponent matrices to derive exact formulas for the numbers of rational points on the affine varieties over \mathbb{F}_{q} defined by$$
\left\{\begin{array}{l}
a_{1} x_{1}^{d_{11}} \ldots x_{n}^{d_{1 n}}+\ldots+a_{s} x_{1}^{d_{s 1}} \ldots x_{n}^{d_{s n}}=b_{1}, \\
a_{s+1} x_{1}^{d_{s+1,1}} \ldots x_{n}^{d_{s+1, n}}+\ldots+a_{s+1} x_{1}^{d_{s+1,1}} \ldots x_{n}^{d_{s+1, n}}=b_{2}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
c_{1} x_{1}^{e_{11}} \ldots x_{m}^{e_{1 m}}+\ldots+c_{r} x_{1}^{e_{r}} \ldots x_{m}^{e_{m}}=l_{1}, \\
c_{r+1} x_{1}^{e_{r+1,1}} \ldots x_{m}^{e_{r+1, m}}+\ldots+c_{r+k} x_{1}^{e_{r+k, 1} \ldots} \ldots x_{m}^{e_{r+k, m}}=l_{2}, \\
c_{r+k+1} x_{1}^{e_{r+k+1,1}} \ldots x_{m}^{e_{r+k+1, m, m}}+\ldots+c_{r+k+w} x_{1}^{e_{r+k+w, 1}} \ldots x_{m}^{e_{r+k+w, m}}=l_{3},
\end{array}\right.
$$

respectively, where $d_{i j}, e_{i^{\prime} j^{\prime}} \in \mathbb{Z}^{+}, a_{i}, c_{i^{\prime}} \in \mathbb{F}_{q}^{*}, i=1, \ldots, s+t, j=1, \ldots, n, i^{\prime}=1, \ldots, r+k+w, j^{\prime}=1, \ldots, m$, and $b_{1}, b_{2}, l_{1}, l_{2}, l_{3} \in \mathbb{F}_{q}$. These formulas extend the theorems obtained by Q . Sun in 1997. Our results also give a partial answer to an open question posed by S.N. Hu, S.F. Hong and W. Zhao [The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory 156 (2015), 135153].

Keywords: finite field; algebraic variety; rational point; prime number; Smith normal form Mathematics Subject Classification: Primary 11T06, Secondary 11T71

1. Introduction

Throughout this paper, p will always denote an odd prime, \mathbb{Z}^{+}and \mathbb{F}_{q} denote the set of positive integers and the finite field having $q=p^{\eta}$ elements, respectively, where $\eta \in \mathbb{Z}^{+}$. Then $\mathbb{F}_{q}^{*}:=\mathbb{F}_{q} \backslash\{0\}$
forms a group under the multiplicative operation. For any finite set $\mathcal{S},|\mathcal{S}|$ means its cardinality. Let $\lambda, n \in \mathbb{Z}^{+}$and $\langle\lambda\rangle$ be the set of the first λ positive integers. Let x_{1}, \ldots, x_{n-1} and x_{n} be n indeterminates in \mathbb{F}_{q}, and for brevity, let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Let $f_{1}(\mathbf{x}), \ldots, f_{\lambda}(\mathbf{x})$ be the system of n-variable polynomials over \mathbb{F}_{q}, and we denote by $V\left(f_{1}, \ldots, f_{\lambda}\right)=V\left(f_{1}(\mathbf{x}), \ldots, f_{\lambda}(\mathbf{x})\right)$ the affine variety determined by the vanishing of these polynomials. Define

$$
N(V)=\left|\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}: f_{1}(\mathbf{x})=\ldots=f_{\lambda}(\mathbf{x})=0\right\}\right|
$$

When $\lambda=1$, one writes $N(V)=N(f)$. Finding an accurate formula for $N(V)$ is a common and significant subject. However, such a problem is hard in general. In the past 70 years, many mathematicians were devoted to this subject and made much vital progress (see [1-11, 13-27]).

In 1997, the number $N(f)$ of rational points over \mathbb{F}_{q} on the following affine hypersurface

$$
f=a_{1} x_{1}^{e_{11}} \ldots x_{n}^{e_{l_{n}}}+\ldots+a_{s} x_{1}^{e_{s 1}} \ldots x_{n}^{e_{s n}}-b=0, e_{i j} \in \mathbb{Z}^{+}, a_{i} \in \mathbb{F}_{q}^{*}, b \in \mathbb{F}_{q}, i \in\langle s\rangle, j \in\langle n\rangle
$$

was investigated by Sun [18]. Besides, the accurate formula for the number $N(f)$ of rational points was found in [18]:

$$
N(f)= \begin{cases}q^{n}-(q-1)^{n}+\frac{q-1}{q} A(n-1) & \text { if } b=0 \\ \frac{1}{q} A(n) & \text { otherwise }\end{cases}
$$

provided $s=n$ and $\operatorname{gcd}\left(\operatorname{det}\left(e_{i j}\right), q-1\right)=1$, where $A(s):=(q-1)^{s}-(-1)^{s}, \forall s \in \mathbb{Z}^{+}$. Eight years later, the result of [18] was successfully extended by Wang and Sun [21]. Actually, they attained a formula for the number of $\left(x_{1}, \ldots x_{n_{2}}\right) \in \mathbb{F}_{q}^{n_{2}}$ on the following hypersurface

$$
a_{1} x_{1}^{d_{11}} \ldots x_{n_{1}}^{d_{1} n_{1}}+\ldots+a_{n_{1}} x_{1}^{d_{n_{1}, 1}} \ldots x_{n_{1}}^{d_{n_{1}, n_{1}}}+a_{n_{1}+1} x_{1}^{d_{n_{1}+1,1}} \ldots x_{n_{2}}^{d_{n_{1}+1, n_{2}}}+\ldots+a_{n_{2}} x_{1}^{d_{n_{2}, 1}} \ldots x_{n_{2}}^{d_{n_{2}, n_{2}}}=b
$$

with $d_{i j} \in \mathbb{Z}^{+}, a_{i} \in \mathbb{F}_{q}^{*}, 1 \leq i, j \leq n_{2}$.
In 2015, Hu , Hong and Zhao [9] gave a uniform generalization to the results of [20,21]. Actually, they used the Smith normal form to deduce an accurate formula for $N(f)$ of $\left(x_{1}, \ldots x_{n_{t}}\right) \in \mathbb{F}_{q}^{n_{t}}$ on the hypersurface over \mathbb{F}_{q} defined by

$$
\begin{equation*}
f:=f\left(x_{1}, \ldots, x_{n_{t}}\right)=\sum_{j=0}^{t-1} \sum_{i=1}^{r_{j+1}-r_{j}} a_{r_{j}+i} x_{1}^{e_{r_{j}+i, 1}} \ldots x_{n_{j+1}}^{e_{j_{j+i}, n_{j+1}}}-b, \tag{1.1}
\end{equation*}
$$

where the integers $t>0,0=r_{0}<r_{1}<r_{2}<\ldots<r_{t}, 1 \leq n_{1}<n_{2}<\ldots<n_{t}, b \in \mathbb{F}_{q}, a_{i} \in \mathbb{F}_{q}^{*}$ and $e_{i j} \in \mathbb{Z}^{+}$, $i \in\left\langle r_{t}\right\rangle, j \in\left\langle n_{t}\right\rangle$. Under some restrictions on f, a little bit simple formula about the number of rational points on the hypersurface (1.1) was given in [13]. One notices that the result of [9] was extended by Hu and Zhao [11] from the hypersurface case to certain algebraic variety case.

An open problem was raised at the end of [9, Section 3]. For the case of the variety consisting of two hypersurfaces, Hu, Qin and Zhao [10] and Zhu and Hong [27] obtained some partial answers to this problem. In other words, Hu , Qin and Zhao [10] gave an explicit formula for $N\left(V\left(f_{1}, f_{2}\right)\right)$, where

$$
\left\{\begin{array}{l}
f_{1}:=\sum_{i=1}^{r_{1}} a_{1 i} x_{1}^{e_{i 1}^{(1)}} \ldots x_{n_{1}}^{e_{i n_{1}}^{(1)}}+\sum_{i=r_{1}+1}^{r_{2}} a_{1 i} x_{1}^{e_{11}^{(1)}} \ldots x_{n_{2}}^{e_{i, i_{2}}^{(1)}}-b_{1} \\
f_{2}:=\sum_{i^{\prime}=1}^{r_{3}} a_{2 i^{\prime}}^{x_{1}^{e_{1}^{(2)}} \ldots x_{n_{3}}^{\left(2, n_{3}\right.}}+\sum_{i^{\prime}=r_{3}+1}^{r_{4}} a_{2 i^{\prime}} x_{1}^{e_{i 1}^{(2)}} \ldots x_{n_{4}}^{\left(e_{i} n_{4}\right.}-b_{2}^{(2)}
\end{array}\right.
$$

with $1 \leq r_{1}<r_{2}, 1 \leq r_{3}<r_{4}, 1 \leq n_{1}<n_{2}, 1 \leq n_{3}<n_{4}, e_{i, j}^{(1)}, e_{i^{\prime} j^{\prime}}^{(2)} \in \mathbb{Z}^{+}, b_{1}, b_{2} \in \mathbb{F}_{q}$, and $a_{1 i}, a_{2 i^{\prime}} \in \mathbb{F}_{q}^{*}$, $i \in\left\langle r_{2}\right\rangle, i^{\prime} \in\left\langle r_{4}\right\rangle, j \in\left\langle n_{2}\right\rangle, j^{\prime} \in\left\langle n_{4}\right\rangle$. Zhu and Hong [27] used and developed the techniques in [9] to get an exact formula for the number of rational points on $V=V\left(f_{1}, f_{2}\right)$ over \mathbb{F}_{q} with

$$
\left\{\begin{array}{l}
f_{1}:=f_{1}\left(x_{1}, \ldots, x_{n_{t}}\right)=\sum_{i=1}^{r} a_{i}^{(1)} x_{1}^{e_{i 1}^{(1)}} \ldots x_{n}^{e_{i n}^{(1)}}-b_{1}, \tag{1.2}\\
f_{2}:=f_{2}\left(x_{1}, \ldots, x_{n_{t}}\right)=\sum_{j^{\prime}=0}^{t-1} \sum_{i^{\prime}=1}^{t-1} a_{j_{j^{\prime}+1}-r_{r^{\prime}}}^{(2)}
\end{array}\right.
$$

where $b_{i} \in \mathbb{F}_{q}, i=1,2, t \in \mathbb{Z}^{+}, 0=n_{0}<n_{1}<n_{2}<\ldots<n_{t}, n_{k-1}<n \leq n_{k}$ for some $k \in\langle t\rangle$, $0=r_{0}<r_{1}<r_{2}<\ldots<r_{t}, a_{i}^{(1)}, a_{i^{\prime}}^{(2)} \in \mathbb{F}_{q}^{*}, i \in\langle r\rangle, i^{\prime} \in\left\langle r_{t}\right\rangle, e_{i, j}^{(1)}, e_{i^{\prime}, j^{\prime}}^{(2)} \in \mathbb{Z}^{+}, j \in\langle n\rangle, j^{\prime} \in\left\langle n_{t}\right\rangle$.

Inspired by the works of [9,18,21,27], we consider in this paper the question of counting rational points on the variety $V\left(f_{1}, f_{2}\right)$ with

$$
\left\{\begin{array}{l}
f_{1}:=a_{1} x_{1}^{d_{11}} \ldots x_{n}^{d_{1 n}}+\ldots+a_{s} x_{1}^{d_{s 1}} \ldots x_{n}^{d_{s n}}-b_{1}, \tag{1.3}\\
f_{2}:=a_{s+1} x_{1}^{d_{s+1,1}} \ldots x_{n}^{d_{s+1, n}}+\ldots+a_{s+t} x_{1}^{d_{s+1,1}} \ldots x_{n}^{d_{s+1, n}}-b_{2},
\end{array}\right.
$$

and the variety $V\left(f_{1}, f_{2}, f_{3}\right)$ with

$$
\left\{\begin{array}{l}
f_{1}:=c_{1} x_{1}^{e_{11}} \ldots x_{m}^{e_{1 m}}+\ldots+c_{r} x_{1}^{e_{1}} \ldots x_{m}^{e_{r m}}-l_{1}, \tag{1.4}\\
f_{2}:=c_{r+1} x_{1}^{e_{r+1,1}} \ldots x_{r m+1, m}^{e_{r+1}}+\ldots+c_{r+k} x_{1}^{e_{r+k, 1}} \ldots x_{m}^{e_{r+k, m}}-l_{2}, \\
f_{3}:=c_{r+k+1} x_{1}^{e_{r+k+1,1}} \ldots x_{m}^{e_{r+k+1, m}}+\ldots+c_{r+k+w} x_{1}^{e_{r+k+w, w}} \ldots x_{m}^{e_{r+k+w, m}}-l_{3},
\end{array}\right.
$$

where $d_{i j}, e_{i^{\prime} j^{\prime}} \in \mathbb{Z}^{+}, a_{i}, c_{i^{\prime}} \in \mathbb{F}_{q}^{*}, i \in\langle s+t\rangle, j \in\langle n\rangle, i^{\prime} \in\langle r+k+w\rangle, j^{\prime} \in\langle m\rangle$, and $b_{1}, b_{2}, l_{1}, l_{2}, l_{3} \in \mathbb{F}_{q}$. Let

$$
E_{1}=\left(\begin{array}{cccc}
d_{11} & d_{12} & \cdots & d_{1 n} \tag{1.5}\\
\vdots & \vdots & & \vdots \\
d_{s 1} & d_{s 2} & \cdots & d_{s n} \\
d_{s+1,1} & d_{s+1,2} & \cdots & d_{s+1, n} \\
\vdots & \vdots & & \vdots \\
d_{s+t, 1} & d_{s+t, 2} & \cdots & d_{s+t, n}
\end{array}\right)
$$

with $d_{i j}, i \in\langle s+t\rangle, j \in\langle n\rangle$ being given as in (1.3), and let

$$
E_{2}=\left(\begin{array}{cccc}
e_{11} & e_{12} & \cdots & e_{1 m} \tag{1.6}\\
\vdots & \vdots & & \vdots \\
e_{r 1} & e_{r 2} & \cdots & e_{r m} \\
e_{r+1,1} & e_{r+1,2} & \cdots & e_{r+1, m} \\
\vdots & \vdots & & \vdots \\
e_{r+k, 1} & e_{r+k, 2} & \cdots & e_{r+k, m} \\
e_{r+k+1,1} & e_{r+k+1,2} & \cdots & e_{r+k+1, m} \\
\vdots & \vdots & & \vdots \\
e_{r+k+w, 1} & e_{r+k+w, 2} & \cdots & e_{r+k+w, m}
\end{array}\right)
$$

with $e_{i^{\prime} j^{\prime}}, i^{\prime} \in\langle r+k+w\rangle, j^{\prime} \in\langle m\rangle$ being given as in (1.4).
From [12], it guarantees the existences of unimodular matrices U_{2} and V_{2} with the property

$$
U_{2} E_{2} V_{2}=\left(\begin{array}{cc}
D_{2} & 0 \tag{1.7}\\
0 & 0
\end{array}\right)
$$

where

$$
D_{2}:=\operatorname{diag}\left(g_{1}^{\left(E_{2}\right)}, \ldots, g_{v^{\prime}}^{\left(E_{2}\right)}\right)
$$

with $g_{1}^{\left(E_{2}\right)}, \ldots, g_{v^{\prime}}^{\left(E_{2}\right)} \in \mathbb{Z}^{+}$and $g_{1}^{\left(E_{2}\right)}|\ldots| g_{v^{\prime}}^{\left(E_{2}\right)}$. The diagonal matrix on the right side of (1.7) is called Smith normal form of E_{2}, and abbreviated as $\operatorname{SNF}\left(E_{2}\right)$. That is,

$$
\operatorname{SNF}\left(E_{2}\right)=\left(\begin{array}{cc}
D_{2} & 0 \\
0 & 0
\end{array}\right)
$$

Fix $\alpha \in \mathbb{F}_{q}^{*}$ as a primitive element of \mathbb{F}_{q}, then for any $\beta \in \mathbb{F}_{q}^{*}$, one can find a unique integer $\gamma \in$ [1,q-1] with $\beta=\alpha^{\gamma}$, and such an integer γ is said to be the index of β on the basis α. We write $\operatorname{ind}_{\alpha} \beta:=\gamma$.

Consider the variety defined by

$$
\left\{\begin{array}{l}
\sum_{i=1}^{r} c_{i} v_{i}=l_{1} \tag{1.8}\\
\sum_{i=r+1}^{r+k} c_{i} v_{i}=l_{2} \\
\sum_{i=r+k+1}^{r+k+w} c_{i} v_{i}=l_{3}
\end{array}\right.
$$

where $c_{i^{\prime}}, l_{1}, l_{2}, l_{3}, i^{\prime} \in\langle r+k+w\rangle$ are given as in (1.4). Let \mathscr{N} denote the number of rational points $\left(v_{1}, \ldots, v_{r+k+w}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{r+k+w}$ on (1.8) satisfying

$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(q-1, g_{j}^{\left(E_{2}\right)}\right) \mid h_{j}^{\left(E_{2}\right)} \text { for } j \in\left\langle v^{\prime}\right\rangle \tag{1.9}\\
(q-1) \mid h_{j}^{\left(E_{2}\right)} \text { for } j \in\langle r+k+w\rangle \backslash\left\langle v^{\prime}\right\rangle,
\end{array}\right.
$$

where

$$
\left(h_{1}^{\left(E_{2}\right)}, \ldots, h_{r+k+w}^{\left(E_{2}\right)}\right)^{\mathrm{T}}:=U_{2}\left(\operatorname{ind}_{\alpha}\left(v_{1}\right), \ldots, \operatorname{ind}_{\alpha}\left(\mathfrak{v}_{r+k+w}\right)\right)^{\mathrm{T}} .
$$

We can now state our main results.
Theorem 1.1. Let V be the variety defined by (1.3). If $s+t=n$ and $\operatorname{gcd}\left(q-1, \operatorname{det}\left(E_{1}\right)\right)=1$, then

$$
N(V)= \begin{cases}q^{n}-(q-1)^{n}+\frac{(q-1)^{2}}{q^{2}} A(s-1) A(t-1) & \text { if } b_{1}=b_{2}=0, \tag{1.10}\\ \frac{q-1}{q^{2}} A(s) A(t-1) & \text { if } b_{1} \neq 0, b_{2}=0, \\ \frac{q-1}{q^{2}} A(s-1) A(t) & \text { if } b_{1}=0, b_{2} \neq 0, \\ \frac{1}{q^{2}} A(s) A(t) & \text { if } b_{1} \neq 0, b_{2} \neq 0\end{cases}
$$

Theorem 1.2. Let V be the variety defined by (1.4). Then

$$
N(V)=\left\{\begin{array}{lr}
q^{m}-(q-1)^{m}+\mathscr{N} R & \text { if } l_{1}=l_{2}=l_{3}=0 \tag{1.11}\\
\mathscr{N} R & \text { otherwise }
\end{array}\right.
$$

where $R:=(q-1)^{m-v^{\prime}} \prod_{j=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{j}^{\left(E_{2}\right)}\right)$.
From Theorem 1.2, one can derive the third main result of this paper as follows.
Theorem 1.3. Let V denote the affine variety defined by (1.4). If $r+k+w=m$ and $\operatorname{gcd}\left(q-1, \operatorname{det}\left(E_{2}\right)\right)=$ 1, then

$$
N(V)=\left\{\begin{array}{lr}
q^{m}-(q-1)^{m}+\frac{(q-1)^{3}}{q^{3}} A(r-1) A(k-1) A(w-1) & \text { if } l_{l}=l_{2}=l_{3}=0, \tag{1.12}\\
\frac{(q-1)^{2}}{q^{3}} A(r-1) A(k-1) A(w) & \text { if } l_{l}=l_{2}=0, l_{3} \neq 0, \\
\frac{(q-1)^{2}}{q^{3}} A(r-1) A(k) A(w-1) & \text { if } l_{l}=l_{3}=0, l_{2} \neq 0, \\
\frac{(q-1)^{2}}{q^{3}} A(r) A(k-1) A(w-1) & \text { if } l_{l} \neq 0, l_{2}=l_{3}=0, \\
\frac{q-1}{q^{3}} A(r) A(k) A(w-1) & \text { if } l_{l} \neq 0, l_{2}=0, l_{3} \neq 0, \\
\frac{q-1}{q^{3}} A(r) A(k-1) A(w) & \text { if } l_{1}=0, l_{2} \neq 0, l_{3} \neq 0, \\
\frac{q-1}{q^{3}} A(r-1) A(k) A(w) & \text { if } l_{1} \neq 0, l_{2} \neq 0, l_{3} \neq 0 .
\end{array}\right.
$$

Obviously, Theorems 1.1 to 1.3 also give a partial answer to the open problem proposed at the end of [9, Section 3].

In Section 2, in order to prove Theorems 1.1 to 1.3, we give several auxiliary results. Then in Section 3, one presents the details of the proofs of Theorems 1.1 to 1.3. Finally, four examples are provided in Section 4.

2. Auxiliary results

In this section, we present several preliminary results which are needed in the proofs of Theorems 1.1 to 1.3. We begin with a result due to Zhu and Hong [27].

Lemma 2.1. [27, Lemma 2.6] Let $c_{i j} \in \mathbb{F}_{q}^{*}, i \in\langle m\rangle, j \in\left\langle\mathcal{R}_{i}\right\rangle, c_{1}, \ldots, c_{m} \in \mathbb{F}_{q}$. Let $N\left(c_{1}, \ldots, c_{m}\right)$ stand for the number of $\left(u_{11}, \ldots, u_{1 k_{1}}, \ldots, u_{m 1}, \ldots, u_{m k_{m}}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{k_{1}+\ldots+k_{m}}$ such that

$$
\left\{\begin{array}{l}
c_{11} u_{11}+\ldots+c_{1 k_{1}} u_{1 k_{1}}=c_{1} \\
\vdots \\
c_{m 1} u_{m 1}+\ldots+c_{m k k_{m}} u_{m k_{m}}=c_{m} .
\end{array}\right.
$$

Then

$$
N\left(c_{1}, \ldots, c_{m}\right)=\frac{(q-1)^{\| 1 \leq i \leq m: c_{i}}=0\| \|}{q^{m}} \prod_{\substack{i=1 \\ c_{i}=0}}^{m} A\left(\kappa_{i}-1\right) \prod_{\substack{i=1 \\ c_{i} \neq 0}}^{m} A\left(\kappa_{i}\right) .
$$

Lemma 2.2. Let $a_{i} \in \mathbb{F}_{q}^{*}, i \in\langle s+t\rangle, b_{1}, b_{2} \in \mathbb{F}_{q}$. Let $N\left(b_{1}, b_{2}\right)$ denote the number of $\left(u_{1}, \ldots, u_{s+t}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{s+t}$ with

$$
\left\{\begin{array}{l}
\sum_{i=1}^{s} a_{i} u_{i}=b_{1} \tag{2.1}\\
\sum_{i=s+1}^{s+t} a_{i} u_{i}=b_{2}
\end{array}\right.
$$

Then

$$
N\left(b_{1}, b_{2}\right)= \begin{cases}\frac{(q-1)^{2}}{q^{2}} A(s-1) A(t-1) & \text { if } b_{1}=b_{2}=0 \tag{2.2}\\ \frac{q-1}{q^{2}} A(s) A(t-1) & \text { if } b_{1} \neq 0, b_{2}=0 \\ \frac{q-1}{q^{2}} A(s-1) A(t) & \text { if } b_{1}=0, b_{2} \neq 0 \\ \frac{1}{q^{2}} A(s) A(t) & \text { if } b_{1} \neq 0, b_{2} \neq 0\end{cases}
$$

Proof. The result follows immediately from Lemma 2.1.
Lemma 2.3. Let $c_{i} \in \mathbb{F}_{q}^{*}$ for all $i \in\langle r+k+w\rangle$ and let $l_{1}, l_{2}, l_{3} \in \mathbb{F}_{q}$. Let $N\left(l_{1}, l_{2}, l_{3}\right)$ denote the number of $\left(\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{r+k+w}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{r+k+w}$ satisfying (1.8). Then

$$
N\left(l_{1}, l_{2}, l_{3}\right)=\left\{\begin{array}{lr}
\frac{(q-1)^{3}}{q^{3}} A(r-1) A(k-1) A(w-1) & \text { if } l_{l}=l_{2}=l_{3}=0, \tag{2.3}\\
\frac{(q-1)^{2}}{q^{3}} A(r-1) A(k-1) A(w) & \text { if } l_{l}=l_{2}=0, l_{3} \neq 0, \\
\frac{(q-1)^{2}}{q^{3}} A(r-1) A(k) A(w-1) & \text { if } l_{l}=l_{3}=0, l_{2} \neq 0, \\
\frac{(q-1)^{2}}{q^{3}} A(r) A(k-1) A(w-1) & \text { if } l_{1} \neq 0, l_{2}=l_{3}=0, \\
\frac{q-1}{q^{3}} A(r) A(k) A(w-1) & \text { if } l_{l} \neq 0, l_{2} \neq 0, l_{3}=0, \\
\frac{q-1}{q^{3}} A(r) A(k-1) A(w) & \text { if } l_{l} \neq 0, l_{2}=0, l_{3} \neq 0, \\
\frac{q-1}{q^{3}} A(r-1) A(k) A(w) & \text { if } l_{1}=0, l_{2} \neq 0, l_{3} \neq 0, \\
\frac{1}{q^{3}} A(r) A(k) A(w) & l_{3} \neq 0 .
\end{array}\right.
$$

Proof. This follows immediately from Lemma 2.1.
Reference [12] tells us that by using elementary transformation, we can readily find unimodular matrices U_{1} and V_{1} with the property

$$
U_{1} E_{1} V_{1}=\left(\begin{array}{cc}
D_{1} & 0 \tag{2.4}\\
0 & 0
\end{array}\right)
$$

where E_{1} is given as in (1.5),

$$
D_{1}:=\operatorname{diag}\left(g_{1}^{\left(E_{1}\right)}, \ldots, g_{v}^{\left(E_{1}\right)}\right)
$$

with $g_{1}^{\left(E_{1}\right)}, \ldots, g_{v}^{\left(E_{1}\right)} \in \mathbb{Z}^{+}$and $g_{1}^{\left(E_{1}\right)}|\ldots| g_{v}^{\left(E_{1}\right)}$. Let \mathscr{M} represent the number of $\left(u_{1}, \ldots, u_{s+t}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{s+t}$ on (2.1) under the following additional restrictions:

$$
\left\{\begin{array}{l}
\operatorname{gcd}\left(q-1, g_{j}^{\left(E_{1}\right)}\right) \mid h_{j}^{\left(E_{1}\right)} \text { for } j \in\langle v\rangle \tag{2.5}\\
(q-1) \mid h_{j}^{\left(E_{1}\right)} \text { for } j \in\langle s+t\rangle \backslash\langle v\rangle,
\end{array}\right.
$$

where

$$
\left(h_{1}^{\left(E_{1}\right)}, \ldots, h_{s+t}^{\left(E_{1}\right)}\right)^{\mathrm{T}}:=U_{1}\left(\operatorname{ind}_{\alpha}\left(u_{1}\right), \ldots, \operatorname{ind}_{\alpha}\left(u_{s+t}\right)\right)^{\mathrm{T}}
$$

As a special case of [27, Theorem 1.2], one has the following result.
Lemma 2.4. Let V be the variety (1.3). Then

$$
N(V)=\left\{\begin{array}{lr}
q^{n}-(q-1)^{n}+\mathscr{M}(q-1)^{n-v} \prod_{j=1}^{v} \operatorname{gcd}\left(q-1, g_{j}^{\left(E_{1}\right)}\right) & \text { if } b_{1}=b_{2}=0 \\
\mathscr{M}(q-1)^{n-v} \prod_{j=1}^{v} \operatorname{gcd}\left(q-1, g_{j}^{\left(E_{1}\right)}\right) & \text { otherwise }
\end{array}\right.
$$

Let $g_{i j}, \mathcal{b}_{i}(i \in\langle\ell\rangle, j \in\langle u\rangle)$ and a be integers. Let $Y=\left(y_{1}, \ldots, y_{u}\right)^{\mathrm{T}}$ and $\mathscr{B}=\left(\mathfrak{b}_{1}, \ldots, \mathfrak{b}_{l}\right)^{\mathrm{T}}$. Then one forms an $\mathcal{\ell} \times u$ matrix $\mathscr{G}=\left(g_{i j}\right)$ and the following system of congruences:

$$
\begin{equation*}
\mathscr{G} Y \equiv \mathscr{B} \quad(\bmod a) \tag{2.6}
\end{equation*}
$$

From [12], one can use elementary transformation of matrices to find unimodular matrices U and V with the property

$$
U \mathscr{G V}=\operatorname{SNF}(\mathscr{G})=\left(\begin{array}{ll}
\mathscr{D} & 0 \\
0 & 0
\end{array}\right)
$$

where $\mathscr{D}:=\operatorname{diag}\left(d_{1}, \ldots, d_{\tau}\right)$ with $d_{i} \in \mathbb{Z}^{+}, i \in\langle\tau\rangle$ and $d_{i} \mid d_{i+1}, i \in\langle\tau-1\rangle$.
Lemma 2.5. [9, Lemma 2.3] Let $\mathscr{B}^{\prime}=\left(\mathfrak{b}_{1}^{\prime}, \ldots, \boldsymbol{b}_{l}^{\prime}\right)^{\mathrm{T}}=\mathcal{U} \mathscr{B}$, then a necessary and sufficient condition for the system (2.6) of linear congruences to have a solution is $\operatorname{gcd}\left(a, d_{i}\right) \mid \mathfrak{b}_{i}^{\prime}$ for all $i \in\langle\tau\rangle$ and a $\mid b_{i}^{\prime}$ for all $i \in\langle\ell\rangle \backslash\langle\tau\rangle$. In addition, the number of solutions $\left(y_{1}, \ldots, y_{u}\right)^{\mathrm{T}}$ of (2.6) equals $a^{u-\tau} \prod_{i=1}^{\tau} \operatorname{gcd}\left(a, d_{i}\right)$.

Lemma 2.6. Let r, k and w be positive integers. Then

$$
\begin{align*}
& =\mathscr{N}(q-1)^{m-v^{\prime}} \prod_{j=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{j}^{\left(E_{2}\right)}\right) . \tag{2.7}
\end{align*}
$$

Proof. First of all, for any given $\left(\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{r+k+w}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{r+k+w}$ satisfying (1.8), we have the system of congruences:

$$
\begin{equation*}
\sum_{j=1}^{m} e_{i j} \operatorname{ind}_{\alpha}\left(x_{i}\right) \equiv \operatorname{ind}_{\alpha}\left(v_{i}\right) \quad(\bmod q-1), i \in\langle r+k+w\rangle \tag{2.8}
\end{equation*}
$$

then

$$
\begin{aligned}
& \left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{m}: x_{1}^{e_{i 1}} \ldots x_{m}^{e_{i n}}=v_{i}, i \in\langle r+k+m\rangle\right\}\right| \\
= & \left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{m}: \alpha^{\Sigma_{j=1}^{m} e_{i j} \mathrm{id}_{\alpha}\left(x_{i}\right)}=\alpha^{\operatorname{ind}_{\alpha}\left(v_{i}\right)}, i \in\langle r+k+m\rangle\right\rangle\right| \\
= & \mid\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{m}:(2.8) \text { holds }\right\} \mid .
\end{aligned}
$$

However, Lemma 2.5 tells us that the necessary and sufficient condition for (2.8) to have a solution is that (1.9) holds. In addition, if (2.8) has a solution, then the number of the m-tuples $\left(\operatorname{ind}_{\alpha}\left(x_{1}\right), \ldots, \operatorname{ind}_{\alpha}\left(x_{m}\right)\right) \in\langle q-1\rangle^{m}$ satisfying (2.8) is equal to

$$
(q-1)^{m-v^{\prime}} \prod_{j=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{j}^{\left(E_{2}\right)}\right)
$$

Namely, if (1.9) is satisfied, then

$$
\begin{aligned}
& \left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{m}: x_{1}^{e_{i 1}} \ldots x_{m}^{e_{i n}}=v_{i}, i \in\langle r+k+w\rangle\right\}\right| \\
= & (q-1)^{m-v^{\prime}} \prod_{j=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{j}^{\left(E_{2}\right)}\right) .
\end{aligned}
$$

Thus, the left hand side of (2.7) is equal to

However,

$$
\begin{equation*}
\mathscr{N}=\sum_{\left(\left(_{1}, \ldots, v_{r}+k+w\right) \in\left(\mathbb{R}_{q}\right)^{r+k+w+w} \text { such hat }(1.8) \text { and }(1.9)\right. \text { hold }} 1 . \tag{2.10}
\end{equation*}
$$

Hence putting (2.10) into (2.9) gives us the wanted result (2.7).

3. Proofs of Theorems 1.1 to 1.3

In this section, we present the proofs of Theorems 1.1 to 1.3 . We begin with the proof of Theorem 1.1.

Proof of Theorem 1.1. Taking determinants on both sides of (2.4), we can deduce that

$$
\operatorname{det}\left(U_{1}\right) \operatorname{det}\left(E_{1}\right) \operatorname{det}\left(V_{1}\right)=g_{1}^{\left(E_{1}\right)} \ldots g_{n}^{\left(E_{1}\right)} .
$$

Since $\operatorname{det}\left(U_{1}\right)= \pm 1$ and $\operatorname{det}\left(V_{1}\right)= \pm 1$, the condition

$$
\operatorname{gcd}\left(q-1, \operatorname{det}\left(E_{1}\right)\right)=1
$$

implies that

$$
\operatorname{gcd}\left(q-1, g_{j}^{\left(E_{1}\right)}\right)=1 \text { for all } j \in\langle n\rangle
$$

So (2.5) holds.
Further, by Lemma 2.2, one has

$$
\begin{equation*}
\mathscr{M}=\sum_{\left(u_{1}, \ldots, u_{s+1}\right) \in\left(\mathbb{F}_{q}^{*}\right)+\text { +l }} \sum_{\text {such that }(2.1) \text { and }(2.5) \text { hold }} 1=N\left(b_{1}, b_{2}\right) \tag{3.1}
\end{equation*}
$$

with $N\left(b_{1}, b_{2}\right)$ being given as in (2.2). It follows from Lemma 2.4 that

$$
N(V)=\left\{\begin{array}{lr}
q^{n}-(q-1)^{n}+\mathscr{M} & \text { if } b_{1}=b_{2}=0 \tag{3.2}\\
\mathscr{M} & \text { otherwise }
\end{array}\right.
$$

Thus, putting (3.1) and (3.2) together gives the expected result (1.10).
This completes the proof of Theorem 1.1.
Proof of Theorem 1.2. It is clear that

One defines the set $T\left(l_{1}, l_{2}, l_{3}\right)$ of \mathbb{F}_{q}-rational points as follows:

$$
\begin{equation*}
T\left(l_{1}, l_{2}, l_{3}\right):=\left\{\left(v_{1}, \ldots, v_{r+k+w}\right) \in \mathbb{F}_{q}^{r+k+w}:(1.8) \text { holds }\right\} \tag{3.4}
\end{equation*}
$$

Substituting (3.4) into (3.3) yields

$$
\begin{equation*}
N(V)=\sum_{\left(v_{1}, \ldots, v_{r+k+w}\right) \in T\left(l_{1}, l_{2}, l_{3}\right)}\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{i 1}} \ldots x_{m}^{e_{i n}}=v_{i}, i \in\langle r+k+w\rangle\right\}\right| . \tag{3.5}
\end{equation*}
$$

Define the set $T(0)$ by $T(0):=\varnothing$ if l_{1}, l_{2} and l_{3} are not all zero, and if $l_{1}=l_{2}=l_{3}=0$, then $T(0)$ consists of the zero vector of dimension $r+k+w$. For any integer ρ with $1 \leq \rho \leq r+k+w$, one defines the set $T(\rho)$ to be the subset of $T\left(l_{1}, l_{2}, l_{3}\right)$ consisting of $\left(\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{r+k+w}\right) \in \mathbb{F}_{q}^{r+k+w}$ with exactly ρ nonzero
components. Noticing that v_{1}, \ldots, v_{r+k+w} are simultaneously zero, or simultaneously nonzero, one has $T(\rho)=\varnothing$ when $0<\rho<r+k+w$. Hence,

$$
\begin{equation*}
T\left(l_{1}, l_{2}, l_{3}\right)=\bigcup_{\rho=0}^{r+k+w} T(\rho)=T(0) \cup T(r+k+w) \tag{3.6}
\end{equation*}
$$

Now, applying Lemma 2.6, we have

$$
\begin{aligned}
& \sum_{\left(v_{1}, \ldots, v_{r+k+w}\right) \in T(r+k+w)}\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{i 1}} \ldots x_{m}^{e_{i m}}=v_{i}, i \in\langle r+k+w\rangle\right\}\right| \\
& =\sum_{\substack{\left(1, \ldots, v_{r+t+w)} \in \mathbb{R}_{\left(\mathbb{R}^{p}\right)^{r}+k+w}^{(1.8)} \\
(1.8)\right. \text { holds }}}\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{i n}} \ldots x_{m}^{e_{i m}}=v_{i}, i \in\langle r+k+w\rangle\right\}\right|
\end{aligned}
$$

$$
\begin{align*}
& \text { (since } \left.\left(\mathfrak{v}_{1}, \ldots, \mathfrak{v}_{r+k+w}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{r+k+w} \text { implying }\left(x_{1}, \ldots, x_{m}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{m}\right) \\
& =\mathscr{N}(q-1)^{m-v^{\prime}} \prod_{j=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{j}^{\left(E_{2}\right)}\right) . \tag{3.7}
\end{align*}
$$

It readily follows that if at least one of l_{1}, l_{2} and l_{3} is nonzero, then $T(0)=\varnothing$, and so by (3.5) to (3.7), one has

$$
\begin{aligned}
N(V) & =\sum_{\left(v_{1}, \ldots, v_{r+k+w}\right) \in T(0) \cup T(r+k+w)}\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{i 1}} \ldots x_{m}^{e_{i n}}=v_{i}, i \in\langle r+k+w\rangle\right\}\right| \\
& =\sum_{\left(v_{1}, \ldots, v_{r+k+w)}\right) \in T(r+k+w)}\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{i 1}} \ldots x_{m}^{e_{i n}}=v_{i}, i \in\langle r+k+w\rangle\right\}\right| \\
& =\mathscr{N}(q-1)^{m-v^{\prime}} \prod_{j=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{j}^{\left(E_{2}\right)}\right) .
\end{aligned}
$$

If $l_{1}=l_{2}=l_{3}=0$, then by using (3.5) to (3.7), we derive that

$$
\begin{aligned}
& N(V)= \sum_{\left(v_{1}, \ldots, v_{r}+k+w\right) \in T(0) \cup U(r+k+w)}\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{i 1}} \ldots x_{m}^{e_{m}}=v_{i}, i \in\langle r+k+w\rangle\right\}\right| \\
&= \sum_{\left(v_{1}, \ldots, v_{r+k+w}\right) \in T(0)}\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{11}} \ldots x_{m}^{e_{i_{m}}}=v_{i}, i \in\langle r+k+w\rangle\right\}\right| \\
&+\sum_{\left(v_{1}, \ldots, v_{r+k+w} \in T(r+k+w)\right.}\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{i 1}} \ldots x_{m}^{e_{i n}}=v_{i}, i \in\langle r+k+w\rangle\right\}\right| \\
&=\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{i 1}} \ldots x_{m}^{e_{i m}}=0, i \in\langle r+k+w\rangle\right\}\right| \\
&+\mathscr{N}(q-1)^{m-v^{\prime}} \prod_{i=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{i}^{\left(E_{2}\right)}\right) \\
&=\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1}^{e_{11}} \ldots x_{m}^{e_{i_{m}}}=0\right\}\right|+\mathscr{N}(q-1)^{m-v^{\prime}} \prod_{i=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{i}^{\left(E_{2}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\left\{\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{F}_{q}^{m}: x_{1} \ldots x_{m}=0\right\}\right|+\mathscr{N}(q-1)^{m-v^{\prime}} \prod_{i=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{i}^{\left(E_{2}\right)}\right) \\
& =\sum_{j=1}^{m}\binom{m}{j}(q-1)^{m-j}+\mathscr{N}(q-1)^{m-v^{\prime}} \prod_{i=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{i}^{\left(E_{2}\right)}\right) \\
& =q^{m}-(q-1)^{m}+\mathscr{N}(q-1)^{m-v^{\prime}} \prod_{i=1}^{v^{\prime}} \operatorname{gcd}\left(q-1, g_{i}^{\left(E_{2}\right)}\right)
\end{aligned}
$$

as expected.
This finishes the proof of Theorem 1.2.
Proof of Theorem 1.3. Taking determinants on both sides of (1.7), one has

$$
\operatorname{det}\left(U_{2}\right) \operatorname{det}\left(E_{2}\right) \operatorname{det}\left(V_{2}\right)=g_{1}^{\left(E_{2}\right)} \ldots g_{m}^{\left(E_{2}\right)}
$$

Because $\operatorname{det}\left(U_{2}\right)= \pm 1$ and $\operatorname{det}\left(V_{2}\right)= \pm 1$, the condition $\operatorname{gcd}\left(q-1, \operatorname{det}\left(E_{2}\right)\right)=1$ guarantees that

$$
\operatorname{gcd}\left(q-1, g_{i}^{\left(E_{2}\right)}\right)=1 \text { for all } i \in\langle m\rangle
$$

This ensures that (1.9) is satisfied.
Noting that

$$
\begin{equation*}
\mathscr{N}=\sum_{\left(v_{1}, \ldots, v_{r+k+w}\right) \in\left(\mathbb{F}_{q}^{s}\right)^{r+k+w}} \sum_{\text {such that }(1.8) \text { and }(1.9) \text { hold }} 1=N\left(l_{1}, l_{2}, l_{3}\right) \tag{3.8}
\end{equation*}
$$

with $N\left(l_{1}, l_{2}, l_{3}\right)$ being given as in (2.3), it follows from (1.11) that

$$
N(V)=\left\{\begin{array}{lr}
q^{m}-(q-1)^{m}+\mathscr{N} & \text { if } l_{1}=l_{2}=l_{3} \tag{3.9}\\
\mathscr{N} & \text { otherwise }
\end{array}\right.
$$

Therefore, by the identities (3.8) and (3.9), the desired result (1.12) follows immediately.
This concludes the proof of Theorem 1.3.

4. Examples

In this section, we give four examples to demonstrate the validity of Theorems 1.1 to 1.3.
Example 4.1. We calculate the number $N(V)$ of rational points on the variety

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{5}\right)=x_{1} x_{2}^{2} x_{3}^{3} x_{4}^{4} x_{5}^{5}+x_{1}^{2} x_{2}^{2} x_{3}^{4} x_{4}^{5} x_{5}-2=0 \\
f_{2}\left(x_{1}, \ldots, x_{5}\right)=x_{1}^{3} x_{2}^{4} x_{3}^{2} x_{4}^{3} x_{5}+x_{1}^{2} x_{2}^{5} x_{3}^{4} x_{4}^{2} x_{5}^{2}+x_{1}^{2} x_{2}^{3} x_{3} x_{4}^{2} x_{5}^{2}=0
\end{array}\right.
$$

over \mathbb{F}_{11}.

Clearly, we have

$$
b_{1}=2, b_{2}=0, q=11, q-1=10, s=2, t=3, n=5 \text {, }
$$

and

$$
E_{1}=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 2 & 4 & 5 & 1 \\
3 & 4 & 2 & 3 & 1 \\
2 & 5 & 4 & 2 & 2 \\
2 & 3 & 1 & 2 & 2
\end{array}\right)
$$

Since $\operatorname{det}\left(E_{1}\right)=9$, one derives that $\operatorname{gcd}\left(q-1, \operatorname{det}\left(E_{1}\right)\right)=1$. By Theorem 1.1, we can calculate and obtain that

$$
N(V)=\frac{1}{11^{2}}\left((11-1)^{2}-(-1)^{2}\right)\left((11-1)^{3}+(-1)^{3} \cdot(11-1)\right)=810 .
$$

Example 4.2. We compute the number $N(V)$ of rational points on the variety

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{2}^{2} x_{3}^{3} x_{4}^{4} x_{5}^{5} x_{6}+x_{1}^{2} x_{2}^{2} x_{3}^{4} x_{4}^{5} x_{5} x_{6}=1 \tag{4.1}\\
f_{2}\left(x_{1}, \ldots, x_{6}\right)=x_{1}^{3} x_{2}^{4} x_{3}^{2} x_{4}^{3} x_{5} x_{6}^{2}+x_{1}^{2} x_{2}^{5} x_{3}^{4} x_{4}^{2} x_{5}^{2} x_{6}=2, \\
f_{3}\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{2}^{2} x_{3} x_{4}^{2} x_{5}^{3} x_{6}+x_{1}^{2} x_{2}^{3} x_{3} x_{4}^{2} x_{5}^{2} x_{6}=0
\end{array}\right.
$$

over \mathbb{F}_{7}.
Evidently, we have

$$
l_{1}=l_{2}=l_{3}=0, q=7, m=6, r=k=w=2
$$

and

$$
E_{2}=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 1 \\
2 & 2 & 4 & 5 & 1 & 1 \\
3 & 4 & 2 & 3 & 1 & 2 \\
2 & 5 & 4 & 2 & 2 & 1 \\
1 & 2 & 1 & 2 & 3 & 1 \\
2 & 3 & 1 & 2 & 2 & 1
\end{array}\right) .
$$

Hence, $\operatorname{det}\left(E_{2}\right)=-22$, one observes that $\operatorname{gcd}\left(q-1, \operatorname{det}\left(E_{2}\right)\right) \neq 1$.
By using Maple, we can find two unimodular matrices

$$
U_{2}=\left(\begin{array}{cccccc}
1 & 1 & -5 & 0 & -7 & 10 \\
3 & -6 & 18 & -1 & 9 & -26 \\
5 & -6 & 16 & -1 & 3 & -21 \\
-5 & 6 & -15 & 1 & -2 & 19 \\
4 & -5 & 13 & -1 & 3 & -17 \\
7 & -10 & 28 & -2 & 9 & -38
\end{array}\right)
$$

and

$$
V_{2}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 5 \\
0 & 1 & 0 & 0 & 0 & -15 \\
0 & 0 & 1 & 0 & 0 & -12 \\
0 & 0 & 0 & 1 & 0 & 11 \\
0 & 0 & 0 & 0 & 1 & -10 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

such that

$$
U_{2} E_{2} V_{2}=\operatorname{SNF}\left(E_{2}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 22
\end{array}\right)
$$

Thus,

$$
g_{1}^{\left(E_{2}\right)}=g_{2}^{\left(E_{2}\right)}=g_{3}^{\left(E_{2}\right)}=g_{4}^{\left(E_{2}\right)}=g_{5}^{\left(E_{2}\right)}=1, g_{6}^{\left(E_{2}\right)}=22 \text { and } v^{\prime}=6 .
$$

Still using Maple, we compute and get that the number \mathscr{N} of vectors $\left(v_{1}, \ldots, v_{6}\right) \in\left(\mathbb{F}_{q}^{*}\right)^{6}$ with

$$
\left\{\begin{array}{l}
v_{1}+v_{2}=0 \\
v_{3}+v_{4}=0 \\
v_{5}+v_{6}=0
\end{array}\right.
$$

under the extra restriction (1.9) is equal to 108. Thus, by Theorem 1.2, we have

$$
N(V)=7^{6}-6^{6}+108 \times 2=71209 .
$$

Example 4.3. We compute the number $N(V)$ of rational points on the variety

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{6}\right)=x_{1} x_{2}^{2} x_{3}^{3} x_{4}^{4} x_{5}^{5} x_{6}^{4}+x_{1}^{11} x_{2}^{5} x_{3}^{4} x_{4}^{5} x_{5} x_{6}^{4}=0, \\
f_{2}\left(x_{1}, \ldots, x_{6}\right)=x_{1}^{3} x_{2}^{4} x_{3}^{2} x_{4}^{3} x_{5} x_{6}^{3}+x_{1}^{7} x_{2}^{3} x_{3}^{5} x_{4}^{2} x_{5} x_{6}^{4}=0, \\
f_{3}\left(x_{1}, \ldots, x_{6}\right)=x_{1}^{2} x_{2}^{6} x_{3}^{3} x_{4}^{2} x_{5}^{2} x_{6}^{3}+x_{1}^{8} x_{2}^{2} x_{3}^{11} x_{4}^{5} x_{5}^{3} x_{6}^{5}=0
\end{array}\right.
$$

over \mathbb{F}_{13}.
Obviously, we have

$$
l_{1}=l_{2}=l_{3}=0, q=13, q-1=12, m=6, r=k=w=2
$$

and

$$
E_{2}=\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 4 \\
11 & 5 & 4 & 5 & 1 & 4 \\
3 & 4 & 2 & 3 & 1 & 3 \\
7 & 3 & 5 & 2 & 1 & 4 \\
2 & 6 & 3 & 2 & 2 & 3 \\
8 & 2 & 11 & 5 & 3 & 5
\end{array}\right) .
$$

Since $\operatorname{det}\left(E_{2}\right)=4387=41 \times 107$, we deduce that $\operatorname{gcd}\left(q-1, \operatorname{det}\left(E_{2}\right)\right)=1$. By Theorem 1.3, we compute and obtain that

$$
N(V)=13^{6}-12^{6}+\frac{1}{13^{3}}\left(12^{2}+12\right)\left(12^{2}+12\right)\left(12^{2}+12\right)=1842553 .
$$

Example 4.4. We calculate the number $N(V)$ of rational points on the variety

$$
\left\{\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{7}\right)=x_{1} x_{2}^{2} x_{3}^{3} x_{4}^{4} x_{5}^{5} x_{6}^{4} x_{7}^{5}+x_{1}^{2} x_{2}^{5} x_{3}^{4} x_{4}^{5} x_{5} x_{6}^{4} x_{7}^{4}-2=0, \\
f_{2}\left(x_{1}, \ldots, x_{7}\right)=x_{1}^{3} x_{2}^{4} x_{3}^{2} x_{4}^{3} x_{5} x_{6}^{3} x_{7}^{2}+x_{1}^{2} x_{2}^{3} x_{3}^{5} x_{4}^{2} x_{5} x_{6}^{4} x_{7}^{5}+x_{1}^{2} x_{2}^{6} x_{3}^{3} x_{4}^{2} x_{5}^{2} x_{6}^{3} x_{7}^{5}=0, \\
f_{3}\left(x_{1}, \ldots, x_{7}\right)=x_{1}^{2} x_{2}^{2} x_{3}^{3} x_{4}^{3} x_{5}^{5} x_{6}^{3} x_{7}^{3}+x_{1}^{2} x_{2}^{2} x_{3}^{4} x_{4}^{5} x_{5}^{3} x_{6}^{5} x_{7}^{3}=0
\end{array}\right.
$$

over \mathbb{F}_{11}.
It is clear that

$$
l_{1}=2, l_{2}=l_{3}=0, q=11, q-1=10, m=7, r=2, k=3, w=2
$$

and

$$
E_{2}=\left(\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 4 & 5 \\
2 & 5 & 4 & 5 & 1 & 4 & 4 \\
3 & 4 & 2 & 3 & 1 & 3 & 2 \\
2 & 3 & 5 & 2 & 1 & 4 & 5 \\
2 & 6 & 3 & 2 & 2 & 3 & 5 \\
2 & 2 & 3 & 3 & 5 & 3 & 3 \\
2 & 2 & 4 & 5 & 3 & 5 & 3
\end{array}\right) .
$$

Thus, $\operatorname{det}\left(E_{2}\right)=957$ which infers that $\operatorname{gcd}\left(q-1, \operatorname{det}\left(E_{2}\right)\right)=1$. Therefore, by employing Theorem 1.3, we compute and obtain that

$$
N(V)=\frac{1}{11^{3}}\left((11-1)^{2}-(-1)^{2}\right)\left((11-1)^{3}+(-1)^{3}(11-1)\right)\left((11-1)^{2}+(-1)^{2}(11-1)\right)=8100 .
$$

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The research of M. Li was supported partially by National Science Foundation of China (Grant No. 12071375).

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

References

1. J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255-261. https://doi.org/10.2307/2373163
2. W. Cao, Q. Sun, A reduction for counting the number of zeros of general diagonal equation over finite fields, Finite Fields Appl. 12 (2006), 681-692. https://doi.org/10.1016/j.ffa.2005.07.001
3. W. Cao, Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., $\mathbf{1 3 0}$ (2007), 195-202. https://doi.org/10.4064/aa 130-2-8
4. L. Carlitz, Pairs of quadratic equations in a finite field, Amer. J. Math., 76 (1954), 137-154. https://doi.org/10.2307/2372405
5. S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502-506. https://doi.org/10.1016/0022-314X(77)90010-5
6. Y. L. Feng, S. F. Hong, Improvements of p-adic estimates of exponential sums, Proc. Amer. Math. Soc., 150 (2022), 3687-3698. https://doi.org/10.1090/proc/15995
7. S. F. Hong, L-functions of twisted diagonal exponential sums over finite fields, Proc. Amer. Math. Soc., 135 (2007), 3099-3108. https://doi.org/10.1090/s0002-9939-07-08873-9
8. S. F. Hong, C. X. Zhu, On the number of zeros of diagonal cubic forms over finite fields, Forum Math., 33 (2021), 697-708. https://doi.org/10.1515/forum-2020-0354
9. S. N. Hu, S. F. Hong, W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135-153. https://doi.org/10.1016/j.jnt.2015.04.006
10. S. N. Hu, X. E. Qin, J. Y. Zhao, Counting rational points of an algebraic variety over finite fields, Results Math., 74 (2019), 37. https://doi.org/10.1007/s00025-019-0962-6
11. S. N. Hu, J. Y. Zhao, The number of rational points of a family of algebraic variety over finite fields, Algebra Colloq., 24 (2017), 705-720. https://doi.org/10.1142/S1005386717000475
12. L. K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin-Heidelberg, 1982. https://mathscinet.ams.org/mathscinet/article? $\mathrm{mr}=665428$
13. H. Huang, W. Gao, W. Cao, Remarks on the number of rational points on a class of hypersurfaces over finite fields, Algebra Colloq., 25 (2018), 533-540. https://doi.org/10.1142/S1005386718000366
14. L. K. Hua, H. S. Vandiver, Characters over certain types of rings with applications to the theory of equations in a finite field, Proc. Nat. Acad. Sci., 35 (1949), 94-99. https://doi.org/10.1073/pnas.35.2.94
15. G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95-99. https://doi.org/10.1016/0022-314X(79)90023-4
16. D. R. Richman, Some remarks on the number of solutions to the equation $f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)=0$, Stud. Appl. Math., 71 (1984), 263-266. https://doi.org/10.1002/sapm1984713263
17. Q. Sun, On diagonal equations over finite fields, Finite Fields Appl., 3 (1997), 175-179. https://doi.org/10.1006/ffta.1996.0173
18. Q. Sun, On the formula of the number of solutions of some equations over finite fields, Chinese Ann. Math. Ser. A, 18 (1997), 403-408.
19. D. Q. Wan, Zeros of diagonal equations over finite fields, Proc. Amer. Math. Soc., 103 (1988), 1049-1052. https://doi.org/10.1090/s0002-9939-1988-0954981-2
20. W. S. Wang, Q. Sun, The number of solutions of certain equations over a finite field, Finite Fields Appl., 11 (2005), 182-192. https://doi.org/10.1016/j.ffa.2004.06.004
21. W. S. Wang, Q. Sun, An explicit formula of solution of some special equations over a finite field, Chinese Ann. Math. Ser. A, 26 (2005), 391-396.
22. A. Weil, On some exponential sums, Proc. Natl. Acad. Sci. USA, 34 (1948), 204-207. https://doi.org/10.1073/pnas.34.5.204
23. J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247-257. https://doi.org/10.1016/0022-314X(92)90091-3
24. J. Wolfmann, New results on diagonal equations over finite fields from cyclic codes, in: Finite Fields: Theory, Applications, and Algorithms (Las Vegas, NV, 1993), Contemp. Math., 168, Amer. Math. Soc., Providence, RI, (1994), 387-395. https://dx.doi.org/10.1090/conm/168
25. J. Y. Zhao, Y. L. Feng, S. F. Hong, C. X. Zhu, On the number of zeros of diagonal quartic forms over finite fields, Forum Math., 34 (2022), 385-405. https://doi.org/10.1515/forum-2021-0196
26. C. X. Zhu, Y. L. Feng, S. F. Hong, J. Y. Zhao, On the number of zeros to the equation $f\left(x_{1}\right)+\ldots+f\left(x_{n}\right)=a$ over finite fields, Finite Fields Appl., 78 (2021), 101922. https://doi.org/10.1016/j.ffa.2021.101922
27. G. Y. Zhu, S. A. Hong, On the number of rational points of certain algebraic varieties over finite fields, Forum Math., 35 (2023), 1511-1532. https://doi.org/10.1515/forum-2022-0324
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
