This paper aims to introduce the new concept of an $ \alpha $-$ \theta $-Geraghty type contraction mapping using $ \mathcal{C}_{\mathcal{G}} $-simulation in a metric-like space. Additionally, through this type of contraction, we establish fixed point results that generalize several known fixed point results in the literature. We provide some examples as an application that proves the credibility of our results.
Citation: Abdellah Taqbibt, M'hamed Elomari, Milica Savatović, Said Melliani, Stojan Radenović. Fixed point results for a new $ \alpha $-$ \theta $-Geraghty type contraction mapping in metric-like space via $ \mathcal{C}_\mathcal{G} $-simulation functions[J]. AIMS Mathematics, 2023, 8(12): 30313-30334. doi: 10.3934/math.20231548
This paper aims to introduce the new concept of an $ \alpha $-$ \theta $-Geraghty type contraction mapping using $ \mathcal{C}_{\mathcal{G}} $-simulation in a metric-like space. Additionally, through this type of contraction, we establish fixed point results that generalize several known fixed point results in the literature. We provide some examples as an application that proves the credibility of our results.
[1] | H. Aydi, A. Felhi, E. Karapinar, S. Sahmim, A Nadler-type fixed point theorem in dislocated spaces and applications, Miskolc Math. Notes, 19 (2018), 111–124. http://dx.doi.org/10.18514/MMN.2018.1652 doi: 10.18514/MMN.2018.1652 |
[2] | S. Chandok, Some fixed point theorems for $(\alpha, \theta)$-admissible Geraghty type contractive mappings and related results, Math. Sci., 9 (2015), 127–135. https://doi.org/10.1007/s40096-015-0159-4 doi: 10.1007/s40096-015-0159-4 |
[3] | A. A. Harandi, Metric-like spaces, partial metric spaces and fixed points, Fixed Point Theory A. 2012 (2012), 1–10. https://doi.org/10.1186/1687-1812-2012-204 |
[4] | A. H. Ansari, Note on $\phi$-$\psi$-contractive type mappings and related fixed point, In: The 2nd Regional Conference on Math. Appl. PNU, 11 (2014), 377–380. |
[5] | P. Kumam, D. Gopal, L. Budha, A new fixed point theorem under Suzuki type $\mathcal{Z}$-contraction mappings, J. Math. Anal., 8 (2017), 113–119. |
[6] | M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40 (1973), 604–608. |
[7] | A. Taqbibt, M. Chaib, M. Elomari, S. Melliani, Fixed point theorem for a new $\mathcal{S}_{\mathcal{F}}$-$\mathcal{G}_{\mathcal{F}}$-contraction mappings in metric space with supportive applications, Filomat, 37 (2023), 7953–7969. https://doi.org/10.2298/FIL2323953T doi: 10.2298/FIL2323953T |
[8] | F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theorems via simulation functions, Filomat, 26 (2015), 1189–1194. https://doi.org/10.2298/FIL1506189K doi: 10.2298/FIL1506189K |
[9] | M. Olgun, O. Bicer, T. Alyildiz, A new aspect to Picard operators with simulation functions, Turkish J. Math., 40 (2016), 832–837. https://doi.org/10.3906/mat-1505-26 doi: 10.3906/mat-1505-26 |
[10] | A. Rold, E. Karapinar, C. Rold, J. Martinez, Coincidence point theorems on metric spaces via simulation function, J. Comput. Appl. Math., 275 (2015), 345–355. https://doi.org/10.1016/j.cam.2014.07.011 doi: 10.1016/j.cam.2014.07.011 |
[11] | S. Chandok, A. Chanda, L. K. Dey, M. Pavlović, S. Radenović, Simulation functions and Geraghty type results, Bol. Soc. Paran. Mat., 39 (2021), 35–50. https://doi.org/10.5269/bspm.40499 |
[12] | E. Karapinar, Fixed points results via simulation functions, Filomat, 30 (2016), 2343–2350. https://doi.org/10.2298/FIL1608343K doi: 10.2298/FIL1608343K |
[13] | A. Taqbibt, M. Elomari, S. Melliani, Nonlocal semilinear $\phi$-Caputo fractional evolution equation with a measure of noncompactness in Banach space, Filomat, 37 (2023), 6877–6890. https://doi.org/10.2298/FIL2320877T doi: 10.2298/FIL2320877T |
[14] | S. Etemad, M. M. Matar, M. A. Ragusa, S. Rezapour, Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness, Mathematics, 10 (2021), 25. https://doi.org/10.3390/math10010025 doi: 10.3390/math10010025 |
[15] | H. Alsamir, M. S. Noorani, W. Shatanawi, H. Aydi, H. Akhadkulov, H. Qawaqneh, et al., Fixed point results in metric-like spaces via $\sigma$-simulation functions, Eur. J. Pure Appl. Math., 12 (2019), 88–100. https://doi.org/10.29020/nybg.ejpam.v12i1.3331 doi: 10.29020/nybg.ejpam.v12i1.3331 |
[16] | S. Abbas, M. Benchohra, S. Krim, Initial value problems for caputo-fabrizio implicit fractional differntial equations in $b$-metrice spaces, Bull. Transilv. Univ. Bras., 63 (2021), 1–12. https://doi.org/10.31926/but.mif.2021.1.63.1.1 doi: 10.31926/but.mif.2021.1.63.1.1 |
[17] | B. Samet, C. Vetro, P. Vetro, Fixed point for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal., 75 (2012), 2145–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[18] | E. Karapinar, P. Kumam, P. Salimi, On $\alpha$-$\psi$-Meri-Keeler contractive mappings, Fixed Point Theory A., 2013 (2013), 1–12. https://doi.org/10.1186/1687-1812-2013-94 doi: 10.1186/1687-1812-2013-94 |
[19] | S. Radenović, F. Vetro, J. Vujaković, An alternative and easy approach to fixed point results via simulation functions, Demonstr. Math., 50 (2017), 223–230. https://doi.org/10.1515/dema-2017-0022 doi: 10.1515/dema-2017-0022 |
[20] | H. Faraji, D. Savić, S. Radenović, Fixed point theorems for Geraghty contraction type mappings in $b$-metric spaces and applications, Axioms, 8 (2019), 34. https://doi.org/10.3390/axioms8010034 doi: 10.3390/axioms8010034 |
[21] | X. L. Liu, A. H. Ansari, S. Chandok, S. Radenović, On some results in metric spaces using auxiliary simulation functions via new functions, J. Comput. Anal. Appl., 24 (2018), 1103–1114. |
[22] | N. Chefnaj, A. Taqbibt, K. Hilal, S. Melliani, A. Kajouni, Boundary value problems for differential equations involving the generalized Caputo-Fabrizio fractional derivative in $\lambda$-metric space, Turk. J. Sci., 8 (2023), 24–36. |
[23] | A. S. Anjum, C. Aage, Common fixed point theorem in $F$-metric spaces, J. Adv. Math. Stud., 15 (2022), 357–365. |
[24] | A. Taqbibt, M. Chaib, M. Elomari, S. Melliani, Fixed point results for a new multivalued Geraghty type contraction via $\mathcal{C}_\mathcal{G}$-simulation functions, Filomat, 37 (2023), 9709–9727. https://doi.org/10.2298/FIL2328709T doi: 10.2298/FIL2328709T |
[25] | G. S. Saluja, Some common fixed point theorems on $S$-metric spaces using simulation function, J. Adv. Math. Stud., 15 (2022), 288–302. |