Loading [MathJax]/jax/output/SVG/jax.js
Research article

Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps

  • Received: 30 May 2023 Revised: 31 July 2023 Accepted: 08 August 2023 Published: 30 August 2023
  • MSC : 34A08, 34A12, 34K37, 60H10, 93B05

  • In this paper, we explore the approximative controllability of fractional stochastic differential inclusions (SDIs) of Sobolev-type with fractional derivatives in Atangana-Baleanu (AB) sense and Poisson jumps. Our findings are supported by the fixed point theorem, multi-valued map theory, compact semigroup theory and stochastic analysis principles. In the later part, an illustration is provided to clarify the established outcomes.

    Citation: A. M. Sayed Ahmed, Hamdy M. Ahmed, Nesreen Sirelkhtam Elmki Abdalla, Assmaa Abd-Elmonem, E. M. Mohamed. Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps[J]. AIMS Mathematics, 2023, 8(10): 25288-25310. doi: 10.3934/math.20231290

    Related Papers:

    [1] Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477
    [2] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [3] Jiali Wu, Maoning Tang, Qingxin Meng . A stochastic linear-quadratic optimal control problem with jumps in an infinite horizon. AIMS Mathematics, 2023, 8(2): 4042-4078. doi: 10.3934/math.2023202
    [4] Xiuxian Chen, Zhongyang Sun, Dan Zhu . Mean-variance investment and risk control strategies for a dynamic contagion process with diffusion. AIMS Mathematics, 2024, 9(11): 33062-33086. doi: 10.3934/math.20241580
    [5] Noorah Mshary, Hamdy M. Ahmed . Discussion on exact null boundary controllability of nonlinear fractional stochastic evolution equations in Hilbert spaces. AIMS Mathematics, 2025, 10(3): 5552-5567. doi: 10.3934/math.2025256
    [6] Abdelkader Moumen, Ammar Alsinai, Ramsha Shafqat, Nafisa A. Albasheir, Mohammed Alhagyan, Ameni Gargouri, Mohammed M. A. Almazah . Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory. AIMS Mathematics, 2023, 8(9): 19892-19912. doi: 10.3934/math.20231014
    [7] Antonio Di Crescenzo, Alessandra Meoli . On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212
    [8] Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad . Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators. AIMS Mathematics, 2023, 8(12): 30374-30404. doi: 10.3934/math.20231551
    [9] Yongqiang Fu, Lixu Yan . Fully nonlocal stochastic control problems with fractional Brownian motions and Poisson jumps. AIMS Mathematics, 2021, 6(5): 5176-5192. doi: 10.3934/math.2021307
    [10] Muneerah AL Nuwairan, Ahmed Gamal Ibrahim . The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722
  • In this paper, we explore the approximative controllability of fractional stochastic differential inclusions (SDIs) of Sobolev-type with fractional derivatives in Atangana-Baleanu (AB) sense and Poisson jumps. Our findings are supported by the fixed point theorem, multi-valued map theory, compact semigroup theory and stochastic analysis principles. In the later part, an illustration is provided to clarify the established outcomes.



    In recent years, numerous fields have recognised the effect of including random effects in modelling and analysing physical processes. The optimum control systems modelled by stochastic and partial differential equations have attracted a lot of attention (see [1,2,3,4,5,6,7,8,9,10,11]). Consequently, stochastic and partial differential inclusion result from these optimal control problems. Fractional-order differential equations can be used to solve some physical problems instead of integer-order differential equations. As a result, a large number of researchers have recently made significant progress in a variety of fields, including physics, fluid mechanics, control theory, image analysis, biology, engineering, porous media and others. Many authors have investigated the theoretical results based on existence and uniqueness of solutions to fractional differential equations in various forms (see [12,13,14,15,16,17]). Recently, a novel fractional derivative known as the AB fractional derivative was introduced by Atangana and Baleanu [18]). Many studies and discussion related to AB fractional derivative have appeared in several areas of applications, for example, Khan et al.[19] discussed the existence and data dependence theorems for solutions of an ABC-fractional order impulsive system. Mallika et al.[20] studied a new class of Atangana-Baleanu fractional Volterra-Fredholm integrodifferential inclusions with non-instantaneous impulses. Omaba and Enyi[21] studied the Atangana–Baleanu time-fractional stochastic integro-differential equation by using Banach fixed point theory. Panda et al.[22] discussed the results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems.

    The notion of controllability of dynamical systems is one of the fundamental concepts in mathematical control theory which plays pivotal role in many areas of science and engineering (see [23,24,25,26,27,28]). The dynamical systems must be treated by the weaker concept of controllability, namely approximate controllability. There are many studies on the approximate controllability of stochastic and deterministic systems, for example, Liu and Li [29] studied the approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. Mahmudov and Mckibben [30] investigated the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative. Ahmed[31] discussed the approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space. Subramaniam [32] studied the approximate controllability of Sobolev-type nonlocal Hilfer fractional stochastic differential system. Ma et al.[33] investigated the approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions.

    To the best of our knowledge, no work has been reported in the literature regarding the approximate controllability of Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions with fractional Brownian motion and Poisson jumps. Motivated by this, the aim of this paper is to study the approximate controllability of Sobolev-type stochastic differential inclusions with fractional Brownian motion and Poisson jumps, where the time fractional derivative is the Atangana-Baleanu fractional derivative in the Caputo sense, of the form:

    ABCDα0+Φx(t)Ax(t)+Bu(t)+ϱ(t,x(t))+σ(t,x(t))dBH(t)dt+Z(t,x(t),ξ)˜N(dt,dξ),tJ:=(0,C],x(0)=x0, (1.1)

    where ABCDα0+ is AB-Caputo fractional derivative of order 12<α<1. x() is the state variable in separable Hilbert space X with and ,. Let BH be a fBm on separable Hilbert space Y with H(1/2,1). Φ and A are linear operators in X. ϱ and σ are multi-valued functions satisfying some assumptions. :J×X×ZX is a nonlinear function. The control function u() is given in L2(J,U), the Hilbert space of admissible control functions with U as a separable Hilbert space. The symbol B stands for a bounded linear operator from U into X.

    The contributions of the present work:

    Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions with Poisson jumps are presented.

    Approximate controllability for (1.1) is investigated for the first time.

    An example is offered to define the primary results.

    The following lemmas and definitions are used in the paper.

    Let (Ω,,P) be a complete probability space containing the entire family of right continuous increasing sub-σ-algebras {t}tJ satisfying t and C>0 be arbitrary fixed horizons. Let (Z,V,λ(dξ)) be a σ-finite measurable space. We are given a stationary Poisson point process (qt)t0, which is defined on (Ω,,P) with values in Z and with characteristic measure λ. Let ˜M(dt,dξ) be the counting measure of qt such that (s.t.) ˜N(t,)=E(˜M(t,))=tλ() for V. Define ˜N(t,dξ):=˜M(t,dξ)tλ(dξ), the Poisson martingale measure generated by qt. An one-dimensional fBm with the Hurst index H(1/2,1) is a centred Gaussian process βH={βH(t),0tC} with covariance function

    CH(t,s)=E(βH(t)βH(s))=12(t2H+s2Hts2H).

    Suppose L(Y,X) be the space of bounded linear operators from Y to X. Then, define the infinite dimensional fBm on Y with covariance Θ as

    BH(t)=n=1βHn(t)enZn,

    where βHn are real, independent fBm's. This process is a Y-valued Gaussian, which starts from zero, has zero mean and covariance

    E[BH(t),dBH(s),g]=CH(t,s)Θ(d),g,d,gY,t,s[0,C].

    We propose the separable Hilbert space L2Θ(Y,X) of all Θ-Hilbert-Schmidt operators ˆΨ:YX [34].

    Lemma 2.1. If ˆΨ:[0,C]L2Θ(Y,X) satisfies C0ˆΨ(s)2L2Θds<, then

    Et0ˆΨ(s)dBH(s)22HC2H1t0ˆΨ(s)2L2Θds.

    Here, C(J,L2(Ω,X)) is the Banach space of all continuous maps from J into L2(Ω,X) equipped with the supremum norm xC=suptJ(Ex(t)2)1/2.

    Assume, A:D(A)XX and Φ:D(Φ)XX satisfy the following hypotheses:

    (1) A and Φ are closed linear operators.

    (2) D(Φ)D(A) and Φ is bijective.

    (3) Φ1:XD(Φ) is continuous. Here, (1) and (2) together with the closed graph theorem imply the boundedness of AΦ1:XX, in addition, AΦ1 is the infinitesimal generator of an α-resolvent family (Sα(τ))τ0, (Qα(τ))τ0 stands for the solution operator defined on a separable Hilbert space X.

    Let P(X)={AX:Aϕ} be the family of all nonempty subsets of X,

    Pcp(X)={AP(X):Aiscompact},Pb(X)={AP(X):Aisbounded},Pcl(X)={AP(X):Aisclosed},Pcv(X)={AP(X):Aisconvex},

    Pcp,cv(X)=Pcp(X)Pcv(X) denotes the collection of all non-empty compact and convex subsets of X.

    Proposition 2.1. ([35])

    (i) A multivalued map W:X2X is convex (closed) valued if W(g) is convex (closed) gX. W is bounded on bounded sets, if W(B)=gBW(g) is bounded in X, for any bounded set B on X.

    (ii) A map W is said to be upper semi-continuous (u.s.c.) on X, if for each g0X, the set W(g0) is a nonempty closed subset of X and if for each open subset Ω of X containing W(g0), there exists an open neighborhood ˆΘ of g0 such that W(ˆΘ)Ω.

    (iii) A map W is said to be completely continuous, if W(B) is relatively compact for every BPb(X). If the multi-valued map W is completely continuous with nonempty compact values, then W is u.s.c. if and only if W has a closed graph, i.e., gng,unu,unW(g0) imply uW(g). We say that W has a fixed point if there is gX such that gW(g).

    Lemma 2.2. ([36]) W:I×XPb,cl,cv(X) is measurable to t fixed xX, u.s.c. to x for each tJ and for each xC(J,X), the set SW,x:={fL1(J,X):f(N)W(t,x(t))}, for a.e. tJ is nonempty. Let N be a linear continuous mapping from L1(J,X) into C(J,X). Then, the operator

    NSW:C(J,X)Pb,cl,cv(C(J,X)),xNSW(x)=N(SW),

    is a closed graph operator in C(J,X)×C(J,X).

    Lemma 2.3. ([35]) Let D be a nonempty subset of X which is bounded, closed and convex. Suppose Q:D2X is u.s.c. with closed, convex values s.t. Q(D)D and Q(D) is compact. Then, Q has a fixed point.

    Definition 2.1. ([18]) The AB fractional derivative is defied by the following in the Caputo sense: for fH1(a,b);a<b and at t(a,b) of order α(0,1), we have

    ABCDαa+f(t)=V(α)1αtaf(s)Eα(ν(ts)α)ds, (2.1)

    where the function ν=α1α, Eα() is the one parameter Mittag-Leffler function defined by

    Eα(z)=n=0znΓ(nα+1),

    and the normalization function V(α)=(1α)+αΓ(α) is any function with V(0)=V(1)=1.

    The fractional integral of AB is provided by

    ABIαa+f(t)=1αV(α)f(t)+αV(α)Γ(α)ta(ts)α1f(s)ds. (2.2)

    Definition 2.2. ([37]) xC(J,L2(Ω,X)) is a mild solution of (1.1), if it satisfies the following conditions:

    (1) x(0)=x0L2(Ω,X)) and u()L2(J,U),

    (2) fSϱ,x s.t. f(t)ϱ(t,x(t)), ¯hSσ,x s.t. ¯h(t)σ(t,x(t)), ¯yS,x s.t. ¯y(t,ξ)(t,x(t),ξ) and x(t) verifies the following equation:

    x(t)=Φ1Sα(t)Φx0+(1α)V(α)Γ(α)t0Φ1(ts)α1{Bu(s)+f(s)}ds+(1α)V(α)Γ(α)t0Φ1(ts)α1¯h(s)dBH(s)+(1α)V(α)Γ(α)t0Φ1(ts)α1Z¯y(s,ξ)˜N(ds,dξ)+α2V(α)t0Φ1Qα(ts){Bu(s)+f(s)}ds+α2V(α)t0Φ1Qα(ts)¯h(s)dBH(s)+α2V(α)t0Φ1Qα(ts)Z¯y(s,ξ)˜N(ds,dξ),

    where =ϑ(ϑIA)1 and =δA(ϑIA)1, with ϑ=V(α)1α, δ=α1α,

    Sα(t)=Eα(tα)=12πiΥestsα1(sαI)1ds,Qα(t)=tα1Eα,α(tα)=12πiΥest(sαI)1ds,

    and the path Υ is lying on Ξ(χ,M).

    We need the following assumption:

    (A0) Aα(α0,l0) then Sα(t)Jelt and Qα(t)elt(1+tα1), for every t>0,l>l0. Thus, J=supt0Sα(t), J1=supt0elt(1+tα1). So, we get Sα(t)J and Qα(t)J1tα1.

    To study the approximate controllability for (1.1), we first consider the fractional stochastic linear system:

    ABCDα0+Φx(t)Ax(t)+Bu(t),tJ:=(0,C]x(0)=x0. (2.3)

    Let x(C;γ,u) be the state value of (1.1) at the terminal state b, corresponding to the control u and the initial value γ. Denote by R(C,γ)={x(C;γ,u):uL2(J,U)} the reachable set of (1.1) at terminal time C, its closure in X is denoted by ¯R(C,γ).

    Definition 2.3. ([37]) (1.1) be approximately controllable on the interval [0,C] if ¯R(C,γ)=L2(Ω,X).

    Remark 2.1. (2.3) is approximately controllable on J, if and only if κ(κ,ΔC0)0 strongly as κ0+.

    It is appropriate to introduce two pertinent operators now,

    ΔC0=C0Φ1Qα(Cs)BBΦ1Qα(Cs)ds,

    where B and Qα are the adjoint of B and Qα, respectively.

    (κ,ΔC0)=(κI+ΔC0)1,κ>0.

    Lemma 2.4. ([37]) For any ˜xCL2(Ω,X), ˜γ(s)L2(Ω;L2(J,L2Θ)), s.t.

    ˜xC=E˜xC+C0˜γ(s)dBH(s).

    Let us begin with some notations.

    B2=ςB,C=(1qαq)2(1q),ι=CC2(αq).

    To illustrate the main result, we introduce the following assumptions:

    (A1) (Qα(t))t0 be compact and κ(κ,ΔC0)1,κ>0.

    (A2) ϱ:J×XPb,cl,cv(X) satisfies:

    (1) ϱ(t,):XX is u.s.c. tJ and for each xX, the function ϱ(,x):JX is strongly measurable to t, and for each xX, the set Sϱ,x:={fL1(J,X):f(t)ϱ(t,x(t))}, for a.e. tJ is nonempty.

    (2) a function n(t)L1/q,q(0,α) and a continuous nondecreasing function Ψ:[0,)(0,), s.t. for any (t,x)J×X, we have

    Eϱ(t,x)2=sup{f(t)2:f(t)ϱ(t,x)}n(t)Ψ(x2),lim infrΨ(r)r=Π<.

    (A3) σ:J×XL2Θ(Y,X) satisfies:

    (1) σ(,x) is measurable xX, and σ(t,):XL2Θ(Y,X) is u.s.c. tJ and xX, the set Sσ,x:={¯hL2Θ(Y,X):¯h(t)σ(t,x)}, for a.e. tJ is nonempty.

    (2) gr(t):JR+, rN,r>0 s.t.

    sup{E¯h2:¯hσ(t,x)}gr(t),

    tJ and s(ts)2(α1)gr(t)L1([0,t],R+) and Λ>0 s.t.

    lim infr0t0(ts)2(α1)gr(s)dsr=Λ<.

    (A4) :J×X×ZX satisfies:

    (1) (,x,ξ) is measurable (x,ξ)X×Z, and (t,,):X×ZX is u.s.c. tJ.

    For each (x,ξ)X×Z, the set S,x:={¯yL2(Y,X):¯y(t,ξ)(t,x,ξ)}, for a.e. tJ is nonempty.

    (2) Cr(t):JR+, rN,r>0 s.t.

    sup{ZE¯y2λdξ:¯y(t,ξ)(t,x,ξ)}Cr(t),

    for a.e. tJ and s(ts)2(α1)Cr(t)L1([0,t],R+) and Λ>0 s.t.

    lim infr0t0(ts)2(α1)Cr(s)dsr=Λ<.

    (A5) and are bounded linear operators, θ and ψ s.t. θ and ψ.

    (A6)

    [Λ+C2α12α1nL1/qΠι+2HC2H1Λ]{9[θψ(1α)Φ1V(α)Γ(α)]2+9[θ2αΦ1J1V(α)]2}˜K<1,

    where

    ˜K={1+8[θψ(1α)Φ1J1ςBV(α)Γ(α)κ]2C4α2(2α1)2+8[θ2αΦ1J1ςBV(α)κ]2C4α2(2α1)2}.

    (A7) ϱ,σ and are uniformly bounded tJ and xC.

    Theorem 3.1. Assume that (A0) through (A6) are satisfied. Then, (1.1) has a mild solution on C(J,L2(Ω,X)).

    Proof. Let Qr:={xC(J,L2(Ω,X)):xCr,r0,0tC}. Obviously, Qr is a bounded, closed, convex set in C(J,L2(Ω,X)).

    For κ>0, for all x()C(J,L2(Ω,X)), we take,

    u(t)=BQα(Ct)(κ,ΔC0)P(x()),

    where

    P(x())=E˜xC+C0˜γ(s)dBH(s)Φ1Sα(C)Φx0(1α)V(α)Γ(α)C0Φ1(Cs)α1f(s)ds(1α)V(α)Γ(α)C0Φ1(Cs)α1¯h(s)dBH(s)α2V(α)C0Φ1Qα(Cs)f(s)dsα2V(α)C0Φ1Qα(Cs)¯h(s)dBH(s)(1α)V(α)Γ(α)C0Φ1(Cs)α1Z¯y(s,ξ)˜N(ds,dξ)α2V(α)C0Φ1Qα(Cs)Z¯y(s,ξ)˜N(ds,dξ).

    The operator T:CP(C) is defined in terms of this control as follows:

    T(x)={UC:U(t)=Φ1Sα(t)Φx0+(1α)V(α)Γ(α)t0Φ1(ts)α1{Bu(s)+f(s)}ds+(1α)V(α)Γ(α)t0Φ1(ts)α1¯h(s)dBH(s)+(1α)V(α)Γ(α)t0Φ1(ts)α1×Z¯y(s,ξ)˜N(ds,dξ)+α2V(α)t0Φ1Qα(ts){Bu(s)+f(s)}ds+α2V(α)t0Φ1Qα(ts)¯h(s)dBH(s)+α2V(α)t0Φ1Qα(ts)Z¯y(s,ξ)˜N(ds,dξ)}.

    We shall prove, T:CP(C) has a fixed point for κ>0.

    The proof is now divided into five steps.

    Step 1. xQr the operator T is convex.

    Assume that U1,U2T(x), then f1,f2Sϱ,x, ¯h1,¯h2Sσ,x, and ¯y1,¯y2S,x s.t.

    Ui(t)=Φ1Sα(t)Φx0+(1α)V(α)Γ(α)t0Φ1(ts)α1fi(s)ds+(1α)V(α)Γ(α)t0Φ1(ts)α1BBQα(Cs)(κ,ΔC0)×{E˜xC+C0˜γ(s)dBH(s)Φ1Sα(C)Φx0(1α)V(α)Γ(α)C0Φ1(Cs)α1fi(s)ds(1α)V(α)Γ(α)C0Φ1(Cs)α1¯hi(s)dBH(s)α2V(α)C0Φ1Qα(Cs)fi(s)dsα2V(α)C0Φ1Qα(Cs)¯hi(s)dBH(s)(1α)V(α)Γ(α)C0Φ1(Cs)α1×Z¯yi(s,ξ)˜N(ds,dξ)α2V(α)C0Φ1Qα(Cs)Z¯yi(s,ξ)˜N(ds,dξ)}ds+(1α)V(α)Γ(α)t0Φ1(ts)α1¯hi(s)dBH(s)+(1α)V(α)Γ(α)t0Φ1(ts)α1Z¯yi(s,ξ)˜N(ds,dξ)+α2V(α)t0Φ1Qα(ts)fi(s)ds+α2V(α)t0Φ1Qα(ts)¯hi(s)dBH(s)+α2V(α)t0Φ1Qα(ts)Z¯yi(s,ξ)˜N(ds,dξ)+α2V(α)t0Φ1Qα(ts)BBQα(Cs)(κ,ΔC0)×{E˜xC+C0˜γ(s)dBH(s)Φ1Sα(C)Φx0(1α)V(α)Γ(α)C0Φ1(Cs)α1fi(s)ds(1α)V(α)Γ(α)C0Φ1(Cs)α1¯hi(s)dBH(s)α2V(α)C0Φ1Qα(Cs)fi(s)dsα2V(α)C0Φ1Qα(Cs)¯hi(s)dBH(s)(1α)V(α)Γ(α)C0Φ1(Cs)α1Z¯yi(s,ξ)˜N(ds,dξ)α2V(α)C0Φ1Qα(Cs)Z¯yi(s,ξ)˜N(ds,dξ)}ds,i=1,2.

    Let K[0,1], then we get

    KU1+(1K)U2=Φ1Sα(t)Φx0+(1α)V(α)Γ(α)t0Φ1(ts)α1[Kf1(s)+(1K)f2(s)]ds+(1α)V(α)Γ(α)t0Φ1(ts)α1BBQα(Cs)(κ,ΔC0)×{E˜xC+C0˜γ(s)dBH(s)Φ1Sα(C)Φx0(1α)V(α)Γ(α)C0Φ1(Cs)α1[Kf1(s)+(1K)f2(s)]dsα2V(α)C0Φ1Qα(Cs)[Kf1(s)+(1K)f2(s)]dsα2V(α)C0Φ1Qα(Cs)[K¯h1(s)+(1K)¯h2(s)]dBH(s)(1α)V(α)Γ(α)C0Φ1(Cs)α1[K¯h1(s)+(1K)¯h2(s)]dBH(s)(1α)V(α)Γ(α)C0Φ1(Cs)α1Z[K¯y1(s,ξ)+(1K)¯y2(s,ξ)]˜N(ds,dξ)α2V(α)C0Φ1Qα(Cs)Z[K¯y1(s,ξ)+(1K)¯y2(s,ξ)]˜N(ds,dξ)}ds+(1α)V(α)Γ(α)t0Φ1(ts)α1[K¯h1(s)+(1K)¯h2(s)]dBH(s)+α2V(α)t0Φ1Qα(ts)[Kf1(s)+(1K)f2(s)]ds+(1α)V(α)Γ(α)t0Φ1(ts)α1Z[K¯y1(s,ξ)+(1K)¯y2(s,ξ)]˜N(ds,dξ)+α2V(α)t0Φ1Qα(ts)[K¯h1(s)+(1K)¯h2(s)]dBH(s)+α2V(α)t0Φ1Qα(ts)Z[K¯y1(s,ξ)+(1K)¯y2(s,ξ)]˜N(ds,dξ)+α2V(α)t0Φ1Qα(Cs)BBQα(Cs)(κ,ΔC0)×{E˜xC+C0˜γ(s)dBH(s)Φ1Sα(C)Φx0(1α)V(α)Γ(α)C0Φ1(Cs)α1[Kf1(s)+(1K)f2(s)]ds(1α)V(α)Γ(α)C0Φ1(Cs)α1[K¯h1(s)+(1K)¯h2(s)]dBH(s)α2V(α)C0Φ1Qα(Cs)[Kf1(s)+(1K)f2(s)]dsα2V(α)C0Φ1Qα(Cs)[K¯h1(s)+(1K)¯h2(s)]dBH(s)(1α)V(α)Γ(α)C0Φ1(Cs)α1Z[K¯y1(s,ξ)+(1K)¯y2(s,ξ)]˜N(ds,dξ)α2V(α)C0Φ1Qα(Cs)Z[K¯y1(s,ξ)+(1K)¯y2(s,ξ)]˜N(ds,dξ)}ds.

    Since Sϱ,x, Sσ,x, and S,x are convex sets, Kf1(s)+(1K)f2(s)Sϱ,x, K¯h1(s)+(1K)¯h2(s)Sσ,x, and K¯y1(s,ξ)+(1K)¯y2(s,ξ)S,x. Thus,

    KU1+(1K)U2T(x).

    Step 2. κ>0, a positive constant r0=r(κ), s.t. T(Qr0)Qr0.

    If the opposite is true, then for any r>0 ¯xQr, ¯uL2(J,U) corresponding to ¯x, s.t. T(¯x)Qr,

    ET(¯x)2C=sup{U2C:UT(¯x)}r.
    rET(¯x)29EΦ1Sα(t)Φx02+9E(1α)V(α)Γ(α)t0Φ1(ts)α1Bu(s)ds2+9E(1α)V(α)Γ(α)t0Φ1(ts)α1f(s)ds2+9E(1α)V(α)Γ(α)t0Φ1(ts)α1¯h(s)dBH(s)2+9E(1α)V(α)Γ(α)t0Φ1(ts)α1Z¯y(s,ξ)˜N(ds,dξ)2+9Eα2V(α)t0Φ1Qα(ts)Bu(s)ds2+9Eα2V(α)t0Φ1Qα(ts)f(s)ds2+9Eα2V(α)t0Φ1Qα(ts)¯h(s)dBH(s)2+9Eα2V(α)t0Φ1Qα(ts)Z¯y(s,ξ)˜N(ds,dξ)2=9n=1In.

    By Using H¨olders inequality and assumptions (A1)(A5), for some fSϱ,x, ¯hSσ,x and ¯yS,x, we have

    I1=9EΦ1Sα(t)Φx029Φ2Φ12(Jθ)2Ex02,
    I2=9E(1α)V(α)Γ(α)t0Φ1(ts)α1Bu(s)ds29{θψ(1α)Φ1J1ςBV(α)Γ(α)κ}2C4α2(2α1)2×8[{E˜xC2+2HC2H1C0E˜γ(s)2L2Θds}+Φ12Φ2(θJ)2Ex02+{θψ(1α)Φ1V(α)Γ(α)}2C2α12α1Ψ(x2)nL1/qι+{θψ(1α)Φ1V(α)Γ(α)}22HC2H1C0(Cs)2(α1)gr(s)ds+{θ2αΦ1J1V(α)}2C2α12α1Ψ(x2)nL1/qι+{θ2αΦ1J1V(α)}22HC2H1C0(Cs)2(α1)gr(s)ds+{θψ(1α)Φ1V(α)Γ(α)}2C0(Cs)2(α1)Cr(s)ds+{θ2αΦ1J1V(α)}2C0(Cs)2(α1)Cr(s)ds],
    I3=9E(1α)V(α)Γ(α)t0Φ1(ts)α1f(s)ds29{θψ(1α)Φ1V(α)Γ(α)}2C2α12α1Ψ(x2)nL1/qι,
    I4=9E(1α)V(α)Γ(α)t0Φ1(ts)α1¯h(s)dBH(s)29{θψ(1α)Φ1V(α)Γ(α)}22HC2H1t0(ts)2(α1)gr(s)ds,
    I5=9E(1α)V(α)Γ(α)t0Φ1(ts)α1Z¯y(s,ξ)˜N(ds,dξ)29{θψ(1α)Φ1V(α)Γ(α)}2t0(ts)2(α1)×ZE¯y2λ(dξ)ds9{θψ(1α)Φ1V(α)Γ(α)}2t0(ts)2(α1)Cr(s)ds,
    I6=9Eα2V(α)t0Φ1Qα(ts)Bu(s)ds29{θ2αΦ1J1ςBV(α)κ}2C4α2(2α1)2×8[{E˜xC2+2HC2H1C0E˜γ(s)2L2Θds}+Φ12Φ2(θJ)2Ex02+{θψ(1α)Φ1V(α)Γ(α)}2C2α12α1Ψ(x2)nL1/qι+{θψ(1α)Φ1V(α)Γ(α)}22HC2H1C0(Cs)2(α1)gr(s)ds+{θ2αΦ1J1V(α)}2C2α12α1Ψ(x2)nL1/qι+{θ2αΦ1J1V(α)}22HC2H1C0(Cs)2(α1)gr(s)ds+{θψ(1α)Φ1V(α)Γ(α)}2C0(Cs)2(α1)Cr(s)ds+{θ2αΦ1J1V(α)}2C0(Cs)2(α1)Cr(s)ds],
    I7=9Eα2V(α)t0Φ1Qα(ts)f(s)ds29{θ2αΦ1J1V(α)}2C2α12α1Ψ(x2)nL1/qι,
    I8=9Eα2V(α)t0Φ1Qα(ts)¯h(s)dBH(s)29{θ2αΦ1J1V(α)}22HC2H1t0(ts)2(α1)gr(s)ds,
    I9=9Eα2V(α)t0Φ1Qα(ts)Z¯y(s,ξ)˜N(ds,dξ)29{θ2αΦ1J1V(α)}2t0(ts)2(α1)ZE¯y2λ(dξ)ds9{θ2αΦ1J1V(α)}2t0(ts)2(α1)Cr(s)ds.

    Combining these estimates, I1I9 yields

    rO+9[{θψ(1α)Φ1V(α)Γ(α)}2C2α12α1Ψ(x2)nL1/qι+{θ2αΦ1J1V(α)}2C2α12α1Ψ(x2)nL1/qι+{θψ(1α)Φ1V(α)Γ(α)}22HC2H1t0(ts)2(α1)gr(s)ds+{θ2αΦ1J1V(α)}22HC2H1t0(ts)2(α1)gr(s)ds+{θψ(1α)Φ1V(α)Γ(α)}2t0(ts)2(α1)Cr(s)ds+{θ2αΦ1J1V(α)}2t0(ts)2(α1)Cr(s)ds]+72{θψ(1α)Φ1J1ςBV(α)Γ(α)κ}2C4α2(2α1)2[{θψ(1α)Φ1V(α)Γ(α)}2C2α12α1Ψ(x2)nL1/qι+{θ2αΦ1J1V(α)}2C2α12α1Ψ(x2)nL1/qι+{θψ(1α)Φ1V(α)Γ(α)}22HC2H1C0(Cs)2(α1)gr(s)ds+{θ2αΦ1J1V(α)}22HC2H1C0(Cs)2(α1)gr(s)ds+{θψ(1α)Φ1V(α)Γ(α)}2C0(Cs)2(α1)Cr(s)ds+{θ2αΦ1J1V(α)}2C0(Cs)2(α1)Cr(s)ds]+72{θ2αΦ1J1ςBV(α)κ}2C4α2(2α1)2[{θψ(1α)Φ1V(α)Γ(α)}2C2α12α1Ψ(x2)nL1/qι+{θ2αΦ1J1V(α)}2C2α12α1Ψ(x2)nL1/qι+{θψ(1α)Φ1V(α)Γ(α)}22HC2H1C0(Cs)2(α1)gr(s)ds+{θ2αΦ1J1V(α)}22HC2H1C0(Cs)2(α1)gr(s)ds+{θψ(1α)Φ1V(α)Γ(α)}2C0(Cs)2(α1)Cr(s)ds+{θ2αΦ1J1V(α)}2C0(Cs)2(α1)Cr(s)ds], (3.1)

    where

    O=9Φ2Φ12(Jθ)2Ex02[1+8{θψ(1α)Φ1J1ςBV(α)Γ(α)κ}2C4α2(2α1)2+8{θ2αΦ1J1ςBV(α)κ}2C4α2(2α1)2]+72[{θψ(1α)Φ1J1ςBV(α)Γ(α)κ}2C4α2(2α1)2{E˜xC2+2HC2H1C0E˜γ(s)2L2Θds}+{θ2αΦ1J1ςBV(α)κ}2C4α2(2α1)2{E˜xC2+2HC2H1C0E˜γ(s)2L2Θds}].

    Dividing both sides of (3.1) by r and taking the lower limit r+, we get

    19{[θψ(1α)Φ1V(α)Γ(α)]2[C2α12α1nL1/qΠι+2HC2H1Λ+Λ]+[θ2αΦ1J1V(α)]2[C2α12α1nL1/qΠι+2HC2H1Λ+Λ]}+72[θψ(1α)Φ1J1ςBV(α)Γ(α)κ]2C4α2(2α1)2{[θψ(1α)Φ1V(α)Γ(α)]2[C2α12α1nL1/qΠι+2HC2H1Λ+Λ]+[θ2αΦ1J1V(α)]2[C2α12α1nL1/qΠι+2HC2H1Λ+Λ]}+72[θ2αΦ1J1ςBV(α)κ]2C4α2(2α1)2{[θψ(1α)Φ1V(α)Γ(α)]2[C2α12α1nL1/qΠι+2HC2H1Λ+Λ]+[θ2αΦ1J1V(α)]2[C2α12α1nL1/qΠι+2HC2H1Λ+Λ]},

    We can then obtain this by performing some simplifications,

    1[Λ+C2α12α1nL1/qΠι+2HC2H1Λ]{9[θψ(1α)Φ1V(α)Γ(α)]2+9[θ2αΦ1J1V(α)]2}˜K,

    where

    ˜K={1+8[θψ(1α)Φ1J1ςBV(α)Γ(α)κ]2C4α2(2α1)2+8[θ2αΦ1J1ςBV(α)κ]2C4α2(2α1)2},

    which is a contradiction to (A6). Thus, for every κ>0, there exists r0, s.t. T maps Qr0 into itself.

    Step 3. T(Qr) is equicontinuous.

    Let 0<t1<t2C. For each x¯Qr, there exist fSϱ,x, ¯hSσ,x and ¯yS,x, s.t.

    EU(t2)U(t1)217EΦ1(Sα(t2)Sα(t1))Φx02+17E(1α)V(α)Γ(α)t10Φ1[(t2s)α1(t1s)α1]Bu(s)ds2+17E(1α)V(α)Γ(α)t2t1Φ1(t2s)α1Bu(s)ds2+17E(1α)V(α)Γ(α)t10Φ1[(t2s)α1(t1s)α1]f(s)ds2+17E(1α)V(α)Γ(α)t2t1Φ1(t2s)α1f(s)ds2+17E(1α)V(α)Γ(α)t10Φ1[(t2s)α1(t1s)α1]¯h(s)dBH(s)2+17E(1α)V(α)Γ(α)t2t1Φ1(t2s)α1¯h(s)dBH(s)2+17E(1α)V(α)Γ(α)t10Φ1[(t2s)α1(t1s)α1]Z¯y(s,ξ)˜N(ds,dξ)2+17E(1α)V(α)Γ(α)t2t1Φ1(t2s)α1Z¯y(s,ξ)˜N(ds,dξ)2+17Eα2V(α)t10Φ1[Qα(t2s)Qα(t1s)]Bu(s)ds2+17Eα2V(α)t2t1Φ1Qα(t2s)Bu(s)ds2+17Eα2V(α)t10Φ1[Qα(t2s)Qα(t1s)]f(s)ds2+17Eα2V(α)t2t1Φ1Qα(t2s)f(s)ds2+17Eα2V(α)t10Φ1[Qα(t2s)Qα(t1s)]¯h(s)dBH(s)2+17Eα2V(α)t2t1Φ1Qα(t2s)¯h(s)dBH(s)2+17Eα2V(α)t10Φ1[Qα(t2s)Qα(t1s)]Z¯y(s,ξ)˜N(ds,dξ)2+17Eα2V(α)t2t1Φ1Qα(t2s)Z¯y(s,ξ)˜N(ds,dξ)2.

    Applying the H¨older inequality and conditions (A0)(A5), we get

    EU(t2)U(t1)217[θψ(1α)Φ1ςBV(α)Γ(α)]2t10[(t2s)α1(t1s)α1]×t10[(t2s)α1(t1s)α1]Eu(s)2ds+17θ2Φ12Φ2E(Sα(t2)Sα(t1))x02+17[θψ(1α)Φ1ςBV(α)Γ(α)]2{(t2t1)αα}t2t1(t2s)α1Eu(s)2ds+17[θψ(1α)Φ1V(α)Γ(α)]2t10[(t2s)α1(t1s)α1]×t10[(t2s)α1(t1s)α1]Ef(s)2ds+17[θψ(1α)Φ1V(α)Γ(α)]2{(t2t1)αα}t2t1(t2s)α1Ef(s)2ds+17[θψ(1α)Φ1V(α)Γ(α)]22HC2H1t10[(t2s)α1(t1s)α1]2gr(s)ds+17[θψ(1α)Φ1V(α)Γ(α)]22HC2H1t2t1(t2s)2α2gr(s)ds+17[θψ(1α)Φ1V(α)Γ(α)]2t10[(t2s)α1(t1s)α1]2Cr(s)ds+17[θψ(1α)Φ1V(α)Γ(α)]2t2t1(t2s)2α2Cr(s)ds+17[θ2αΦ1ςBV(α)]2t10Qα(t2s)Qα(t1s)2Eu(s)2ds+17[θ2αΦ1J1ςBV(α)]2{(t2t1)αα}t2t1(t2s)α1Eu(s)2ds+17[θ2αΦ1V(α)]2t10Qα(t2s)Qα(t1s)2Ef(s)2ds+17[θ2αΦ1J1V(α)]2{(t2t1)αα}t2t1(t2s)α1Ef(s)2ds+17[θ2αΦ1V(α)]22HC2H1t10Qα(t2s)Qα(t1s)2gr(s)ds+17[θ2αΦ1V(α)]22HC2H1t2t1Qα(t2s)2gr(s)ds+17[θ2αΦ1V(α)]2t10Qα(t2s)Qα(t1s)2Cr(s)ds+17[θ2αΦ1V(α)]2t2t1Qα(t2s)2Cr(s)ds.

    The right-hand side of the aforementioned inequality tends to zero as t2t1 due to the strongly continuous operator Qα(t). As a result, uniform operator topological continuity is required by (A1). T(Qr) is hence equicontinuous.

    Step 4. E(t)={U(t),UT(¯Qr)} is a relatively compact on X.

    The case t=0 is trivial. Consider 0<tC, x¯Qr. Then, for all K(0,t), define an operator

    UK(t)=Φ1Sα(t)Φx0+(1α)V(α)Γ(α)tK0Φ1(ts)α1{Bu(s)+f(s)}ds+(1α)V(α)Γ(α)tK0Φ1(ts)α1¯h(s)dBH(s)+(1α)V(α)Γ(α)tK0Φ1(ts)α1Z¯y(s,ξ)˜N(ds,dξ)+α2V(α)tK0Φ1Qα(ts){Bu(s)+f(s)}ds+α2V(α)tK0Φ1Qα(ts)¯h(s)dBH(s)+α2V(α)tK0Φ1Qα(ts)Z¯y(s,ξ)˜N(ds,dξ),

    where fSϱ,x, ¯hSσ,x and ¯yS,x. From (A1), therefore, EK(t)={UK(t),UKTK(x),x¯Qr} is relatively compact in X for all K(0,t). In addition, for every x¯Qr, by using H¨older inequality, we have

    EU(t)UK(t)28E(1α)V(α)Γ(α)ttKΦ1(ts)α1Bu(s)ds2+8E(1α)V(α)Γ(α)ttKΦ1(ts)α1f(s)ds2+8E(1α)V(α)Γ(α)ttKΦ1(ts)α1¯h(s)dBH(s)2+8E(1α)V(α)Γ(α)ttKΦ1(ts)α1Z¯y(s,ξ)˜N(ds,dξ)2+8Eα2V(α)ttKΦ1Qα(ts)Bu(s)ds2+8Eα2V(α)ttKΦ1Qα(ts)f(s)ds2+8Eα2V(α)ttKΦ1Qα(ts)¯h(s)dBH(s)2+8Eα2V(α)ttKΦ1Qα(ts)Z¯y(s,ξ)˜N(ds,dξ)2.

    Hence,

    EU(t)UK(t)28[{θψ(1α)Φ1ςBV(α)Γ(α)}2+{θ2αΦ1J1ςBV(α)}2]KααttK(ts)α1Eu(s)2ds+8[{θψ(1α)Φ1V(α)Γ(α)}2+{θ2αΦ1J1V(α)}2]KααttK(ts)α1Ef(s)2ds+8[{θψ(1α)Φ1V(α)Γ(α)}2+{θ2αΦ1J1V(α)}2]2HC2H1ttK(ts)2α2E¯h(s)2ds+8[{θψ(1α)Φ1V(α)Γ(α)}2+{θ2αΦ1J1V(α)}2]KααttK(ts)α1EZ¯y(s,ξ)˜N(ds,dξ)2.

    The above inequality gives us,

    EU(t)UK(t)20,whenK0+.

    Hence, there are relatively compact sets arbitrarily close to the set E(t)={U(t),UT(¯Qr)} which implies E(t) is also relatively compact in X.

    Step 5. T(x) has a closed graph.

    Let xmx(m), UmU(m). We will prove that UT(x). Since UmT(xm), there exist fmSϱ,xm, ¯hmSσ,xm and ¯ymS,xm, s.t. for each t(0,C),

    Um(t)=Φ1Sα(t)Φx0+(1α)V(α)Γ(α)tK0Φ1(ts)α1{Bu(s)+fm(s)}ds+(1α)V(α)Γ(α)tK0Φ1(ts)α1¯hm(s)dBH(s)+(1α)V(α)Γ(α)tK0Φ1(ts)α1Z¯ym(s,ξ)˜N(ds,dξ)+α2V(α)tK0Φ1Qα(ts){Bu(s)+fm(s)}ds+α2V(α)tK0Φ1Qα(ts)¯hm(s)dBH(s)+α2V(α)tK0Φ1Qα(ts)Z¯ym(s,ξ)˜N(ds,dξ).

    Finally, we will prove the existence of fSϱ,x, ¯hSσ,x and ¯yS,x s.t. for each t(0,C]

    U(t)=Φ1Sα(t)Φx0+(1α)V(α)Γ(α)tK0Φ1(ts)α1{Bu(s)+f(s)}ds+(1α)V(α)Γ(α)tK0Φ1(ts)α1¯h(s)dBH(s)+(1α)V(α)Γ(α)tK0Φ1(ts)α1Z¯y(s,ξ)˜N(ds,dξ)+α2V(α)tK0Φ1Qα(ts){Bu(s)+f(s)}ds+α2V(α)tK0Φ1Qα(ts)¯h(s)dBH(s)+α2V(α)tK0Φ1Qα(ts)Z¯y(s,ξ)˜N(ds,dξ).

    Now,

    E{Um(t)Φ1Sα(t)Φx0}{U(t)Φ1Sα(t)Φx0}20asm.

    Consider

    Σ:L2(J,X)C(J,X),

    where

    (f,¯h,¯y)Σ(f,¯h,¯y)(t)=(1α)V(α)Γ(α)t0Φ1(ts)α1f(s)ds+α2V(α)t0Φ1Qα(ts)f(s)ds+(1α)V(α)Γ(α)t0Φ1(ts)α1¯h(s)dBH(s)+α2V(α)t0Φ1Qα(ts)¯h(s)dBH(s)+(1α)V(α)Γ(α)t0Φ1(ts)α1Z¯y(s,ξ)˜N(ds,dξ)+α2V(α)t0Φ1Qα(ts)Z¯y(s,ξ)˜N(ds,dξ)(1α)V(α)Γ(α)t0Φ1(ts)α1BBQα(Cs)(κ,ΔC0)×[(1α)V(α)Γ(α)C0Φ1(Cs)α1f(s)ds+α2V(α)C0Φ1Qα(Cs)f(s)ds]dsα2V(α)t0Φ1Qα(ts)BBQα(Cs)(κ,ΔC0)×[(1α)V(α)Γ(α)C0Φ1(Cs)α1f(s)ds+α2V(α)C0Φ1Qα(Cs)f(s)ds]ds(1α)V(α)Γ(α)t0Φ1(ts)α1BBQα(Cs)(κ,ΔC0)×[(1α)V(α)Γ(α)C0Φ1(Cs)α1¯h(s)dBH(s)+α2V(α)C0Φ1Qα(Cs)¯h(s)dBH(s)]dsα2V(α)t0Φ1Qα(ts)BBQα(Cs)(κ,ΔC0)×[(1α)V(α)Γ(α)C0Φ1(Cs)α1¯h(s)dBH(s)+α2V(α)C0Φ1Qα(Cs)¯h(s)dBH(s)]ds(1α)V(α)Γ(α)t0Φ1(ts)α1BBQα(Cs)(κ,ΔC0)×[(1α)V(α)Γ(α)C0Φ1(Cs)α1Z¯y(s,ξ)˜N(ds,dξ)+α2V(α)C0Φ1Qα(Cs)Z¯y(s,ξ)˜N(ds,dξ)]dsα2V(α)t0Φ1Qα(ts)BBQα(Cs)(κ,ΔC0)×[(1α)V(α)Γ(α)C0Φ1(Cs)α1Z¯y(s,ξ)˜N(ds,dξ)+α2V(α)C0Φ1Qα(Cs)Z¯y(s,ξ)˜N(ds,dξ)]ds.

    It is evident from Lemma 2.2 that ΣSϱ,σ, is a closed graph operator, where Sϱ,σ,={fϱ(t,x(t))}×{¯hσ(t,x(t))}×{¯y(t,x(t))}. From the definition of Σ, we get

    {Um(t)Φ1Sα(t)Φx0}Σ(Sϱ,σ,,xm).

    Since, xm tends to x, as a result of Lemma 2.2,

    {U(t)Φ1Sα(t)Φx0}Σ(Sϱ,σ,,x).

    It is clear from this that UT(x). Hence, T has a closed graph.

    Since T is a completely continuous multi-valued map with a compact value, we can infer that T is u.s.c. from Proposition 2.1. According to Lemma 2.3, operator T has a fixed point on Qr, which is a mild solution of (1.1).

    Theorem 3.2. If (A0)(A7) are satisfied, then (1.1) is approximately controllable on J.

    Proof. We can quickly demonstrate that the operator T has a fixed point in Qr, where r=r(κ), for every 0<κ<1 by using the method described in Theorem 3.1. A fixed point of T in Qr is defined as xκ(). Any fixed point of the operator T is a mild solution of (1.1). This indicates that for each t(0,C], by stochastic Fubini theorem, there exists fκSϱ,xκ, ¯hκSσ,xκ and ¯yκS,xκ,

    xκ(C)=˜xCκ(κIΔC0)1{E˜xC+C0˜γ(s)dBH(s)Φ1Sα(C)Φx0}+(1α)V(α)Γ(α)C0Φ1κ(κIΔC0)1(Cs)α1fκ(s)ds+(1α)V(α)Γ(α)C0Φ1κ(κIΔC0)1(Cs)α1¯hκ(s)dBH(s)+(1α)V(α)Γ(α)C0Φ1κ(κIΔC0)1(Cs)α1Z¯yκ(s,ξ)˜N(ds,dξ)+α2V(α)C0Φ1κ(κIΔC0)1Qα(Cs)fκ(s)ds+α2V(α)C0Φ1κ(κIΔC0)1Qα(Cs)¯hκ(s)dBH(s)+α2V(α)C0Φ1κ(κIΔC0)1Qα(Cs)Z¯yκ(s,ξ)˜N(ds,dξ).

    In addition, the Dunford-Pettis theorem and conditions on f,¯h and ¯y, we have that fκ,¯hκ and ¯yκ are weakly compact in L2(J,X). Thus, there are subsequences determined by fκ,¯hκ and ¯yκ weakly converging to say f,¯h and ¯y. Now, we have

    Exκ(C)˜xC214Eκ(κIΔC0)1[E˜xCΦ1Sα(C)Φx0]2+28HC2H1C0E˜γ(s)2L2Θds+14[(1α)V(α)Γ(α)]2E{C0Φ1κ(κIΔC0)1(Cs)α1{fκ(s)f(s)}ds}2+14[(1α)V(α)Γ(α)]2E{C0Φ1κ(κIΔC0)1(Cs)α1f(s)ds}2+28HC2H1[(1α)V(α)Γ(α)]E{C0Φ1κ(κIΔC0)1(Cs)α1{¯hκ(s)¯h(s)}ds}2+28HC2H1[(1α)V(α)Γ(α)]E{C0Φ1κ(κIΔC0)1(Cs)α1¯h(s)ds}2+14[(1α)V(α)Γ(α)]E{C0Φ1κ(κIΔC0)1(Cs)α1Z¯y(s,ξ)˜N(ds,dξ)}2+14[(1α)V(α)Γ(α)]E{C0Φ1κ(κIΔC0)1(Cs)α1Z{¯yκ(s,ξ)¯y(s,ξ)}˜N(ds,dξ)}2+14[α2V(α)]2E{C0Φ1κ(κIΔC0)1Qα(Cs){fκ(s)f(s)}ds}2+14[α2V(α)]2E{C0Φ1κ(κIΔC0)1Qα(Cs)f(s)ds}2+28HC2H1[α2V(α)]E{C0Φ1κ(κIΔC0)1Qα(Cs){¯hκ(s)¯h(s)}2ds}2+28HC2H1[α2V(α)]E{C0Φ1κ(κIΔC0)1Qα(Cs)¯h(s)ds}2+14[α2V(α)]E{C0Φ1κ(κIΔC0)1Qα(Cs)Z{¯yκ(s,ξ)¯y(s,ξ)}˜N(ds,dξ)}2+14[α2V(α)]E{C0Φ1κ(κIΔC0)1Qα(Cs)Z¯y(s,ξ)˜N(ds,dξ)}2.

    According to the assumption (A0), the operator κ(κIΔC0)10 strongly as κ0+ and also κ(κIΔC0)11. Thus, by the Lebesgue dominated convergence theorem and the compactness of Qα(t), it is implied that

    Exκ(C)˜xC20asκ0+.

    Hence, we deduce the approximate controllability of the system (1.1).

    We consider the stochastic partial differential inclusion with the AB fractional derivative:

    ABCD3/40+[{12ζ2}x(t,ζ)]2ζ2x(t,ζ)+˜φ(t,ζ)+et1+etsin(x(t,ζ))+σ(t,x(t,ζ))dBH(t)dt+Z(t,x(t,ζ),ξ)˜N(dt,dξ),tJ:=(0,1],ζ[0,π],x(t,0)=x(t,π)=0,t(0,1]. (4.1)

    To write the above system (4.1) into the abstract system (1.1), we choose the space X=Y=U=L2([0,π],R) and define the operators A:D(A)XX and Φ:D(A)XX, t0 by A=2ζ2 and Φ=1A with D(A)=D(Φ)={xX;x,xζbeabsolutelycontinuous,2xζ2X,x(0)=x(π)=0}. Then, A and Φ can be written as

    Ax=k=1k2x,xkxk,xD(A),Φx=k=1(1+k2)x,xkxk,xD(Φ).

    Furthermore, for xX we get

    AΦ1x=k=1k21+k2x,xkxk,Φ1x=k=111+k2x,xkxk.

    AΦ1 is self-adjoint and xk=2πsin(kx),k=1,2, be the orthonormal basis of X. However, AΦ1 forms a uniformly strongly continuous semigroup of bounded linear operators S(t),t0, on a separable Hilbert space X which is in the form

    S(t)x=k=1ek2tx,xkxk,xD(A).

    Assume that ϖ(t)(ζ)=x(t,ζ),tJ,ζ[0,π]. Now, construct the bounded linear operator B:UX and the function ϱ:J×XX, respectively, for any ϖ(t)X.

    ϱ(t,ϖ(t))(ζ)=et1+etsin(x(t,ζ)),Bu(t)(ζ)=˜φ(t,ζ),0<ζ<π,

    where ˜φ:J×[0,π][0,π] is continuous in t and B=B=I. Therefore, (4.1) can be reformulated as the abstract system (1.1). Clearly, all the assumptions of Theorem 3.1 are satisfied, and

    [Λ+C2α12α1nL1/qΠι+2HC2H1Λ]{9[θψ(1α)Φ1V(α)Γ(α)]2+9[θ2αΦ1J1V(α)]2}˜K<1,

    where

    ˜K={1+8[θψ(1α)Φ1J1ςBV(α)Γ(α)κ]2C4α2(2α1)2+8[θ2αΦ1J1ςBV(α)κ]2C4α2(2α1)2}.

    As a result, the system (4.1) has a mild solution on J, in addition, it is approximately controllable on J, according to Theorem 3.2.

    In this work, a new control model was presented with the Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions including the fractional Brownian motion and Poisson jumps. We investigated the approximate controllability for the proposed problem (1.1). Our results were obtained with the aid of nonsmooth analysis, fractional calculus, stochastic analysis, and fixed-point theorems. Finally, we provided an example to illustrate the applicability of the results.

    For future work, we can present neutral Atangana-Baleanu fractional stochastic differential inclusions with Clarke subdifferential.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through the Re-search Group Project under Grant Number (RGP2/441/44).

    The authors declare no conflict of interest.



    [1] K. Li, R. Li, L. Cao, Y. Feng, B. Onasanya, Periodically intermittent control of Memristor-based hyper-chaotic bao-like system, Mathematics, 11 (2023), 1264. http://dx.doi.org/10.3390/math11051264 doi: 10.3390/math11051264
    [2] Y. Xue, J. Han, Z. Tu, X. Chen, Stability analysis and design of cooperative control for linear delta operator system, AIMS Mathematics, 8 (2023), 12671–12693. http://dx.doi.org/10.3934/math.2023637 doi: 10.3934/math.2023637
    [3] A. Sayed Ahmed, Existence and uniqueness of mild solutions to neutral impulsive fractional stochastic delay differential equations driven by both Brownian motion and fractional Brownian motion, Differ. Equat. Appl., 14 (2022), 433–446. http://dx.doi.org/10.7153/dea-2022-14-30 doi: 10.7153/dea-2022-14-30
    [4] H. Ahmed, Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions, J. Theor. Probab., 28 (2015), 667–680. http://dx.doi.org/10.1007/s10959-013-0520-1 doi: 10.1007/s10959-013-0520-1
    [5] A. Sayed Ahmed, Stochastic delayed fractional-order differential equations driven by fractional Brownian motion, Malaya Journal of Matematik, 10 (2022), 187–197. http://dx.doi.org/10.26637/mjm1003/001 doi: 10.26637/mjm1003/001
    [6] A. Sayed Ahmed, H. Ahmed, Hilfer-Katugampola fractional stochastic differential equations with nonlocal conditions, Int. J. Nonlinear Anal. Appl., 3 (2022), 1–11. http://dx.doi.org/10.22075/ijnaa.2022.27337.3562 doi: 10.22075/ijnaa.2022.27337.3562
    [7] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, London: Cambridge University Press, 2014. http://dx.doi.org/10.1017/CBO9780511666223
    [8] X. Mao, Stochastic differential equations and applications, Chichester: Elsevier, 1997.
    [9] N. Durga, P. Muthukumar, Optimal control of Sobolev-type stochastic Hilfer fractional non-instantaneous impulsive differential inclusion involving Poisson jumps and Clarke subdifferential, IET Control Theory Appl., 14 (2020), 887–899. http://dx.doi.org/10.1049/iet-cta.2019.0167 doi: 10.1049/iet-cta.2019.0167
    [10] Y. Zhao, Q. Zhu, Stabilization of stochastic highly nonlinear delay systems with neutral term, IEEE T. Automat. Contr., 68 (2023), 2544–2551. http://dx.doi.org/10.1109/TAC.2022.3186827 doi: 10.1109/TAC.2022.3186827
    [11] Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE T. Automat. Contr., 64 (2019), 3764–3771. http://dx.doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067
    [12] G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. http://dx.doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303
    [13] A. Sayed Ahmed, Implicit Hilfer-Katugampula-type fractional pantograph differential equations with nonlocal Katugampola fractional integral condition, Palestine Journal of Mathematics, 11 (2022), 74–85.
    [14] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999.
    [15] A. Kilbas, H. Srivastava, J. Trujillo, Theory and application of fractional differential equations, Amsterdam: Elsevier, 2006.
    [16] H. Ahmed, M. El-Borai, H. El-Owaidy, A. Ghanem, Impulsive Hilfer fractional differential equations, Adv. Differ. Equ., 2018 (2018), 226. http://dx.doi.org/10.1186/s13662-018-1679-7 doi: 10.1186/s13662-018-1679-7
    [17] H. Ahmed, M. El-Borai, Hilfer fractional stochastic integro-differential equations, Appl. Math. Comput., 331 (2018), 182–189. http://dx.doi.org/10.1016/j.amc.2018.03.009 doi: 10.1016/j.amc.2018.03.009
    [18] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model, arXiv: 1602.03408.
    [19] H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. http://dx.doi.org/10.1016/j.chaos.2019.109477 doi: 10.1016/j.chaos.2019.109477
    [20] M. Mallika Arjunan, T. Abdeljawad, V. Kavitha, A. Yousef, On a new class of Atangana-Baleanu fractional Volterra-Fredholm integrodifferential inclusions with non-instantaneous impulses, Chaos Soliton. Fract., 148 (2021), 111075. http://dx.doi.org/10.1016/j.chaos.2021.111075 doi: 10.1016/j.chaos.2021.111075
    [21] M. Omaba, C. Enyi, Atangana-Baleanu time-fractional stochastic integrodifferential equation, Partial Differential Equations in Applied Mathematics, 4 (2021), 100100. http://dx.doi.org/10.1016/j.padiff.2021.100100 doi: 10.1016/j.padiff.2021.100100
    [22] S. Panda, C. Ravichandran, B. Hazarika, Results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems, Chaos Soliton. Fract., 142 (2021), 110390. http://dx.doi.org/10.1016/j.chaos.2020.110390 doi: 10.1016/j.chaos.2020.110390
    [23] J. Huang, D. Luo, Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness, Chaos, 33 (2023), 013120. http://dx.doi.org/10.1063/5.0125651 doi: 10.1063/5.0125651
    [24] K. Balachandran, J. Kim, Sample controllability of nonlinear stochastic integrodifferential systems, Nonlinear Anal.-Hybri., 4 (2010), 543–549. http://dx.doi.org/10.1016/j.nahs.2010.02.001 doi: 10.1016/j.nahs.2010.02.001
    [25] H. Ahmed, Controllability of fractional stochastic delay equations, Lobachevskii J. Math., 30 (2009), 195–202. http://dx.doi.org/10.1134/S1995080209030019 doi: 10.1134/S1995080209030019
    [26] J. Wang, M. Fˇeckan, Y. Zhou, Controllability of Sobolev type fractional evolution systems, Dynam. Part. Differ. Eq., 11 (2014), 71–87. http://dx.doi.org/10.4310/DPDE.2014.v11.n1.a4 doi: 10.4310/DPDE.2014.v11.n1.a4
    [27] J. Wang, H. Ahmed, Null controllability of nonlocal Hilfer fractional stochastic differential equations, Miskolc Math. Notes, 18 (2017), 1073–1083. http://dx.doi.org/10.18514/MMN.2017.2396 doi: 10.18514/MMN.2017.2396
    [28] H. Ahmed, J. Wang, Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, Bull. Iran. Math. Soc., 44 (2018), 673–690. http://dx.doi.org/10.1007/s41980-018-0043-8 doi: 10.1007/s41980-018-0043-8
    [29] Z. Liu, X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 53 (2015), 1920–1933. http://dx.doi.org/10.1137/120903853 doi: 10.1137/120903853
    [30] N. Mahmudov, M. Mckibben, On the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative, J. Funct. Space., 2015 (2015), 263823. http://dx.doi.org/10.1155/2015/263823 doi: 10.1155/2015/263823
    [31] H. Ahmed, Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space, Adv. Differ. Equ., 2014 (2014), 113. http://dx.doi.org/10.1186/1687-1847-2014-113 doi: 10.1186/1687-1847-2014-113
    [32] S. Subramaniam, Approximate controllability of Sobolev-type nonlocal Hilfer fractional stochastic differential system, Int. J. Dyn. Syst. Diffe., 12 (2022), 412–430. http://dx.doi.org/10.1504/IJDSDE.2022.127811 doi: 10.1504/IJDSDE.2022.127811
    [33] Y. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, K. Nisar, Approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions, Ain Shams Eng. J., 14 (2023), 101882. http://dx.doi.org/10.1016/j.asej.2022.101882 doi: 10.1016/j.asej.2022.101882
    [34] T. Caraballo, M. Garrido-Atienza, T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal.-Theor., 74 (2011), 3671–3684. http://dx.doi.org/10.1016/j.na.2011.02.047 doi: 10.1016/j.na.2011.02.047
    [35] K. Deimling, Multivalued differential equations, Berlin: De Gruyter, 1992. http://dx.doi.org/10.1515/9783110874228
    [36] R. Sakthivel, R. Ganesh, S. Anthoni, Approximate controllability of fractional nonlinear differential inclusions, Appl. Math. Comput., 225 (2013), 708–717. http://dx.doi.org/10.1016/j.amc.2013.09.068 doi: 10.1016/j.amc.2013.09.068
    [37] Y. Maa, V. Vijayakumar, A. Shukla, K. Nisar, K. Thilagavathi, H. Nashine, et al., Discussion on the existence of mild solution for fractional derivative by Mittag-Leffler kernel to fractional stochastic neutral differential inclusions, Alex. Eng. J., 63 (2023), 271–282. http://dx.doi.org/10.1016/j.aej.2022.08.006 doi: 10.1016/j.aej.2022.08.006
  • This article has been cited by:

    1. Rajesh Dhayal, Quanxin Zhu, The averaging principle of Atangana–Baleanu fractional stochastic integro-differential systems with delay, 2024, 32, 0971-3611, 3565, 10.1007/s41478-024-00823-3
    2. Noorah Mshary, Hamdy M. Ahmed, Discussion on exact null boundary controllability of nonlinear fractional stochastic evolution equations in Hilbert spaces, 2025, 10, 2473-6988, 5552, 10.3934/math.2025256
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1193) PDF downloads(49) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog