Research article

A fixed point iterative scheme based on Green's function for numerical solutions of singular BVPs

  • Received: 01 September 2023 Revised: 10 October 2023 Accepted: 23 October 2023 Published: 31 October 2023
  • MSC : 47H09, 47H10

  • We suggest a novel iterative scheme for solutions of singular boundary value problems (SBVPs) that is obtained by embedding Green's function into the Picard-Mann Hybrid (PMH) iterative scheme. This new scheme we call PMH-Green's iterative scheme and prove its convergence towards a sought solution of certain SBVPs. We impose possible mild conditions on the operator or on the parameters involved in our scheme to obtain our main outcome. After this, we prove that this new iterative scheme is weak $ w^{2} $-stable. Eventually, using two different numerical examples of SBVPs, we show that our new approach suggests highly accurate numerical solutions as compared the corresponding Picard-Green's and Mann-Green's iterative schemes.

    Citation: Junaid Ahmad, Muhammad Arshad, Reny George. A fixed point iterative scheme based on Green's function for numerical solutions of singular BVPs[J]. AIMS Mathematics, 2023, 8(12): 29517-29534. doi: 10.3934/math.20231511

    Related Papers:

  • We suggest a novel iterative scheme for solutions of singular boundary value problems (SBVPs) that is obtained by embedding Green's function into the Picard-Mann Hybrid (PMH) iterative scheme. This new scheme we call PMH-Green's iterative scheme and prove its convergence towards a sought solution of certain SBVPs. We impose possible mild conditions on the operator or on the parameters involved in our scheme to obtain our main outcome. After this, we prove that this new iterative scheme is weak $ w^{2} $-stable. Eventually, using two different numerical examples of SBVPs, we show that our new approach suggests highly accurate numerical solutions as compared the corresponding Picard-Green's and Mann-Green's iterative schemes.



    加载中


    [1] K. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063. https://doi.org/10.2298/FIL2304053Z doi: 10.2298/FIL2304053Z
    [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [3] E. M. Picard, Memorie sur la theorie des equations aux derivees partielles et la methode des approximation ssuccessives, J. Math. Pure Appl., 6 (1890), 145–210.
    [4] P. Cholamjiak, W. Cholamjiak, Y. J. Cho, S. Suantai, Weak and strong convergence to common fixed points of a countable family of multi-valued mappings in Banach spaces, Thai J. Math., 9 (2011), 505–520.
    [5] R. Pandey, R. Pant, V. Rakocevie, R. Shukla, Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math. 74 (2018), 1–24. https://doi.org/10.1007/s00025-018-0930-6 doi: 10.1007/s00025-018-0930-6
    [6] I. Uddin, M. Imdad, Convergence of SP-iteration for generalized nonexpansive mapping in Hadamard spaces, Hacet. J. Math. Stat., 47 (2018), 1595–1604.
    [7] H. Afsharia, H. Aydi, Some results about Krasnoselskii-Mann iteration process, J. Nonlinear Sci. Appl., 9 (2016), 4852–4859. https://doi.org/10.22436/jnsa.009.06.120 doi: 10.22436/jnsa.009.06.120
    [8] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, P. Natl. Acad. Sci. USA, 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
    [9] D. Gohde, Zum prinzip der kontraktiven abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312
    [10] W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Am. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345
    [11] V. Berinde, Iterative approximation of fixed points, 2 Eds., Lecture Notes in Mathematics, Berlin: Springer, 2007. https://doi.org/10.1109/SYNASC.2007.49
    [12] W. R. Mann, Mean value methods in iteration, P. Am. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3
    [13] S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory A., 69 (2013), 1–10. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69
    [14] K. Zhao, Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel, Fractal Fract., 6 (2022), 469. https://doi.org/10.3390/fractalfract6090469 doi: 10.3390/fractalfract6090469
    [15] S. A. Khuri, A. Sayfy, Variational iteration method: Green's functions and fixed point iterations perspective, Appl. Math. Lett., 32 (2014), 24–34. https://doi.org/10.1016/j.aml.2014.01.006 doi: 10.1016/j.aml.2014.01.006
    [16] S. A. Khuri, A. Sayfy, Generalizing the variational iteration method for BVPs: Proper setting of the correction functional, Appl. Math. Lett., 68 (2017), 68–75. https://doi.org/10.1016/j.aml.2016.11.018 doi: 10.1016/j.aml.2016.11.018
    [17] S. A. Khuri, A. Sayfy, An iterative method for boundary value problems, Nonlinear Sci. Lett. A, 8 (2017), 178–186.
    [18] R. Assadi, S. A. Khuri, A. Sayfy, Numerical solution of nonlinear second order singular BVPs based on Green's functions and fixed point Iterative schemes, Int. J. Appl. Comput. Math., 4 (2018), 1–13. https://doi.org/10.1007/s40819-018-0569-8 doi: 10.1007/s40819-018-0569-8
    [19] K. Zhao, Stability of a nonlinear langevin system of ML-type fractional derivative affected by time-varying delays and differential feedback control, Fractal Fract., 6 (2022), 725. https://doi.org/10.3390/fractalfract6120725 doi: 10.3390/fractalfract6120725
    [20] J. Ahmad, M. Arshad, A. Hussain, H. Al-Sulami, A Green's function based iterative approach for solutions of BVPs in symmetric spaces, Symmetry, 15 (2023), 1838.
    [21] K. Zhao, Stability of a nonlinear ML-nonsingular kernel fractional Langevin system with distributed lags and integral control, Axioms, 11 (2022), 350. https://doi.org/10.3390/axioms11070350 doi: 10.3390/axioms11070350
    [22] M. O. Osilike, Stability of the Mann and Ishikawa iteration procedures for $\phi$-strong pseudocontractions and nonlinear equations of the $\phi$-strongly accretive type, J. Math. Anal. Appl., 227 (1998), 319–334. https://doi.org/10.1006/jmaa.1998.6075 doi: 10.1006/jmaa.1998.6075
    [23] A. Sahin, Some new results of M-iteration process in hyperbolic spaces, Carpathian J. Math., 35 (2019), 221–232. https://doi.org/10.37193/CJM.2019.02.10 doi: 10.37193/CJM.2019.02.10
    [24] A. Sahin, Some results of the Picard-Krasnoselskii hybrid iterative process, Filomat, 33 (2019), 359–365. https://doi.org/10.2298/FIL1902359S doi: 10.2298/FIL1902359S
    [25] M. Urabe, Convergence of numerical iteration in solution of equations, J. Sci. Hiroshima Univ. A, 19 (1956), 479–489. https://doi.org/10.32917/hmj/1556071264 doi: 10.32917/hmj/1556071264
    [26] A. M. Harder, T. L. Hicks, Stability results for fixed point iteration procedures, Math. Japonica, 33 (1988), 693–706.
    [27] T. Cardinali, P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11 (2010), 3–10.
    [28] I. Timis, On the weak stability of Picard iteration for some contractive type mappings, Ann. Univ. Craiova-Mat., 37 (2010), 106–114.
    [29] M. Chawla, R. Subramanian, H. Sathi, A fourth order method for a singular two-point boundary value problem, BIT, 28 (1988), 88–97. https://doi.org/10.1007/BF01934697 doi: 10.1007/BF01934697
    [30] P. Debnath, N. Konwar, S. Radenovic, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Singapore: Springer, 2023. https://doi.org/10.1007/978-981-16-4896-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(946) PDF downloads(63) Cited by(3)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog