Processing math: 74%
Research article

A fixed point iterative scheme based on Green's function for numerical solutions of singular BVPs

  • We suggest a novel iterative scheme for solutions of singular boundary value problems (SBVPs) that is obtained by embedding Green's function into the Picard-Mann Hybrid (PMH) iterative scheme. This new scheme we call PMH-Green's iterative scheme and prove its convergence towards a sought solution of certain SBVPs. We impose possible mild conditions on the operator or on the parameters involved in our scheme to obtain our main outcome. After this, we prove that this new iterative scheme is weak w2-stable. Eventually, using two different numerical examples of SBVPs, we show that our new approach suggests highly accurate numerical solutions as compared the corresponding Picard-Green's and Mann-Green's iterative schemes.

    Citation: Junaid Ahmad, Muhammad Arshad, Reny George. A fixed point iterative scheme based on Green's function for numerical solutions of singular BVPs[J]. AIMS Mathematics, 2023, 8(12): 29517-29534. doi: 10.3934/math.20231511

    Related Papers:

    [1] Xinyu Lu, Lifang Wang, Zejun Jiang, Shizhong Liu, Jiashi Lin . PEJL: A path-enhanced joint learning approach for knowledge graph completion. AIMS Mathematics, 2023, 8(9): 20966-20988. doi: 10.3934/math.20231067
    [2] Wenhui Feng, Xingfa Zhang, Yanshan Chen, Zefang Song . Linear regression estimation using intraday high frequency data. AIMS Mathematics, 2023, 8(6): 13123-13133. doi: 10.3934/math.2023662
    [3] Yan Wang, Ying Cao, Ziling Heng, Weiqiong Wang . Linear complexity and 2-adic complexity of binary interleaved sequences with optimal autocorrelation magnitude. AIMS Mathematics, 2022, 7(8): 13790-13802. doi: 10.3934/math.2022760
    [4] Rinko Miyazaki, Dohan Kim, Jong Son Shin . Uniform boundedness of solutions to linear difference equations with periodic forcing functions. AIMS Mathematics, 2023, 8(10): 24116-24131. doi: 10.3934/math.20231229
    [5] Gideon Simpson, Daniel Watkins . Relative entropy minimization over Hilbert spaces via Robbins-Monro. AIMS Mathematics, 2019, 4(3): 359-383. doi: 10.3934/math.2019.3.359
    [6] C. T. J. Dodson . Information distance estimation between mixtures of multivariate Gaussians. AIMS Mathematics, 2018, 3(4): 439-447. doi: 10.3934/Math.2018.4.439
    [7] Rashad M. Asharabi, Somaia M. Alhazmi . Accelerating the convergence of a two-dimensional periodic nonuniform sampling series through the incorporation of a bivariate Gaussian multiplier. AIMS Mathematics, 2024, 9(11): 30898-30921. doi: 10.3934/math.20241491
    [8] Zhengyan Luo, Lintao Ma, Yinghui Zhang . Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in R3. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347
    [9] Xinyu Guan, Nan Kang . Stability for Cauchy problem of first order linear PDEs on Tm with forced frequency possessing finite uniform Diophantine exponent. AIMS Mathematics, 2024, 9(7): 17795-17826. doi: 10.3934/math.2024866
    [10] Myeongmin Kang, Miyoun Jung . Nonconvex fractional order total variation based image denoising model under mixed stripe and Gaussian noise. AIMS Mathematics, 2024, 9(8): 21094-21124. doi: 10.3934/math.20241025
  • We suggest a novel iterative scheme for solutions of singular boundary value problems (SBVPs) that is obtained by embedding Green's function into the Picard-Mann Hybrid (PMH) iterative scheme. This new scheme we call PMH-Green's iterative scheme and prove its convergence towards a sought solution of certain SBVPs. We impose possible mild conditions on the operator or on the parameters involved in our scheme to obtain our main outcome. After this, we prove that this new iterative scheme is weak w2-stable. Eventually, using two different numerical examples of SBVPs, we show that our new approach suggests highly accurate numerical solutions as compared the corresponding Picard-Green's and Mann-Green's iterative schemes.



    Fractional differential equations (FDEs) have a profound physical background and rich theoretical connotations and have been particularly eye-catching in recent years. Fractional order differential equations refer to equations that contain fractional derivatives or integrals. Currently, fractional derivatives and integrals have a wide range of applications in many disciplines such as physics, biology, and chemistry, etc. For more information see [1,2,3,45].

    Langevin equation is an important tool of many areas such as mathematical physics, protein dynamics [6], deuteron-cluster dynamics, and described anomalous diffusion [7]. In 1908, Langevin established first the Langevin equation with a view to describe the advancement of physical phenomena in fluctuating conditions [8]. Some evolution processes are characterized by the fact that they change of state abruptly at certain moments of time. These perturbations are short-term in comparison with the duration of the processes. So, the Langevin equations are a suitable tool to describe such problems. Besides the intensive improvement of fractional derivatives, the Langevin (FDEs) have been presented in 1990 by Mainardi and Pironi [9], which was trailed by numerous works interested in some properties of solutions like existence and uniqueness for Langevin FDEs [10,11,12,13,14,15,16,17,18,19]. We also refer here to some recent works that deal with a qualitative analysis of such problems, including the generalized Hilfer operator, see [20,21,22,23,24]. Recent works related to our work were done by [25,26,27,28,29,30]. The monotone iterative technique is one of the important techniques used to obtain explicit solutions for some differential equations. For more details about the monotone iterative technique, we refer the reader to the classical monographs [31,32].

    Lakshmikantham and Vatsala [25] studied the general existence and uniqueness results for the following FDE

    {Dμ0+(υ(ϰ)υ(0))=f(ϰ,υ(ϰ)),ϰ[0,b],υ(0)=υ0,

    by the monotone iterative technique and comparison principle. Fazli et al. [26] investigated the existence of extremal solutions of a nonlinear Langevin FDE described as follows

    {Dμ10+(Dμ20++λ)υ(ϰ)=f(ϰ,υ(ϰ)),ϰ[0,b],g(υ(0),υ(b))=0,Dμ20+υ(0)=υμ2,

    via a constructive technique that produces monotone sequences that converge to the extremal solutions. Wang et al. [27], used the monotone iterative method to prove the existence of extremal solutions for the following nonlinear Langevin FDE

    {βDμ0+(γDμ0++λ)υ(ϰ)=f(ϰ,υ(ϰ),(γDμ0++λ)),ϰ(0,b],ϰμ(1γ)υ(0)=τ1η0υ(s)ds+mi=1μiυ(σi),ϰμ(1β)(γDμ0++λ)υ(0)=τ2η0 γDμ0+υ(s)ds+mi=1ργiDμ0+υ(σi),

    Motivated by the novel advancements of the Langevin equation and its applications, also by the above argumentations, in this work, we apply the monotone iterative method to investigate the lower and upper explicit monotone iterative sequences that converge to the extremal solution of a fractional Langevin equation (FLE) with multi-point sub-strip boundary conditions described by

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ(ϰ)=f(ϰ,υ(ϰ)),ϰ(0,b],HDμ2,β2;ϕ0+υ(ϰ)|ϰ=0=0,υ(0)=0,υ(b)=mi=1δiIσi,ϕ0+υ(ζi),  (1.1)

    where HDμ1,β1;ϕ0+  and HDμ2,β2;ϕ0+ are the ϕ-Hilfer fractional derivatives of order  μ1(0,1]  and μ2(1,2] respectively, and type β1,β2[0,1],σi>0,λ1,λ2R+, δi>0, m1, 0<ζ1<ζ2<......<1, f:(0,b]×RR is a given continuous function and ϕ is an increasing function, having a continuous derivative ϕ on (0,b) such that ϕ(ϰ)0, for all ϰ(0,b]. Our main contributions to this work are as follows:

    By adopting the same techniques used in [26,27], we derive the formula of explicit solutions for ϕ-Hilfer-FLEs (1.1) involving two parameters Mittag-Leffler functions.

    We use the monotone iterative method to study the extremal of solutions of ϕ-Hilfer-FLE (1.1).

    We investigate the lower and upper explicit monotone iterative sequences that converge to the extremal solution.

    The proposed problem (1.1) covers some problems involving many classical fractional derivative operators, for different values of function ϕ and parameter μi,i=1,2. For instance:

    If ϕ(ϰ)=ϰ and μi=1, then the FLE (1.1) reduces to Caputo-type FLE.

    If ϕ(ϰ)=ϰ and μi=0, then the FLE (1.1) reduces to Riemann-Liouville-type FLE.

    If μi=0, then the FLE (1.1) reduces to FLE with the ϕ-Riemann-Liouville fractional derivative.

    If ϕ(ϰ)=ϰ, then the FLE (1.1) reduces to classical Hilfer-type FLE.

    If ϕ(ϰ)=logϰ, then the FLE (1.1) reduces to Hilfer-Hadamard-type FLE.

    If ϕ(ϰ)=ϰρ, then the FLE (1.1) reduces to Katugampola-type FLE.

    The results obtained in this work includes the results of Fazli et al. [26], Wang et al. [27] and cover many problems which do not study yet.

    The structure of our paper is as follows: In the second section, we present some notations, auxiliary lemmas and some basic definitions which are used throughout the paper. Moreover, we derive the formula of the explicit solution for FLE (1.1) in the term of Mittag-Leffler with two parameters. In the third section, we discuss the existence of extremal solutions to our FLE (1.1) and prove lower and upper explicit monotone iterative sequences which converge to the extremal solution. In the fourth section, we provide a numerical example to illustrate the validity of our results. The concluding remarks will be given in the last section.

    To achieve our main purpose, we present here some definitions and basic auxiliary results that are required throughout our paper. Let J:=[0,b], and C(J) be the Banach space of continuous functions  υ:JR equipped with the norm υ=sup{|υ(ϰ)|:ϰJ}.

    Definition 2.1. [2] Let f  be an integrable function and μ>0. Also, let ϕ be an increasing and positive monotone function on (0,b), having a continuous derivative ϕ on (0,b) such that ϕ(ϰ)0, for all ϰJ. Then the ϕ-Riemann-Liouville fractional integral of f of order μ is defined by

    Iμ,ϕ0+f(ϰ)=ϰ0ϕ(s)(ϕ(ϰ)ϕ(s))μ1Γ(μ)f(s)ds, 0<ϰb.

    Definition 2.2. [33] Let n1<μ<n, (nN), and f,ϕCn(J) such that ϕ(ϰ) is continuous and satisfying ϕ(ϰ)0 for all ϰJ. Then the left-sided ϕ-Hilfer fractional derivative of a function f of order μ and type β[0,1] is defined by

    HDμ,β,ϕ0+f(ϰ)=Iβ(nμ);ϕ0+Dγ;ϕa+f(ϰ),γ=μ+nβμβ,

    where

    Dγ;ϕ0+f(ϰ)=f[n]ϕI(1β)(nμ);ϕ0+f(ϰ),andf[n]ϕ=[1ϕ(ϰ)ddϰ]n.

    Lemma 2.3. [2,33] Let n1<μ<n, 0β1, and n<δR. For a given function f:JR, we have

    Iμ,ϕ0+Iβ,ϕ0+f(ϰ)=Iμ+β,ϕ0+f(ϰ),
    Iμ,ϕ0+(ϕ(ϰ)ϕ(0))δ1=Γ(δ)Γ(μ+δ)(ϕ(ϰ)ϕ(0))μ+δ1,

    and

    HDμ,β,ϕ0+(ϕ(ϰ)ϕ(0))δ1=0,δ<n.

    Lemma 2.4. [33] Let f:JR, n1<μ<n, and 0β1. Then

    (1) If fCn1(J), then

    Iμ;ϕ0+HDμ,β,ϕ0+f(ϰ)=f(ϰ)n1k=1(ϕ(ϰ)ϕ(0))γkΓ(γk+1)f[nk]ϕI(1β)(nμ);ϕ0+f(0),

    (2) If fC(J), then

    HDμ,β,ϕ0+Iμ;ϕ0+f(ϰ)=f(ϰ).

    Lemma 2.5. For μ,β,γ>0 and λR, we have

    Iμ,ϕ0+[ϕ(ϰ)ϕ(0)]β1Eγ,β[λ(ϕ(ϰ)ϕ(0))γ]=[ϕ(ϰ)ϕ(0)]β+μ1Eγ,β+μ[λ(ϕ(ϰ)ϕ(0))γ],

    where Eγ,β is Mittag-Leffler function with two-parameterdefined by

    Eγ,β(υ)=i=1υiΓ(γi+β),υC.

    Proof. See [34].

    Lemma 2.6. [27] Let μ(1,2] and β>0 be arbitrary. Then the functions Eμ(), Eμ,μ() and Eμ,β() are nonnegative. Furthermore,

    Eμ(χ):=Eμ,1(χ)1,Eμ,μ(χ)1Γ(μ),Eμ,β(χ)1Γ(β),

    for χ<0.

    Lemma 2.7. Let μ,k,β>0, λR and fC(J). Then

    Ik,ϕ0+[Iμ,ϕ0+Eμ,μ(λ(ϕ(ϰ)ϕ(0))μ)]=Iμ+k,ϕ0+Eμ,μ+k(λ(ϕ(ϰ)ϕ(0))μ).

    Proof. See [34].

    For some analysis techniques, we will suffice with indication to the classical Banach contraction principle (see [35]).

    To transform the ϕ-Hilfer type FLE (1.1) into a fixed point problem, we will present the following Lemma.

    Lemma 2.8. Let γj=μj+jβjμjβj, (j=1,2) such that μ1(0,1],μ2(1,2], βj[0,1],λ1,λ20 and   is a functionin the space C(J). Then, υ is a solutionof the ϕ-Hilfer linear FLE of the form

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)v(ϰ)=(ϰ),ϰ(0,b],HDμ2,β2;ϕ0+v(ϰ)|ϰ=0=0,v(0)=0,v(b)=mi=1δiIσi,ϕ0+v(ζi), (2.1)

    if and only if υ satisfies the following equation

    υ(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)(b))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)(ζi))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Γ(μ1)Iμ1,ϕ0+[Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ)]. (2.2)

    where

    Θ:=(mi=1δi[ϕ(ζi)ϕ(0)]γ2+σi1Eμ2,γ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)[ϕ(b)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(b)ϕ(0)]μ2))0. (2.3)

    Proof. Let (HDμ2,β2;ϕ0++λ2)υ(ϰ)=P(ϰ). Then, the problem (2.1) is equivalent to the following problem

    {(HDμ1,β1;ϕ0++λ1)P(ϰ)=(ϰ),ϰ(0,b],P(0)=0.      (2.4)

    Applying the operator Iμ1,ϕ0+ to both sides of the first equation of (2.4) and using Lemma 2.4, we obtain

    P(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11λ1Iμ1,ϕ0+P(ϰ)+Iμ1,ϕ0+(ϰ), (2.5)

    where c0 is an arbitrary constant. For explicit solutions of Eq (2.4), we use the method of successive approximations, that is

    P0(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11, (2.6)

    and

    Pk(ϰ)=P0(ϰ)λ1Iμ1,ϕ0+Pk1(ϰ)+Iμ1,ϕ0+(ϰ). (2.7)

    By Definition 2.1 and Lemma 2.3 along with Eq (2.6), we obtain

    P1(ϰ)=P0(ϰ)λ1Iμ1,ϕ0+P0(ϰ)+Iμ1,ϕ0+(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11λ1Iμ1,ϕ0+(c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11)+Iμ1,ϕ0+(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11λ1c0Γ(γ1+μ1)[ϕ(ϰ)ϕ(0)]γ1+μ11+Iμ1,ϕ0+(ϰ)=c02i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+Iμ1,ϕ0+(ϰ). (2.8)

    Similarly, by using Eqs (2.6)–(2.8), we get

    P2(ϰ)=P0(ϰ)λ1Iμ1,ϕ0+P1(ϰ)+Iμ1,ϕ0+(ϰ)=c0Γ(γ1)[ϕ(ϰ)ϕ(0)]γ11λ1Iμ1,ϕ0+(c02i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+Iμ1,ϕ0+(ϰ))+Iμ1,ϕ0+(ϰ)=c03i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+2i=1(λ1)i1Iiμ1,ϕ0+(ϰ).

    Repeating this process, we get Pk(ϰ) as

    Pk(ϰ)=c0k+1i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+ki=1(λ1)i1Iiμ1,ϕ0+(ϰ).

    Taking the limit k, we obtain the expression for Pk(ϰ), that is

    P(ϰ)=c0i=1(λ1)i1[ϕ(ϰ)ϕ(0)]iμ1+β1(1μ1)1Γ(iμ1+β1(1μ1))+i=1(λ1)i1Iiμ1,ϕ0+(ϰ).

    Changing the summation index in the last expression, ii+1, we have

    P(ϰ)=c0i=0(λ1)i[ϕ(ϰ)ϕ(0)]iμ1+γ11Γ(iμ1+γ1)+i=0(λ1)iIiμ1+μ1,ϕ0+(ϰ).

    From the definition of Mittag-Leffler function, we get

    P(ϰ)=c0[ϕ(ϰ)ϕ(0)]γ11Eμ1,γ1(λ1[ϕ(ϰ)ϕ(0)]μ1)+Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ). (2.9)

    By the condition P(0)=0, we get c0=0 and hence

    Equation (2.9) reduces to

    P(ϰ)=Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ). (2.10a)

    Similarly, the following equation

    {(HDμ2,β2;ϕ0++λ2)υ(ϰ)=P(ϰ),ϰ(0,b],υ(0)=0,υ(b)=mi=1δiIσi,ϕ0+υ(ζi)

    is equivalent to

    υ(ϰ)=c1[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)+c2[ϕ(ϰ)ϕ(0)]γ22Eμ2,γ21(λ2[ϕ(ϰ)ϕ(0)]μ2)+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)P(ϰ). (2.11)

    By the condition υ(0)=0, we obtain c2=0 and hence Eq (2.11) reduces to

    υ(ϰ)=c1[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)P(ϰ). (2.12)

    By the condition υ(b)=mi=1δi Iσi,ϕ0+υ(ζi), we get

    c1=1Θ(Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)P(b)mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)P(ζi)). (2.13)

    Put c0 in Eq (2.12), we obtain

    υ(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)P(b)mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)P(ζi)]+Γ(μ2)Iμ2,ϕ0+[Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)P(ϰ)]. (2.14)

    Substituting Eq (2.10a) into Eq (2.14), we can get Eq (2.2).

    On the other hand, we assume that the solution υ satisfies Eq (2.2). Then, one can get υ(0)=0. Applying HDμ2,β2;ϕ0+ on both sides of Eq (2.2), we get

    HDμ2,β2;ϕ0+υ(ϰ)=HDμ2,β2;ϕ0+[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)(b))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)(ζi))]+HDμ2,β2;ϕ0+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Γ(μ1)Iμ1,ϕ0+[Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ)]. (2.15)

    Since γ2=μ2+β2μ2β2, then, by Lemma 2.3, we have HDμ2,β2;ϕ0+[ϕ(ϰ)ϕ(0)]γ21=0 and hence Eq (2.15) reduces to the following equation

    HDμ2,β2;ϕ0+υ(ϰ)=HDμ2,β2;ϕ0+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Γ(μ1)Iμ1,ϕ0+[Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)(ϰ)].

    By using some properties of Mittag-Leffler function and taking ϰ=0, we obtain

    HDμ2,β2;ϕ0+υ(0)=0.

    Thus, the derivative condition is satisfied. The proof of Lemma 2.8 is completed.

    Lemma 2.9. (Comparison Theorem). For j=1,2, let γj=μj+jβjμjβj, μ1(0,1],μ2(1,2], βj[0,1],λ10 and  υC(J) be acontinuous function satisfies

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)v(ϰ)0,HDμ2,β2;ϕ0+v(ϰ)|ϰ=00,v(0)0,v(b)0,

    then υ(ϰ)0, ϰ(0,b].

    Proof. If z0, then from Lemma 2.6, we have Eμ,β(z)0. If z<0, then Eμ,β(z) is completely monotonic function [35], that means Eμ,β(z) possesses derivatives for all arbitrary integer order and (1)ndndznEμ,β(z)0. Hence, Eμ,β(z)0 for all zR. In view of Eq (2.2), Eq (2.9), and from fact that Eμ1,γ1()0 and Eμ,μ()0 with help the definition of ϕ, we obtain υ(ϰ)0, for ϰ(0,b]. (Alternative proof). Let (HDμ2,β2;ϕ0++λ2)υ(ϰ)=P(ϰ). Then, we have

    {(HDμ1,β1;ϕ0++λ1)P(ϰ)0,P(0)0.

    Assume that P(ϰ)0 (for all ϰ(0,b]) is not true. Then, there exist ϰ1,ϰ2, (0<ϰ1<ϰ2b) such that P(ϰ2)<0,P(ϰ1)=0 and

    {P(ϰ)0,ϰ(0,ϰ1),P(ϰ)<0,ϰ(ϰ1,ϰ2).

    Since λ10, we have (HDμ1,β1;ϕ0++λ1)P(ϰ)0 for all ϰ(ϰ1,ϰ2). In view of

    HDμ1,β1,ϕ0+P(ϰ)=Iβ1(1μ1);ϕ0+(1ϕ(ϰ)ddϰ)I1γ1;ϕ0+P(ϰ),

    the operator I1γ1;ϕ0+P(ϰ) is nondecreasing on (ϰ1,ϰ2). Hence

    I1γ1;ϕ0+P(ϰ)I1γ1;ϕ0+P(ϰ1)0,ϰ(ϰ1,ϰ2).

    On the other hand, for all ϰ(ϰ1,ϰ2), we have

    I1γ1;ϕ0+P(ϰ)I1γ1;ϕ0+P(ϰ1)=1Γ(1γ1)ϰ0ϕ(s)(ϕ(ϰ)ϕ(s))1γ11P(s)ds1Γ(1γ1)ϰ10ϕ(s)(ϕ(ϰ1)ϕ(s))1γ11P(s)ds=1Γ(1γ1)ϰ10ϕ(s)[(ϕ(ϰ)ϕ(s))γ1(ϕ(ϰ1)ϕ(s))γ1]P(s)ds+1Γ(1γ1)ϰϰ1ϕ(s)(ϕ(ϰ)ϕ(s))γ1P(s)ds<0, for all ϰ(ϰ1,ϰ2),

    which is a contradiction. Therefore, P(ϰ)0 (ϰ(0,b]). By the same technique, one can prove that υ(ϰ)0, for all ϰ(0,b].

    As a result of Lemma 2.8, we have the following Lemma.

    Lemma 2.10. For j=1,2, let γj=μj+jβjμjβj, μ1(0,1],μ2(1,2], βj[0,1]  and f:J×RR is continuous function . If υC(J) satisfies the problem (1.1), then, υ satisfies thefollowing integral equation

    υ(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)f(b,υ(b)))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)f(ζi,υ(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)f(ϰ,υ(ϰ))).

    In this part, we focus on the existence of lower and upper explicit monotone iterative sequences that converge to the extremal solution for the nonlinear ϕ-Hilfer FLE (1.1). The existence of unique solution for the problem (1.1) is based on Banach fixed point theorem. Now, let us give the following definitions:

    Definition 3.1. For J= [0,b]R+. Let υC(J). Then, the upper and lower-control functions are defined by

    ¯f(ϰ,υ(ϰ))=sup0Yυ{f(ϰ,Y(ϰ))},

    and

    f_(ϰ,υ(ϰ))=infυYb{f(ϰ,Y(ϰ))},

    respectively. Clearly, ¯f(ϰ,υ(ϰ)) and f_(ϰ,υ(ϰ)) are monotonous non-decreasing on [a,b] and

    f_(ϰ,υ(ϰ))f(ϰ,υ(ϰ))¯f(ϰ,υ(ϰ))

    Definition 3.2. Let ¯υ, υ_ C(J) be upper and lower solutions of the problem (1.1) respectively. Then

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)¯υ(ϰ)¯f(ϰ,¯υ(ϰ)),ϰ(0,b],HDμ2,β2;ϕ0+¯υ(ϰ)|ϰ=00,¯υ(0)0,¯υ(b)mi=1δiIσi,ϕ0+¯υ(ζi),

    and

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_(ϰ)f_(ϰ,υ_(ϰ)),ϰ(0,b],HDμ2,β2;ϕ0+υ_(ϰ)|ϰ=00,υ_(0)0,υ_(b)mi=1δiIσi,ϕ0+υ_(ζi).

    According to Lemma 2.8, we have

    ¯υ(ϰ)[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)f(b,¯υ(b))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)f(ζi,¯υ(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)f(ϰ,¯υ(ϰ)))

    and

    υ_(ϰ)[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)f(b,υ_(b))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)f(ζi,υ_(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)f(ϰ,υ_(ϰ))).

    Theorem 3.3. Let ¯υ(ϰ) and υ_(ϰ) be upper and lower solutions of the problem (1.1), respectively such that υ_ (ϰ)¯υ(ϰ) on J. Moreover, the function f(ϰ,υ) is continuouson J and there exists a constant number κ>0 such that |f(ϰ,υ)f(ϰ,v)|κ|υv|, for υ,vR+, ϰJ. If

    Q1=κ[ϕ(b)ϕ(0)]γ21Γ(γ2)Θ[[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)+mi=1δiΓ(μ2)[ϕ(ζi)ϕ(0)]μ2+μ1+σiΓ(μ2+σi+1)Γ(μ2+σi)Γ(μ1+1)]+κ[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)<1,

    then the problem (1.1) has a unique solution υC(J).

    Proof. Let Ξ=PP_, where P(ϰ)=(HDμ2,β2;ϕ0++λ2)υ(ϰ)  and P_(ϰ)=(HDμ2,β2;ϕ0++λ2)υ_(ϰ). Then, we get

    {(HDμ1,β1;ϕ0++λ1)Ξ0,ϰ(0,b],Ξ(0)=0.  

    In view of Lemma 2.9, we have Ξ(ϰ)0 on J  and hence P_ (ϰ)P(ϰ). Since P(ϰ)=(HDμ2,β2;ϕ0++λ2)υ(ϰ)  and P_(ϰ)=(HDμ2,β2;ϕ0++λ2)υ_(ϰ), by the same technique, we get υ_ (ϰ)υ(ϰ). Similarly, we can show that υ(ϰ)¯υ(ϰ). Consider the continuous operator G:C(J)C(J) defined by

    Gυ(ϰ)=[ϕ(ϰ)ϕ(0)]γ21Eμ2,γ2(λ2[ϕ(ϰ)ϕ(0)]μ2)Θ[Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(b)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(b)ϕ(0)]μ1)f(b,υ(b)))mi=1δiΓ(μ2)Iμ2+σi,ϕ0+Eμ2,μ2+σi(λ2[ϕ(ζi)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ζi)ϕ(0)]μ1)f(ζi,υ(ζi)))]+Γ(μ2)Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)(Γ(μ1)Iμ1,ϕ0+Eμ1,μ1(λ1[ϕ(ϰ)ϕ(0)]μ1)f(ϰ,υ(ϰ))).

    Clearly, the fixed point of G is a solution to problem (1.1). Define a closed ball BR as

    BR={υC(J):υC(J)R,}

    with

    RQ21Q1,

    where

    Q2=P[ϕ(b)ϕ(0)]γ21Γ(γ2)Θ[[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)+mi=1δiΓ(μ2)[ϕ(ζi)ϕ(0)]μ2+μ1+σiΓ(μ2+σi+1)Γ(μ2+σi)Γ(μ1+1)]+P[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)

    and P=supsJ|f(s,0)|. Let υBR and ϰJ. Then by Lemma 2.6, we have

    |f(ϰ,υ(ϰ))|=|f(ϰ,υ(ϰ))f(ϰ,0)+f(ϰ,0)||f(ϰ,υ(ϰ))f(ϰ,0)|+|f(ϰ,0)|κ|υ(ϰ)|+P(κυ+P).

    Now, we will present the proof in two steps:

    First step: We will show that G(BR)BR. First, by Lemma 2.6 and Definition 2.1, we have

    Iμ2,ϕ0+Eμ2,μ2(λ2[ϕ(ϰ)ϕ(0)]μ2)[ϕ(ϰ)ϕ(0)]μ2Γ(μ2+1)Γ(μ2).

    Next, for υBR, we obtain

    |Gυ(ϰ)|[ϕ(b)ϕ(0)]γ21Γ(γ2)Θ[(κυ+P)[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)+mi=1δiΓ(μ2)[ϕ(ζi)ϕ(0)]μ2+μ1+σiΓ(μ2+σi+1)Γ(μ2+σi)Γ(μ1+1)(κυ+P)]+(κυ+P)[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)Q1R+Q2R.

    Thus G(BR)BR.

    Second step: We shall prove that G is contraction. Let υ,ˆυBR and ϰJ. Then by Lemma 2.6 and Definition 2.1, we obtain

    GυGˆυκυˆυ(ϕ(bϰ)ϕ(0))γ21Γ(γ2)Θ[[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)+mi=1δiΓ(μ2)[ϕ(ζi)ϕ(0)]μ2+μ1+σiΓ(μ2+σi+1)Γ(μ2+σi)Γ(μ1+1)]+κυˆυ[ϕ(b)ϕ(0)]μ2+μ1Γ(μ2+1)Γ(μ1+1)Q1υˆυ.

    Thus, G is a contraction. Hence, the Banach contraction principle theorem [35] shows that the problem (1.1) has a unique solution.

    Theorem 3.4. Assume that ¯υ,υ_C(J) be upper and lower solutions of the problem (1.1), respectively, and υ_ (ϰ)¯υ(ϰ) on  J. Inaddition, If the continuous function f: J×RR satisfies f(ϰ,υ(ϰ))f(ϰ,y(ϰ)) for allυ_ (ϰ)υ(ϰ)y(ϰ)¯υ(ϰ),ϰ J then there exist monotoneiterative sequences {υ_j}j=0 and {¯υj}j=0 which uniformly converges on J to the extremal solutions of problem (1.1) in Φ={υC(J):υ_(ϰ)υ(ϰ)¯υ(ϰ),ϰJ}.

    Proof. Step (1): Setting υ_0=υ_ and ¯υ0=¯υ, then given {υ_j}j=0 and {¯υj}j=0 inductively define υ_j+1 and ¯υj+1 to be the unique solutions of the following problem

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_j+1(ϰ)=f(ϰ,υ_j(ϰ)),ϰJ,       HDμ2,β2;ϕ0+υ_j+1(ϰ)|ϰ=0=0,υ_j+1(0)=0,υ_j+1(b)=mi=1δiIσi,ϕ0+υ_j+1(ζi). (3.1)

    and

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)¯υj+1(ϰ)=f(ϰ,¯υj(ϰ)),ϰJ,       HDμ2,β2;ϕ0+¯υj+1(ϰ)|ϰ=0=0,¯υj+1(0)=0,¯υj+1(b)=mi=1δiIσi,ϕ0+¯υj+1(ζi). (3.2)

    By Theorem 3.3, we know that the above problems have a unique solutions in C(J).

    Step (2): Now, for ϰJ, we claim that

    υ_(ϰ)=υ_0(ϰ)υ_1(ϰ)........υ_j(ϰ)υ_j+1(ϰ)......¯υj+1(ϰ)¯υj(ϰ)......¯υ1(ϰ)¯υ0(ϰ)=¯υ(ϰ). (3.3)

    To confirm this claim, from (3.1) for j=0, we have

    {(HDμ1,β1;ϕ0++λ1)(HDμ2,β2;ϕ0++λ2)υ_1(ϰ)=f(ϰ,υ_0(ϰ)),j0,HDμ2,β2;ϕ0+υ_1(ϰ)|ϰ=0=0,υ_1(0)=0,υ_1(b)=mi=1δiIσi,ϕ0+υ_1(ζi). (3.4)

    With reference to the definitions of the lower solution \underline{\upsilon }(\varkappa) = \underline{\upsilon }_{0}(\varkappa) and putting \Xi (\varkappa) = P_{1}(\varkappa)- \underline{ P } _{0}(\varkappa) , where P_{1}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon _{1}(\varkappa)\ and \underline{P}_{0}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{\upsilon }_{0}(\varkappa). Then, we get

    \begin{equation*} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \Xi \geq 0, \;\varkappa \in (0, b], \\ \Xi (0)\geq 0. \ \ \end{array} \right. \end{equation*}

    Consequently, Lemma 2.9 implies \Xi (\varkappa)\geq 0, that means \underline{ P } _{0}(\varkappa)\leq P_{1}(\varkappa), \varkappa \in \mathcal{J} and by the same technique, where P(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon (\varkappa) we get \upsilon (\varkappa)\geq 0. Hence, \underline{ \upsilon }_{0}(\varkappa)\leq \underline{\upsilon }_{1}(\varkappa), \varkappa \in \mathcal{J}. Now, from Eq (3.4) and our assumptions, we infer that

    \begin{equation*} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{ \upsilon }_{1}(\varkappa ) = f\left( \varkappa, \underline{\upsilon } _{0}(\varkappa )\right) \leq f\left( \varkappa, \underline{\upsilon } _{1}(\varkappa )\right). \end{equation*}

    Therefore, \underline{\upsilon }_{1} is a lower solution of problem (1.1). In the same way of the above argument, we conclude that \underline{ \upsilon }_{1}(\varkappa)\leq \underline{\upsilon }_{2}(\varkappa), \varkappa \in \mathcal{J}. By mathematical induction, we get \underline{ \upsilon }_{j}(\varkappa)\leq \underline{\upsilon }_{j+1}(\varkappa), \varkappa \in \mathcal{J}, j\geq 2.

    Similarly, we put \Xi (\varkappa) = \overline{P}_{1}(\varkappa)-\underline{P }_{1}(\varkappa) , where \overline{P}_{1}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \overline{ \upsilon }_{1}(\varkappa)\ and \underline{P}_{1}(\varkappa) = \left(^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{ \upsilon }_{1}(\varkappa). Then, we get

    \begin{equation*} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \Xi (\varkappa )\geq 0, \;\varkappa \in (0, b], \\ \Xi (0)\geq 0. \ \ \end{array} \right. \end{equation*}

    Consequently, Lemma 2.9 implies \Xi (\varkappa)\geq 0, that means \overline{P}_{1}(\varkappa)\leq \underline{P}_{1}(\varkappa), \varkappa \in \mathcal{J} and by the same technique, we get \overline{\upsilon } _{1}(\varkappa)\geq \underline{\upsilon }_{1}(\varkappa), \varkappa \in \mathcal{J}. By mathematical induction, we get \overline{\upsilon } _{j}(\varkappa)\geq \underline{\upsilon }_{j}(\varkappa), \varkappa \in \mathcal{J}, j\geq 0.

    \textsf{Step (3):} In view of Eq (3.3), one can show that the sequences \left\{ \underline{\upsilon }_{j}\right\} _{j = 0}^{\infty } and \left\{ \overline{\upsilon }_{j}\right\} _{j = 0}^{\infty } are equicontinuous and uniformly bounded. In view of Arzela-Ascoli Theorem, we have \lim_{j\rightarrow \infty }\underline{\upsilon }_{j} = \upsilon _{\ast } and \lim_{j\rightarrow \infty }\overline{\upsilon }_{j} = \upsilon ^{\ast } uniformly on J and the limit of the solutions \upsilon _{\ast } and \upsilon ^{\ast } satisfy the problem (1.1). Moreover, \upsilon _{\ast } , \upsilon ^{\ast }\in \Phi .

    \textsf{Step (4):} We will prove that \upsilon _{\ast } and \upsilon ^{\ast } are the extremal solutions of the problem (1.1) in \Phi . For this end, let \upsilon \in \Phi be a solution of the problem (1.1) such that \overline{\upsilon }_{j}(\varkappa)\geq \upsilon (\varkappa)\geq \underline{\upsilon }_{j}(\varkappa), \varkappa \in \mathcal{J}, for some j\in \mathbb{N}. Therefore, by our assumption, we find that

    \begin{equation*} f\left( \varkappa, \overline{\upsilon }_{j}\left( \varkappa \right) \right) \geq f\left( \varkappa, \upsilon \left( \varkappa \right) \right) \geq f\left( \varkappa, \underline{\upsilon }_{j}\left( \varkappa \right) \right). \end{equation*}

    Hence

    \begin{eqnarray*} &&\left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \overline{\upsilon }_{j+1}(\varkappa ) \\ &&\left. \geq \right. \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon (\varkappa ) \\ &&\left. \geq \right. \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{\upsilon }_{j+1}(\varkappa ), \end{eqnarray*}

    and

    \begin{equation*} \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\overline{\upsilon } _{j+1}(\varkappa )\right\vert _{\varkappa = 0} = \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\upsilon (\varkappa )\right\vert _{\varkappa = 0} = \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\underline{\upsilon } _{j+1}(\varkappa )\right\vert _{\varkappa = 0} = 0. \end{equation*}

    Consequently, \overline{\upsilon }_{j+1}(\varkappa)\geq \upsilon (\varkappa)\geq \underline{\upsilon }_{j+1}(\varkappa), \varkappa \in \mathcal{J} . It follows that

    \begin{equation} \overline{\upsilon }_{j}(\varkappa )\geq \upsilon (\varkappa )\geq \underline{\upsilon }_{j}(\varkappa ), \varkappa \in \mathcal{J}, \ j\in \mathbb{N}. \end{equation} (3.5)

    Taking the limit of Eq (3.5) as j\rightarrow \infty , we get \upsilon ^{\ast }(\varkappa)\geq \upsilon (\varkappa)\geq \upsilon _{\ast }(\varkappa) , \varkappa \in \mathcal{J} . That is, \upsilon ^{\ast } and \upsilon _{\ast } are the extremal solutions of the problem (1.1) in \Phi .

    Corollary 3.5. Assume that f:\mathcal{J}\times \mathbb{R} ^{+}\rightarrow \mathbb{R} ^{+} is continuous, and there exist {\bm{\aleph}} _{1}, {\bm{\aleph}} _{2} > 0 such that

    \begin{equation} {\bm{\aleph}} _{1}\leq f\left( \varkappa, \upsilon \right) \leq {\bm{\aleph}} _{2}, \mathit{\mbox{}} \forall (\varkappa, \upsilon )\in \mathcal{J}\times \mathbb{R} ^{+}. \end{equation} (3.6)

    Then the problem (1.1) has at least one solution \upsilon (\varkappa)\in \mathcal{C}\left(\mathcal{J}\right). Moreover

    \begin{eqnarray} \upsilon (\varkappa ) &\leq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \end{eqnarray} (3.7)

    and

    \begin{eqnarray} \upsilon (\varkappa ) &\geq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right). \end{eqnarray} (3.8)

    Proof. From Eq (3.6) and definition of control functions, we get

    \begin{equation} {\bm{\aleph}}_{1}\leq \underline{f}\left( \varkappa, \upsilon (\varkappa )\right) \leq \overline{f}\left( \varkappa, \upsilon (\varkappa )\right) \leq {\bm{\aleph}}_{2}, \mbox{ }\forall (\varkappa, \upsilon )\in \mathcal{J}\times \mathbb{R} ^{+}. \end{equation} (3.9)

    Now, we consider the following problem

    \begin{equation} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \overline{ \upsilon }(\varkappa ) = {\bm{\aleph}}_{2}, \;\varkappa \in (0, b], \\ \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\overline{\upsilon } (\varkappa )\right\vert _{\varkappa = 0} = 0, \mbox{ }\overline{\upsilon }(0) = 0, \mbox{ }\overline{\upsilon }(b) = \sum_{i = 1}^{m}\delta _{i}I_{0^{+}}^{\sigma _{i}, \phi }\overline{\upsilon }(\zeta _{i}). \end{array} \right. \end{equation} (3.10)

    In view of Lemma 2.8, the problem (3.10) has a solution

    \begin{eqnarray*} \overline{\upsilon }(\varkappa ) & = &\frac{\left[ \phi (\varkappa )-\phi (0) \right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{2}\right). \end{eqnarray*}

    Taking into account Eq (3.9), we obtain

    \begin{eqnarray*} \overline{\upsilon }(\varkappa ) &\geq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) \overline{f}\left( b, \overline{\upsilon }(b)\right) \right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) \overline{f}\left( \zeta _{i}, \overline{\upsilon } (\zeta _{i})\right) \right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) \overline{f}\left( \varkappa, \overline{\upsilon } (\varkappa )\right) \right). \end{eqnarray*}

    It is obvious that \overline{\upsilon }(\varkappa) is the upper solution of problem (1.1). Also, we consider the following problem

    \begin{equation} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \underline{ \upsilon }(\varkappa ) = {\bm{\aleph}}_{1}, \;\varkappa \in (0, b], \\ \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\underline{\upsilon } (\varkappa )\right\vert _{\varkappa = 0} = 0, \mbox{ }\underline{\upsilon }(0) = 0, \mbox{ }\underline{\upsilon }(b) = \sum_{i = 1}^{m}\delta _{i}I_{0^{+}}^{\sigma _{i}, \phi }\underline{\upsilon }(\zeta _{i}). \end{array} \right. \end{equation} (3.11)

    In view of Lemma 2.8, the problem (3.11) has a solution

    \begin{eqnarray*} \underline{\upsilon }(\varkappa ) & = &\frac{\left[ \phi (\varkappa )-\phi (0) \right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) {\bm{\aleph}}_{1}\right). \end{eqnarray*}

    Taking into account Eq (3.9), we obtain

    \begin{eqnarray*} \underline{\upsilon }(\varkappa ) &\leq &\frac{\left[ \phi (\varkappa )-\phi (0)\right] ^{\gamma _{2}-1}E_{\mu _{2}, \gamma _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) }{\Theta } \\ &&\left[ \Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (b)-\phi (0)\right] ^{\mu _{2}}\right) \right. \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (b)-\phi (0)\right] ^{\mu _{1}}\right) \underline{f}\left( b, \underline{\upsilon }(b)\right) \right) \\ &&-\sum\limits_{i = 1}^{m}\delta _{i}\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}+\sigma _{i}, \phi }E_{\mu _{2}, \mu _{2}+\sigma _{i}}\left( \lambda _{2} \left[ \phi (\zeta _{i})-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left. \left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\zeta _{i})-\phi (0) \right] ^{\mu _{1}}\right) \underline{f}\left( \zeta _{i}, \underline{ \upsilon }(\zeta _{i})\right) \right) \right] \\ &&+\Gamma \left( \mu _{2}\right) I_{0^{+}}^{\mu _{2}, \phi }E_{\mu _{2}, \mu _{2}}\left( -\lambda _{2}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{2}}\right) \\ &&\left( \Gamma \left( \mu _{1}\right) I_{0^{+}}^{\mu _{1}, \phi }E_{\mu _{1}, \mu _{1}}\left( -\lambda _{1}\left[ \phi (\varkappa )-\phi (0)\right] ^{\mu _{1}}\right) \underline{f}\left( \varkappa, \underline{\upsilon } (\varkappa )\right) \right). \end{eqnarray*}

    Thus, \underline{\upsilon }(\varkappa) is the lower solution of problem (1.1).

    The application of Theorem 3.4 results that problem (1.1) has at least one solution \upsilon (\varkappa)\in \mathcal{C}\left(\mathcal{J} \right) that satisfies the inequalities (3.7) and (3.8).

    Example 4.1. Let us consider the following problem

    \begin{equation} \left\{ \begin{array}{c} \left( ^{H}D_{0^{+}}^{\mu _{1}, \beta _{1};\phi }+\lambda _{1}\right) \left( ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }+\lambda _{2}\right) \upsilon (\varkappa ) = f\left( \varkappa, \upsilon (\varkappa )\right) , \; \varkappa \in \lbrack 0, 1], \\ \left. ^{H}D_{0^{+}}^{\mu _{2}, \beta _{2};\phi }\upsilon (\varkappa )\right\vert _{\varkappa = 0} = 0, \upsilon (0) = 0, \upsilon (b) = \sum_{i = 1}^{m}\delta _{i}I_{0^{+}}^{\sigma _{i}, \phi }\upsilon (\zeta _{i}), \ \end{array} \right. \end{equation} (4.1)

    Here \mu _{1} = \frac{1}{2}, \mu _{2} = \frac{3}{2}, \beta _{1} = \beta _{2} = \frac{1 }{3}, \gamma _{1} = \frac{2}{3}, \gamma _{2} = \frac{4}{3}, \lambda _{1}\mathcal{ = } \lambda _{2} = 10, m = 1, \delta _{1} = \frac{1}{4}, \sigma _{1} = \frac{2}{3}, \zeta _{1} = \frac{3}{4}, b = 1 , \phi = e^{\varkappa }, \lambda _{1}\mathcal{ = }\lambda _{2} = 10 and we set f\left(\varkappa, \upsilon (\varkappa)\right) = 2+\varkappa ^{2}+\frac{\varkappa ^{3}}{5\left(1+\upsilon (\varkappa)\right) }\upsilon (\varkappa). For \upsilon, w\in\mathbb{R}^{+}, \varkappa \in \mathcal{J} , we have

    \begin{eqnarray*} \left\vert f\left( \varkappa, \upsilon \right) -f\left( \varkappa, w\right) \right\vert & = &\left\vert \left( 2+\varkappa ^{2}+\frac{\varkappa ^{3}}{ 5\left( 1+\upsilon (\varkappa )\right) }\upsilon (\varkappa )\right) -\left( 2+\varkappa ^{2}+\frac{\varkappa ^{3}}{5\left( 1+w(\varkappa )\right) } w(\varkappa )\right) \right\vert \\ &\leq &\frac{1}{5}\left\vert \upsilon (\varkappa )-w(\varkappa )\right\vert. \end{eqnarray*}

    By the given data, we get Q_{1}\approx 0.9 < 1 and hence all conditions in Theorem 3.3 are satisfied with \kappa = \frac{1}{5} > 0. Thus, the problem (4.1) has a unique solution \upsilon \in C\left(\mathcal{J }\right). On the other hand, from Theorem 3.4 and Theorem 3.3, the sequences \left\{ \underline{ \upsilon }_{n}\right\} _{n = 0}^{\infty } and \left\{ \overline{\upsilon } _{n}\right\} _{n = 0}^{\infty } can be obtained as

    \begin{eqnarray} \overline{\upsilon }_{n+1}(\varkappa ) & = &\Gamma \left( \frac{3}{2}\right) I_{0^{+}}^{\frac{3}{2}, e^{\varkappa }}E_{\frac{3}{2}, \frac{3}{2}}\left( 10 \left[ e^{\varkappa }-1\right] ^{\frac{3}{2}}\right) \\ &&\left( \Gamma \left( \frac{1}{2}\right) I_{0^{+}}^{\frac{1}{2}, e^{\varkappa }}E_{\frac{1}{2}, \frac{1}{2}}\left( 10\left[ e^{\varkappa }-1 \right] ^{\frac{1}{2}}\right) \left( 2+\varkappa ^{2}+\frac{1}{5\left( 1+ \overline{\upsilon }_{n}(\varkappa )\right) }\varkappa ^{3}\overline{ \upsilon }_{n}(\varkappa )\right) \right). \end{eqnarray} (4.2)

    and

    \begin{eqnarray} \underline{\upsilon }_{n+1}(\varkappa ) & = &\Gamma \left( \frac{3}{2}\right) I_{0^{+}}^{\frac{3}{2}, e^{\varkappa }}E_{\frac{3}{2}, \frac{3}{2}}\left( 10 \left[ e^{\varkappa }-1\right] ^{\frac{3}{2}}\right) \\ &&\left( \Gamma \left( \frac{1}{2}\right) I_{0^{+}}^{\frac{1}{2}, e^{\varkappa }}E_{\frac{1}{2}, \frac{1}{2}}\left( 10\left[ e^{\varkappa }-1 \right] ^{\frac{1}{2}}\right) \left( 2+\varkappa ^{2}+\frac{1}{5\left( 1+ \underline{\upsilon }_{n}(\varkappa )\right) }\varkappa ^{3}\underline{ \upsilon }_{n}(\varkappa )\right) \right). \end{eqnarray} (4.3)

    Moreover, for any \upsilon \in\mathbb{R}^{+} and \varkappa \in \left[0, 1\right] , we have

    \begin{eqnarray*} \lim\limits_{\upsilon \rightarrow +\infty }f\left( \varkappa, \upsilon (\varkappa )\right) & = &\lim\limits_{\upsilon \rightarrow +\infty }\left( 2+\varkappa ^{2}+ \frac{\varkappa ^{3}}{5\left( 1+\upsilon (\varkappa )\right) }\upsilon (\varkappa )\right) \\ & = &2+\varkappa ^{2}+\frac{\varkappa ^{3}}{5}. \end{eqnarray*}

    It follows that

    \begin{equation*} 2 < f\left( \varkappa, \upsilon (\varkappa )\right) < \frac{16}{5}. \end{equation*}

    Thus, by Corollary 3.5, we get {\bm{\aleph}}_{1} = 2 and {\bm{\aleph}}_{2} = \frac{16}{5}. Then by Definitions 3.1 and 3.2, the problem (4.1) has a solution which verifies \underline{ \upsilon } \left(\varkappa \right) \leq \upsilon \left(\varkappa \right) \leq \overline{ \upsilon }\left(\varkappa \right) where

    \begin{eqnarray} \overline{\upsilon }(\varkappa ) & = &\frac{\left( e^{\varkappa }-1\right) ^{ \frac{4}{3}-1}E_{\frac{3}{2}, \frac{4}{3}}\left( -10\left( e^{\varkappa }-1\right) ^{\frac{3}{2}}\right) }{\Theta } \\ &&2\left[ \Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{2}\right) \left( e-1\right) ^{2}E_{\frac{3}{2}, 3}\left( -10\left( e-1\right) ^{\frac{3 }{2}}\right) E_{\frac{1}{2}, 1}\left( -10\left( e-1\right) ^{\frac{1}{2} }\right) \right. \\ &&\left. -\frac{4}{5}\Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{ 2}\right) \left( e^{\frac{3}{4}}-1\right) ^{\frac{7}{3}}E_{\frac{3}{2}, \frac{ 21}{6}}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{3}{2}}\right) E_{ \frac{1}{2}, 1}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{1}{2} }\right) \right] \\ &&+\frac{16}{5}\Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{2} \right) \left( e^{\varkappa }-1\right) ^{2}E_{\frac{3}{2}, 3}\left( -10\left( e-1\right) ^{\frac{3}{2}}\right) E_{\frac{1}{2}, 1}\left( -10\left( e^{\varkappa }-1\right) ^{\frac{1}{2}}\right), \end{eqnarray} (4.4)

    and

    \begin{eqnarray} \underline{\upsilon }(\varkappa ) & = &\frac{\left( e^{\varkappa }-1\right) ^{ \frac{4}{3}-1}E_{\frac{3}{2}, \frac{4}{3}}\left( -10\left( e^{\varkappa }-1\right) ^{\frac{3}{2}}\right) }{\Theta } \\ &&\frac{16}{5}\left[ \Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{ 2}\right) \left( e-1\right) ^{2}E_{\frac{3}{2}, 3}\left( -10\left( e-1\right) ^{\frac{3}{2}}\right) E_{\frac{1}{2}, 1}\left( -10\left( e-1\right) ^{\frac{1 }{2}}\right) \right. \\ &&\left. -\frac{1}{2}\Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{ 2}\right) \left( e^{\frac{3}{4}}-1\right) ^{\frac{7}{3}}E_{\frac{3}{2}, \frac{ 21}{6}}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{3}{2}}\right) E_{ \frac{1}{2}, 1}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{1}{2} }\right) \right] \\ &&+2\Gamma \left( \frac{3}{2}\right) \Gamma \left( \frac{1}{2}\right) \left( e^{\varkappa }-1\right) ^{2}E_{\frac{3}{2}, 3}\left( -10\left( e-1\right) ^{ \frac{3}{2}}\right) E_{\frac{1}{2}, 1}\left( -10\left( e^{\varkappa }-1\right) ^{\frac{1}{2}}\right), \end{eqnarray} (4.5)

    are respectively the upper and lower solutions of the problem (4.1) and

    \begin{equation*} \Theta : = \left( \frac{1}{4}\left[ e^{\frac{3}{4}}-1\right] ^{1}E_{\frac{3}{2}, 2}\left( -10\left( e^{\frac{3}{4}}-1\right) ^{\frac{3}{2}}\right) -\left[ e-1\right] ^{\frac{4}{3}-1}E_{\frac{3}{2}, \frac{4}{3}}\left( -10\left( e-1\right) ^{\frac{3}{2}}\right) \right) \neq 0. \end{equation*}

    Let us see graphically, we plot in Figure 1 the behavior of the upper solution \overline{\upsilon} and lower solution \underline{\upsilon} of the problem (4.1) with given data above.

    Figure 1.  Graphical presentation of (\underline{ \upsilon}, \overline{\upsilon}) .

    In this work, we have proved successfully the monotone iterative method is an effective method to study FLEs in the frame of \phi -Hilfer fractional derivative with multi-point boundary conditions. Firstly, the formula of explicit solution of \phi -Hilfer type FLE (1.1) in the term of Mittag-Leffler function has been derived. Next, we have investigated the lower and upper explicit monotone iterative sequences and proved that converge to the extremal solution of boundary value problems with multi-point boundary conditions. Finally, a numerical example has been given in order to illustrate the validity of our results.

    Furthermore, it will be very important to study the present problem in this article regarding the Mittag-Leffler power low [36], the generalized Mittag-Leffler power low with another function [37,38], and the fractal-fractional operators [39].

    Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding the publication of this project. The authors are also grateful to the anonymous referees for suggestions that have improved manuscript.

    The authors declare that they have no competing interests.



    [1] K. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063. https://doi.org/10.2298/FIL2304053Z doi: 10.2298/FIL2304053Z
    [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [3] E. M. Picard, Memorie sur la theorie des equations aux derivees partielles et la methode des approximation ssuccessives, J. Math. Pure Appl., 6 (1890), 145–210.
    [4] P. Cholamjiak, W. Cholamjiak, Y. J. Cho, S. Suantai, Weak and strong convergence to common fixed points of a countable family of multi-valued mappings in Banach spaces, Thai J. Math., 9 (2011), 505–520.
    [5] R. Pandey, R. Pant, V. Rakocevie, R. Shukla, Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math. 74 (2018), 1–24. https://doi.org/10.1007/s00025-018-0930-6 doi: 10.1007/s00025-018-0930-6
    [6] I. Uddin, M. Imdad, Convergence of SP-iteration for generalized nonexpansive mapping in Hadamard spaces, Hacet. J. Math. Stat., 47 (2018), 1595–1604.
    [7] H. Afsharia, H. Aydi, Some results about Krasnoselskii-Mann iteration process, J. Nonlinear Sci. Appl., 9 (2016), 4852–4859. https://doi.org/10.22436/jnsa.009.06.120 doi: 10.22436/jnsa.009.06.120
    [8] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, P. Natl. Acad. Sci. USA, 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
    [9] D. Gohde, Zum prinzip der kontraktiven abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312
    [10] W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Am. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345
    [11] V. Berinde, Iterative approximation of fixed points, 2 Eds., Lecture Notes in Mathematics, Berlin: Springer, 2007. https://doi.org/10.1109/SYNASC.2007.49
    [12] W. R. Mann, Mean value methods in iteration, P. Am. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
    [13] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory A., 69 (2013), 1–10. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69
    [14] K. Zhao, Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel, Fractal Fract., 6 (2022), 469. https://doi.org/10.3390/fractalfract6090469 doi: 10.3390/fractalfract6090469
    [15] S. A. Khuri, A. Sayfy, Variational iteration method: Green's functions and fixed point iterations perspective, Appl. Math. Lett., 32 (2014), 24–34. https://doi.org/10.1016/j.aml.2014.01.006 doi: 10.1016/j.aml.2014.01.006
    [16] S. A. Khuri, A. Sayfy, Generalizing the variational iteration method for BVPs: Proper setting of the correction functional, Appl. Math. Lett., 68 (2017), 68–75. https://doi.org/10.1016/j.aml.2016.11.018 doi: 10.1016/j.aml.2016.11.018
    [17] S. A. Khuri, A. Sayfy, An iterative method for boundary value problems, Nonlinear Sci. Lett. A, 8 (2017), 178–186.
    [18] R. Assadi, S. A. Khuri, A. Sayfy, Numerical solution of nonlinear second order singular BVPs based on Green's functions and fixed point Iterative schemes, Int. J. Appl. Comput. Math., 4 (2018), 1–13. https://doi.org/10.1007/s40819-018-0569-8 doi: 10.1007/s40819-018-0569-8
    [19] K. Zhao, Stability of a nonlinear langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725
    [20] J. Ahmad, M. Arshad, A. Hussain, H. Al-Sulami, A Green's function based iterative approach for solutions of BVPs in symmetric spaces, Symmetry, 15 (2023), 1838.
    [21] K. Zhao, Stability of a nonlinear ML-nonsingular kernel fractional Langevin system with distributed lags and integral control, Axioms, 11 (2022), 350. https://doi.org/10.3390/axioms11070350 doi: 10.3390/axioms11070350
    [22] M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for \phi-strong pseudocontractions and nonlinear equations of the \phi-strongly accretive type, J. Math. Anal. Appl., 227 (1998), 319–334. https://doi.org/10.1006/jmaa.1998.6075 doi: 10.1006/jmaa.1998.6075
    [23] A. Sahin, Some new results of M-iteration process in hyperbolic spaces, Carpathian J. Math., 35 (2019), 221–232. https://doi.org/10.37193/CJM.2019.02.10 doi: 10.37193/CJM.2019.02.10
    [24] A. Sahin, Some results of the Picard-Krasnoselskii hybrid iterative process, Filomat, 33 (2019), 359–365. https://doi.org/10.2298/FIL1902359S doi: 10.2298/FIL1902359S
    [25] M. Urabe, Convergence of numerical iteration in solution of equations, J. Sci. Hiroshima Univ. A, 19 (1956), 479–489. https://doi.org/10.32917/hmj/1556071264 doi: 10.32917/hmj/1556071264
    [26] A. M. Harder, T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica, 33 (1988), 693–706.
    [27] T. Cardinali, P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11 (2010), 3–10.
    [28] I. Timis, On the weak stability of Picard iteration for some contractive type mappings, Ann. Univ. Craiova-Mat., 37 (2010), 106–114.
    [29] M. Chawla, R. Subramanian, H. Sathi, A fourth order method for a singular two-point boundary value problem, BIT, 28 (1988), 88–97. https://doi.org/10.1007/BF01934697 doi: 10.1007/BF01934697
    [30] P. Debnath, N. Konwar, S. Radenovic, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Singapore: Springer, 2023. https://doi.org/10.1007/978-981-16-4896-0
  • This article has been cited by:

    1. Muhammad Aslam, Florentin Smarandache, Chi-square test for imprecise data in consistency table, 2023, 9, 2297-4687, 10.3389/fams.2023.1279638
    2. Adewale F. Lukman, Rasha A. Farghali, B. M. Golam Kibria, Okunlola A. Oluyemi, Robust-stein estimator for overcoming outliers and multicollinearity, 2023, 13, 2045-2322, 10.1038/s41598-023-36053-z
    3. Maciej Neugebauer, Cengiz Akdeniz, Vedat Demir, Hüseyin Yurdem, Fuzzy logic control for watering system, 2023, 13, 2045-2322, 10.1038/s41598-023-45203-2
    4. Muhammad Aslam, Neutrosophic Chi-Square Test for Analyzing Population Variances with Uncertain Data, 2025, 19, 1559-8608, 10.1007/s42519-025-00436-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1341) PDF downloads(73) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog