In this paper, we explore the approximative controllability of fractional stochastic differential inclusions (SDIs) of Sobolev-type with fractional derivatives in Atangana-Baleanu (AB) sense and Poisson jumps. Our findings are supported by the fixed point theorem, multi-valued map theory, compact semigroup theory and stochastic analysis principles. In the later part, an illustration is provided to clarify the established outcomes.
Citation: A. M. Sayed Ahmed, Hamdy M. Ahmed, Nesreen Sirelkhtam Elmki Abdalla, Assmaa Abd-Elmonem, E. M. Mohamed. Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps[J]. AIMS Mathematics, 2023, 8(10): 25288-25310. doi: 10.3934/math.20231290
[1] | Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477 |
[2] | Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536 |
[3] | Jiali Wu, Maoning Tang, Qingxin Meng . A stochastic linear-quadratic optimal control problem with jumps in an infinite horizon. AIMS Mathematics, 2023, 8(2): 4042-4078. doi: 10.3934/math.2023202 |
[4] | Xiuxian Chen, Zhongyang Sun, Dan Zhu . Mean-variance investment and risk control strategies for a dynamic contagion process with diffusion. AIMS Mathematics, 2024, 9(11): 33062-33086. doi: 10.3934/math.20241580 |
[5] | Noorah Mshary, Hamdy M. Ahmed . Discussion on exact null boundary controllability of nonlinear fractional stochastic evolution equations in Hilbert spaces. AIMS Mathematics, 2025, 10(3): 5552-5567. doi: 10.3934/math.2025256 |
[6] | Abdelkader Moumen, Ammar Alsinai, Ramsha Shafqat, Nafisa A. Albasheir, Mohammed Alhagyan, Ameni Gargouri, Mohammed M. A. Almazah . Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory. AIMS Mathematics, 2023, 8(9): 19892-19912. doi: 10.3934/math.20231014 |
[7] | Antonio Di Crescenzo, Alessandra Meoli . On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212 |
[8] | Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad . Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators. AIMS Mathematics, 2023, 8(12): 30374-30404. doi: 10.3934/math.20231551 |
[9] | Yongqiang Fu, Lixu Yan . Fully nonlocal stochastic control problems with fractional Brownian motions and Poisson jumps. AIMS Mathematics, 2021, 6(5): 5176-5192. doi: 10.3934/math.2021307 |
[10] | Muneerah AL Nuwairan, Ahmed Gamal Ibrahim . The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722 |
In this paper, we explore the approximative controllability of fractional stochastic differential inclusions (SDIs) of Sobolev-type with fractional derivatives in Atangana-Baleanu (AB) sense and Poisson jumps. Our findings are supported by the fixed point theorem, multi-valued map theory, compact semigroup theory and stochastic analysis principles. In the later part, an illustration is provided to clarify the established outcomes.
In recent years, numerous fields have recognised the effect of including random effects in modelling and analysing physical processes. The optimum control systems modelled by stochastic and partial differential equations have attracted a lot of attention (see [1,2,3,4,5,6,7,8,9,10,11]). Consequently, stochastic and partial differential inclusion result from these optimal control problems. Fractional-order differential equations can be used to solve some physical problems instead of integer-order differential equations. As a result, a large number of researchers have recently made significant progress in a variety of fields, including physics, fluid mechanics, control theory, image analysis, biology, engineering, porous media and others. Many authors have investigated the theoretical results based on existence and uniqueness of solutions to fractional differential equations in various forms (see [12,13,14,15,16,17]). Recently, a novel fractional derivative known as the AB fractional derivative was introduced by Atangana and Baleanu [18]). Many studies and discussion related to AB fractional derivative have appeared in several areas of applications, for example, Khan et al.[19] discussed the existence and data dependence theorems for solutions of an ABC-fractional order impulsive system. Mallika et al.[20] studied a new class of Atangana-Baleanu fractional Volterra-Fredholm integrodifferential inclusions with non-instantaneous impulses. Omaba and Enyi[21] studied the Atangana–Baleanu time-fractional stochastic integro-differential equation by using Banach fixed point theory. Panda et al.[22] discussed the results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems.
The notion of controllability of dynamical systems is one of the fundamental concepts in mathematical control theory which plays pivotal role in many areas of science and engineering (see [23,24,25,26,27,28]). The dynamical systems must be treated by the weaker concept of controllability, namely approximate controllability. There are many studies on the approximate controllability of stochastic and deterministic systems, for example, Liu and Li [29] studied the approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives. Mahmudov and Mckibben [30] investigated the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative. Ahmed[31] discussed the approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space. Subramaniam [32] studied the approximate controllability of Sobolev-type nonlocal Hilfer fractional stochastic differential system. Ma et al.[33] investigated the approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions.
To the best of our knowledge, no work has been reported in the literature regarding the approximate controllability of Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions with fractional Brownian motion and Poisson jumps. Motivated by this, the aim of this paper is to study the approximate controllability of Sobolev-type stochastic differential inclusions with fractional Brownian motion and Poisson jumps, where the time fractional derivative is the Atangana-Baleanu fractional derivative in the Caputo sense, of the form:
ABCDα0+Φx(t)∈Ax(t)+Bu(t)+ϱ(t,x(t))+σ(t,x(t))dBH(t)dt+∫Zℏ(t,x(t),ξ)˜N(dt,dξ),t∈J:=(0,C],x(0)=x0, | (1.1) |
where ABCDα0+ is AB-Caputo fractional derivative of order 12<α<1. x(⋅) is the state variable in separable Hilbert space X with ‖⋅‖ and ⟨⋅,⋅⟩. Let BH be a fBm on separable Hilbert space Y with H∈(1/2,1). Φ and A are linear operators in X. ϱ and σ are multi-valued functions satisfying some assumptions. ℏ:J×X×Z→X is a nonlinear function. The control function u(⋅) is given in L2(J,U), the Hilbert space of admissible control functions with U as a separable Hilbert space. The symbol B stands for a bounded linear operator from U into X.
The contributions of the present work:
∙ Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions with Poisson jumps are presented.
∙ Approximate controllability for (1.1) is investigated for the first time.
∙ An example is offered to define the primary results.
The following lemmas and definitions are used in the paper.
Let (Ω,ℑ,P) be a complete probability space containing the entire family of right continuous increasing sub-σ-algebras {ℑt}t∈J satisfying ℑt⊂ℑ and C>0 be arbitrary fixed horizons. Let (Z,V,λ(dξ)) be a σ-finite measurable space. We are given a stationary Poisson point process (qt)t≥0, which is defined on (Ω,ℑ,P) with values in Z and with characteristic measure λ. Let ˜M(dt,dξ) be the counting measure of qt such that (s.t.) ˜N(t,ℓ)=E(˜M(t,ℓ))=tλ(ℓ) for ℓ∈V. Define ˜N(t,dξ):=˜M(t,dξ)−tλ(dξ), the Poisson martingale measure generated by qt. An one-dimensional fBm with the Hurst index H∈(1/2,1) is a centred Gaussian process βH={βH(t),0≤t≤C} with covariance function
CH(t,s)=E(βH(t)βH(s))=12(t2H+s2H−∣t−s∣2H). |
Suppose L(Y,X) be the space of bounded linear operators from Y to X. Then, define the infinite dimensional fBm on Y with covariance Θ as
BH(t)=∞∑n=1βHn(t)en√Zn, |
where βHn are real, independent fBm's. This process is a Y-valued Gaussian, which starts from zero, has zero mean and covariance
E[⟨BH(t),d⟩⟨BH(s),g⟩]=CH(t,s)⟨Θ(d),g⟩,d,g∈Y,t,s∈[0,C]. |
We propose the separable Hilbert space L2Θ(Y,X) of all Θ-Hilbert-Schmidt operators ˆΨ:Y→X [34].
Lemma 2.1. If ˆΨ:[0,C]→L2Θ(Y,X) satisfies ∫C0∥ˆΨ(s)∥2L2Θds<∞, then
E‖∫t0ˆΨ(s)dBH(s)‖2≤2HC2H−1∫t0‖ˆΨ(s)‖2L2Θds. |
Here, C(J,L2(Ω,X)) is the Banach space of all continuous maps from J into L2(Ω,X) equipped with the supremum norm ‖x‖C=supt∈J(E‖x(t)‖2)1/2.
Assume, A:D(A)⊂X→X and Φ:D(Φ)⊂X→X satisfy the following hypotheses:
(1) A and Φ are closed linear operators.
(2) D(Φ)⊂D(A) and Φ is bijective.
(3) Φ−1:X→D(Φ) is continuous. Here, (1) and (2) together with the closed graph theorem imply the boundedness of AΦ−1:X→X, in addition, AΦ−1 is the infinitesimal generator of an α-resolvent family (Sα(τ))τ≥0, (Qα(τ))τ≥0 stands for the solution operator defined on a separable Hilbert space X.
Let P(X)={A⊆X:A≠ϕ} be the family of all nonempty subsets of X,
Pcp(X)={A∈P(X):Aiscompact},Pb(X)={A∈P(X):Aisbounded},Pcl(X)={A∈P(X):Aisclosed},Pcv(X)={A∈P(X):Aisconvex}, |
Pcp,cv(X)=Pcp(X)∩Pcv(X) denotes the collection of all non-empty compact and convex subsets of X.
Proposition 2.1. ([35])
(i) A multivalued map W:X→2X∖∅ is convex (closed) valued if W(g) is convex (closed) ∀g∈X. W is bounded on bounded sets, if W(B)=⋃g∈BW(g) is bounded in X, for any bounded set B on X.
(ii) A map W is said to be upper semi-continuous (u.s.c.) on X, if for each g0∈X, the set W(g0) is a nonempty closed subset of X and if for each open subset Ω of X containing W(g0), there exists an open neighborhood ˆΘ of g0 such that W(ˆΘ)⊆Ω.
(iii) A map W is said to be completely continuous, if W(B) is relatively compact for every B∈Pb(X). If the multi-valued map W is completely continuous with nonempty compact values, then W is u.s.c. if and only if W has a closed graph, i.e., gn→g,un→u,un∈W(g0) imply u∈W(g). We say that W has a fixed point if there is g∈X such that g∈W(g).
Lemma 2.2. ([36]) W:I×X→Pb,cl,cv(X) is measurable to t ∀ fixed x∈X, u.s.c. to x for each t∈J and for each x∈C(J,X), the set SW,x:={f∈L1(J,X):f(N)∈W(t,x(t))}, for a.e. t∈J is nonempty. Let N be a linear continuous mapping from L1(J,X) into C(J,X). Then, the operator
N∘SW:C(J,X)→Pb,cl,cv(C(J,X)),x↦N∘SW(x)=N(SW), |
is a closed graph operator in C(J,X)×C(J,X).
Lemma 2.3. ([35]) Let D be a nonempty subset of X which is bounded, closed and convex. Suppose Q:D→2X is u.s.c. with closed, convex values s.t. Q(D)⊂D and Q(D) is compact. Then, Q has a fixed point.
Definition 2.1. ([18]) The AB fractional derivative is defied by the following in the Caputo sense: for f∈H1(a,b);a<b and at t∈(a,b) of order α∈(0,1), we have
ABCDαa+f(t)=V(α)1−α∫taf′(s)Eα(−ν(t−s)α)ds, | (2.1) |
where the function ν=α1−α, Eα(⋅) is the one parameter Mittag-Leffler function defined by
Eα(z)=∞∑n=0znΓ(nα+1), |
and the normalization function V(α)=(1−α)+αΓ(α) is any function with V(0)=V(1)=1.
The fractional integral of AB is provided by
ABIαa+f(t)=1−αV(α)f(t)+αV(α)Γ(α)∫ta(t−s)α−1f(s)ds. | (2.2) |
Definition 2.2. ([37]) x∈C(J,L2(Ω,X)) is a mild solution of (1.1), if it satisfies the following conditions:
(1) x(0)=x0∈L2(Ω,X)) and u(⋅)∈L2(J,U),
(2) ∃ f∈Sϱ,x s.t. f(t)∈ϱ(t,x(t)), ¯h∈Sσ,x s.t. ¯h(t)∈σ(t,x(t)), ¯y∈Sℏ,x s.t. ¯y(t,ξ)∈ℏ(t,x(t),ξ) and x(t) verifies the following equation:
x(t)=Φ−1ℜSα(t)Φx0+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1{Bu(s)+f(s)}ds+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1¯h(s)dBH(s)+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫t0Φ−1Qα(t−s){Bu(s)+f(s)}ds+αℜ2V(α)∫t0Φ−1Qα(t−s)¯h(s)dBH(s)+αℜ2V(α)∫t0Φ−1Qα(t−s)∫Z¯y(s,ξ)˜N(ds,dξ), |
where ℜ=ϑ∗(ϑ∗I−A)−1 and ℘=−δ∗A(ϑ∗I−A)−1, with ϑ∗=V(α)1−α, δ∗=α1−α,
Sα(t)=Eα(−℘tα)=12πi∫Υestsα−1(sαI−℘)−1ds,Qα(t)=tα−1Eα,α(−℘tα)=12πi∫Υest(sαI−℘)−1ds, |
and the path Υ is lying on Ξ(χ,M).
We need the following assumption:
(A0) A∈ℵα(α0,l0) then ‖Sα(t)‖≤Jelt and ‖Qα(t)‖≤ℜelt(1+tα−1), for every t>0,l>l0. Thus, J∗=supt≥0‖Sα(t)‖, J∗1=supt≥0ℜelt(1+tα−1). So, we get ‖Sα(t)‖≤J∗ and ‖Qα(t)‖≤J∗1tα−1.
To study the approximate controllability for (1.1), we first consider the fractional stochastic linear system:
ABCDα0+Φx(t)∈Ax(t)+Bu(t),t∈J:=(0,C]x(0)=x0. | (2.3) |
Let x(C;γ,u) be the state value of (1.1) at the terminal state b, corresponding to the control u and the initial value γ. Denote by R(C,γ)={x(C;γ,u):u∈L2(J,U)} the reachable set of (1.1) at terminal time C, its closure in X is denoted by ¯R(C,γ).
Definition 2.3. ([37]) (1.1) be approximately controllable on the interval [0,C] if ¯R(C,γ)=L2(Ω,X).
Remark 2.1. (2.3) is approximately controllable on J, if and only if κℵ(κ,ΔC0)→0 strongly as κ→0+.
It is appropriate to introduce two pertinent operators now,
ΔC0=∫C0Φ−1Qα(C−s)BB∗Φ−1Q∗α(C−s)ds, |
where B∗ and Q∗α are the adjoint of B and Qα, respectively.
ℵ(κ,ΔC0)=(κI+ΔC0)−1,κ>0. |
Lemma 2.4. ([37]) For any ˜xC∈L2(Ω,X), ∃ ˜γ(s)∈L2(Ω;L2(J,L2Θ)), s.t.
˜xC=E˜xC+∫C0˜γ(s)dBH(s). |
Let us begin with some notations.
‖B‖2=ςB,C∗=(1−qα−q)2(1−q),ι=C∗C2(α−q). |
To illustrate the main result, we introduce the following assumptions:
(A1) (Qα(t))t≥0 be compact and ‖κℵ(κ,ΔC0)‖≤1,∀κ>0.
(A2) ϱ:J×X→Pb,cl,cv(X) satisfies:
(1) ϱ(t,⋅):X→X is u.s.c. ∀ t∈J and for each x∈X, the function ϱ(⋅,x):J→X is strongly measurable to t, and for each x∈X, the set Sϱ,x:={f∈L1(J,X):f(t)∈ϱ(t,x(t))}, for a.e. t∈J is nonempty.
(2) ∃ a function n(t)∈L1/q,q∈(0,α) and a continuous nondecreasing function Ψ:[0,∞)→(0,∞), s.t. for any (t,x)∈J×X, we have
E‖ϱ(t,x)‖2=sup{‖f(t)‖2:f(t)∈ϱ(t,x)}≤n(t)Ψ(‖x‖2),lim infr→∞Ψ(r)r=Π<∞. |
(A3) σ:J×X→L2Θ(Y,X) satisfies:
(1) σ(⋅,x) is measurable ∀ x∈X, and σ(t,⋅):X→L2Θ(Y,X) is u.s.c. ∀ t∈J and ∀ x∈X, the set Sσ,x:={¯h∈L2Θ(Y,X):¯h(t)∈σ(t,x)}, for a.e. t∈J is nonempty.
(2) gr(t):J→R+, r∈N,r>0 s.t.
sup{E‖¯h‖2:¯h∈σ(t,x)}≤gr(t), |
∀ t∈J and s↦(t−s)2(α−1)gr(t)∈L1([0,t],R+) and ∃ Λ>0 s.t.
lim infr→0∫t0(t−s)2(α−1)gr(s)dsr=Λ<∞. |
(A4) ℏ:J×X×Z→X satisfies:
(1) ℏ(⋅,x,ξ) is measurable ∀ (x,ξ)∈X×Z, and ℏ(t,⋅,⋅):X×Z→X is u.s.c. ∀ t∈J.
For each (x,ξ)∈X×Z, the set Sℏ,x:={¯y∈L2(Y,X):¯y(t,ξ)∈ℏ(t,x,ξ)}, for a.e. t∈J is nonempty.
(2) Cr(t):J→R+, r∈N,r>0 s.t.
sup{∫ZE‖¯y‖2λdξ:¯y(t,ξ)∈ℏ(t,x,ξ)}≤Cr(t), |
for a.e. t∈J and s↦(t−s)2(α−1)Cr(t)∈L1([0,t],R+) and ∃ Λ>0 s.t.
lim infr→0∫t0(t−s)2(α−1)Cr(s)dsr=Λ<∞. |
(A5) ℘ and ℜ are bounded linear operators, ∃ θ and ψ s.t. ‖ℜ‖≤θ and ‖℘‖≤ψ.
(A6)
[Λ+C2α−12α−1‖n‖L1/qΠι+2HC2H−1Λ]{9[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2+9[θ2α‖Φ−1‖J∗1V(α)]2}˜K<1, |
where
˜K={1+8[θψ(1−α)‖Φ−1‖J∗1ςBV(α)Γ(α)κ]2C4α−2(2α−1)2+8[θ2α‖Φ−1‖J∗1ςBV(α)κ]2C4α−2(2α−1)2}. |
(A7) ϱ,σ and ℏ are uniformly bounded ∀ t∈J and x∈C.
Theorem 3.1. Assume that (A0) through (A6) are satisfied. Then, (1.1) has a mild solution on C(J,L2(Ω,X)).
Proof. Let Qr:={x∈C(J,L2(Ω,X)):‖x‖C≤r,r≥0,0≤t≤C}. Obviously, Qr is a bounded, closed, convex set in C(J,L2(Ω,X)).
For κ>0, for all x(⋅)∈C(J,L2(Ω,X)), we take,
u(t)=B∗Q∗α(C−t)ℵ(κ,ΔC0)P(x(⋅)), |
where
P(x(⋅))=E˜xC+∫C0˜γ(s)dBH(s)−Φ−1ℜSα(C)Φx0−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1f(s)ds−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1¯h(s)dBH(s)−αℜ2V(α)∫C0Φ−1Qα(C−s)f(s)ds−αℜ2V(α)∫C0Φ−1Qα(C−s)¯h(s)dBH(s)−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)−αℜ2V(α)∫C0Φ−1Qα(C−s)∫Z¯y(s,ξ)˜N(ds,dξ). |
The operator T:C→P(C) is defined in terms of this control as follows:
T(x)={U∈C:U(t)=Φ−1ℜSα(t)Φx0+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1{Bu(s)+f(s)}ds+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1¯h(s)dBH(s)+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1×∫Z¯y(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫t0Φ−1Qα(t−s){Bu(s)+f(s)}ds+αℜ2V(α)∫t0Φ−1Qα(t−s)¯h(s)dBH(s)+αℜ2V(α)∫t0Φ−1Qα(t−s)∫Z¯y(s,ξ)˜N(ds,dξ)}. |
We shall prove, T:C→P(C) has a fixed point for κ>0.
The proof is now divided into five steps.
Step 1. ∀ x∈Qr the operator T is convex.
Assume that U1,U2∈T(x), then ∃ f1,f2∈Sϱ,x, ¯h1,¯h2∈Sσ,x, and ¯y1,¯y2∈Sℏ,x s.t.
Ui(t)=Φ−1ℜSα(t)Φx0+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1fi(s)ds+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1BB∗Q∗α(C−s)ℵ(κ,ΔC0)×{E˜xC+∫C0˜γ(s)dBH(s)−Φ−1ℜSα(C)Φx0−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1fi(s)ds−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1¯hi(s)dBH(s)−αℜ2V(α)∫C0Φ−1Qα(C−s)fi(s)ds−αℜ2V(α)∫C0Φ−1Qα(C−s)¯hi(s)dBH(s)−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1×∫Z¯yi(s,ξ)˜N(ds,dξ)−αℜ2V(α)∫C0Φ−1Qα(C−s)∫Z¯yi(s,ξ)˜N(ds,dξ)}ds+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1¯hi(s)dBH(s)+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1∫Z¯yi(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫t0Φ−1Qα(t−s)fi(s)ds+αℜ2V(α)∫t0Φ−1Qα(t−s)¯hi(s)dBH(s)+αℜ2V(α)∫t0Φ−1Qα(t−s)∫Z¯yi(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫t0Φ−1Qα(t−s)BB∗Q∗α(C−s)ℵ(κ,ΔC0)×{E˜xC+∫C0˜γ(s)dBH(s)−Φ−1ℜSα(C)Φx0−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1fi(s)ds−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1¯hi(s)dBH(s)−αℜ2V(α)∫C0Φ−1Qα(C−s)fi(s)ds−αℜ2V(α)∫C0Φ−1Qα(C−s)¯hi(s)dBH(s)−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1∫Z¯yi(s,ξ)˜N(ds,dξ)−αℜ2V(α)∫C0Φ−1Qα(C−s)∫Z¯yi(s,ξ)˜N(ds,dξ)}ds,i=1,2. |
Let K∈[0,1], then we get
KU1+(1−K)U2=Φ−1ℜSα(t)Φx0+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1[Kf1(s)+(1−K)f2(s)]ds+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1BB∗Q∗α(C−s)ℵ(κ,ΔC0)×{E˜xC+∫C0˜γ(s)dBH(s)−Φ−1ℜSα(C)Φx0−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1[Kf1(s)+(1−K)f2(s)]ds−αℜ2V(α)∫C0Φ−1Qα(C−s)[Kf1(s)+(1−K)f2(s)]ds−αℜ2V(α)∫C0Φ−1Qα(C−s)[K¯h1(s)+(1−K)¯h2(s)]dBH(s)−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1[K¯h1(s)+(1−K)¯h2(s)]dBH(s)−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1∫Z[K¯y1(s,ξ)+(1−K)¯y2(s,ξ)]˜N(ds,dξ)−αℜ2V(α)∫C0Φ−1Qα(C−s)∫Z[K¯y1(s,ξ)+(1−K)¯y2(s,ξ)]˜N(ds,dξ)}ds+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1[K¯h1(s)+(1−K)¯h2(s)]dBH(s)+αℜ2V(α)∫t0Φ−1Qα(t−s)[Kf1(s)+(1−K)f2(s)]ds+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1∫Z[K¯y1(s,ξ)+(1−K)¯y2(s,ξ)]˜N(ds,dξ)+αℜ2V(α)∫t0Φ−1Qα(t−s)[K¯h1(s)+(1−K)¯h2(s)]dBH(s)+αℜ2V(α)∫t0Φ−1Qα(t−s)∫Z[K¯y1(s,ξ)+(1−K)¯y2(s,ξ)]˜N(ds,dξ)+αℜ2V(α)∫t0Φ−1Qα(C−s)BB∗Q∗α(C−s)ℵ(κ,ΔC0)×{E˜xC+∫C0˜γ(s)dBH(s)−Φ−1ℜSα(C)Φx0−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1[Kf1(s)+(1−K)f2(s)]ds−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1[K¯h1(s)+(1−K)¯h2(s)]dBH(s)−αℜ2V(α)∫C0Φ−1Qα(C−s)[Kf1(s)+(1−K)f2(s)]ds−αℜ2V(α)∫C0Φ−1Qα(C−s)[K¯h1(s)+(1−K)¯h2(s)]dBH(s)−℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1∫Z[K¯y1(s,ξ)+(1−K)¯y2(s,ξ)]˜N(ds,dξ)−αℜ2V(α)∫C0Φ−1Qα(C−s)∫Z[K¯y1(s,ξ)+(1−K)¯y2(s,ξ)]˜N(ds,dξ)}ds. |
Since Sϱ,x, Sσ,x, and Sℏ,x are convex sets, Kf1(s)+(1−K)f2(s)∈Sϱ,x, K¯h1(s)+(1−K)¯h2(s)∈Sσ,x, and K¯y1(s,ξ)+(1−K)¯y2(s,ξ)∈Sℏ,x. Thus,
KU1+(1−K)U2∈T(x). |
Step 2. ∀ κ>0, ∃ a positive constant r0=r(κ), s.t. T(Qr0)⊂Qr0.
If the opposite is true, then for any r>0 ∃ ¯x∈Qr, ¯u∈L2(J,U) corresponding to ¯x, s.t. T(¯x)⊈Qr,
E‖T(¯x)‖2C=sup{‖U‖2C:U∈T(¯x)}≥r. |
r≤E‖T(¯x)‖2≤9E‖Φ−1ℜSα(t)Φx0‖2+9E‖℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1Bu(s)ds‖2+9E‖℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1f(s)ds‖2+9E‖℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1¯h(s)dBH(s)‖2+9E‖℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)‖2+9E‖αℜ2V(α)∫t0Φ−1Qα(t−s)Bu(s)ds‖2+9E‖αℜ2V(α)∫t0Φ−1Qα(t−s)f(s)ds‖2+9E‖αℜ2V(α)∫t0Φ−1Qα(t−s)¯h(s)dBH(s)‖2+9E‖αℜ2V(α)∫t0Φ−1Qα(t−s)∫Z¯y(s,ξ)˜N(ds,dξ)‖2=9∑n=1In. |
By Using H¨older′s inequality and assumptions (A1)–(A5), for some f∈Sϱ,x, ¯h∈Sσ,x and ¯y∈Sℏ,x, we have
I1=9E‖Φ−1ℜSα(t)Φx0‖2≤9‖Φ‖2‖Φ−1‖2(J∗θ)2E‖x0‖2, |
I2=9E‖℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1Bu(s)ds‖2≤9{θψ(1−α)‖Φ−1‖J∗1ςBV(α)Γ(α)κ}2C4α−2(2α−1)2×8[{E‖˜xC‖2+2HC2H−1∫C0E‖˜γ(s)‖2L2Θds}+‖Φ−1‖2‖Φ‖2(θJ∗)2E‖x0‖2+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}22HC2H−1∫C0(C−s)2(α−1)gr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θ2α‖Φ−1‖J∗1V(α)}22HC2H−1∫C0(C−s)2(α−1)gr(s)ds+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2∫C0(C−s)2(α−1)Cr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}2∫C0(C−s)2(α−1)Cr(s)ds], |
I3=9E‖℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1f(s)ds‖2≤9{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι, |
I4=9E‖℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1¯h(s)dBH(s)‖2≤9{θψ(1−α)‖Φ−1‖V(α)Γ(α)}22HC2H−1∫t0(t−s)2(α−1)gr(s)ds, |
I5=9E‖℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)‖2≤9{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2∫t0(t−s)2(α−1)×∫ZE‖¯y‖2λ(dξ)ds≤9{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2∫t0(t−s)2(α−1)Cr(s)ds, |
I6=9E‖αℜ2V(α)∫t0Φ−1Qα(t−s)Bu(s)ds‖2≤9{θ2α‖Φ−1‖J∗1ςBV(α)κ}2C4α−2(2α−1)2×8[{E‖˜xC‖2+2HC2H−1∫C0E‖˜γ(s)‖2L2Θds}+‖Φ−1‖2‖Φ‖2(θJ∗)2E‖x0‖2+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}22HC2H−1∫C0(C−s)2(α−1)gr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θ2α‖Φ−1‖J∗1V(α)}22HC2H−1∫C0(C−s)2(α−1)gr(s)ds+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2∫C0(C−s)2(α−1)Cr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}2∫C0(C−s)2(α−1)Cr(s)ds], |
I7=9E‖αℜ2V(α)∫t0Φ−1Qα(t−s)f(s)ds‖2≤9{θ2α‖Φ−1‖J∗1V(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι, |
I8=9E‖αℜ2V(α)∫t0Φ−1Qα(t−s)¯h(s)dBH(s)‖2≤9{θ2α‖Φ−1‖J∗1V(α)}22HC2H−1∫t0(t−s)2(α−1)gr(s)ds, |
I9=9E‖αℜ2V(α)∫t0Φ−1Qα(t−s)∫Z¯y(s,ξ)˜N(ds,dξ)‖2≤9{θ2α‖Φ−1‖J∗1V(α)}2∫t0(t−s)2(α−1)∫ZE‖¯y‖2λ(dξ)ds≤9{θ2α‖Φ−1‖J∗1V(α)}2∫t0(t−s)2(α−1)Cr(s)ds. |
Combining these estimates, I1–I9 yields
r≤O+9[{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θ2α‖Φ−1‖J∗1V(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}22HC2H−1∫t0(t−s)2(α−1)gr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}22HC2H−1∫t0(t−s)2(α−1)gr(s)ds+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2∫t0(t−s)2(α−1)Cr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}2∫t0(t−s)2(α−1)Cr(s)ds]+72{θψ(1−α)‖Φ−1‖J∗1ςBV(α)Γ(α)κ}2C4α−2(2α−1)2[{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θ2α‖Φ−1‖J∗1V(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}22HC2H−1∫C0(C−s)2(α−1)gr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}22HC2H−1∫C0(C−s)2(α−1)gr(s)ds+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2∫C0(C−s)2(α−1)Cr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}2∫C0(C−s)2(α−1)Cr(s)ds]+72{θ2α‖Φ−1‖J∗1ςBV(α)κ}2C4α−2(2α−1)2[{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θ2α‖Φ−1‖J∗1V(α)}2C2α−12α−1Ψ(‖x‖2)‖n‖L1/qι+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}22HC2H−1∫C0(C−s)2(α−1)gr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}22HC2H−1∫C0(C−s)2(α−1)gr(s)ds+{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2∫C0(C−s)2(α−1)Cr(s)ds+{θ2α‖Φ−1‖J∗1V(α)}2∫C0(C−s)2(α−1)Cr(s)ds], | (3.1) |
where
O=9‖Φ‖2‖Φ−1‖2(J∗θ)2E‖x0‖2[1+8{θψ(1−α)‖Φ−1‖J∗1ςBV(α)Γ(α)κ}2C4α−2(2α−1)2+8{θ2α‖Φ−1‖J∗1ςBV(α)κ}2C4α−2(2α−1)2]+72[{θψ(1−α)‖Φ−1‖J∗1ςBV(α)Γ(α)κ}2C4α−2(2α−1)2{E‖˜xC‖2+2HC2H−1∫C0E‖˜γ(s)‖2L2Θds}+{θ2α‖Φ−1‖J∗1ςBV(α)κ}2C4α−2(2α−1)2{E‖˜xC‖2+2HC2H−1∫C0E‖˜γ(s)‖2L2Θds}]. |
Dividing both sides of (3.1) by r and taking the lower limit r→+∞, we get
1≤9{[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2[C2α−12α−1‖n‖L1/qΠι+2HC2H−1Λ+Λ]+[θ2α‖Φ−1‖J∗1V(α)]2[C2α−12α−1‖n‖L1/qΠι+2HC2H−1Λ+Λ]}+72[θψ(1−α)‖Φ−1‖J∗1ςBV(α)Γ(α)κ]2C4α−2(2α−1)2{[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2[C2α−12α−1‖n‖L1/qΠι+2HC2H−1Λ+Λ]+[θ2α‖Φ−1‖J∗1V(α)]2[C2α−12α−1‖n‖L1/qΠι+2HC2H−1Λ+Λ]}+72[θ2α‖Φ−1‖J∗1ςBV(α)κ]2C4α−2(2α−1)2{[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2[C2α−12α−1‖n‖L1/qΠι+2HC2H−1Λ+Λ]+[θ2α‖Φ−1‖J∗1V(α)]2[C2α−12α−1‖n‖L1/qΠι+2HC2H−1Λ+Λ]}, |
We can then obtain this by performing some simplifications,
1≤[Λ+C2α−12α−1‖n‖L1/qΠι+2HC2H−1Λ]{9[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2+9[θ2α‖Φ−1‖J∗1V(α)]2}˜K, |
where
˜K={1+8[θψ(1−α)‖Φ−1‖J∗1ςBV(α)Γ(α)κ]2C4α−2(2α−1)2+8[θ2α‖Φ−1‖J∗1ςBV(α)κ]2C4α−2(2α−1)2}, |
which is a contradiction to (A6). Thus, for every κ>0, there exists r0, s.t. T maps Qr0 into itself.
Step 3. T(Qr) is equicontinuous.
Let 0<t1<t2≤C. For each x∈¯Qr, there exist f∈Sϱ,x, ¯h∈Sσ,x and ¯y∈Sℏ,x, s.t.
E‖U(t2)−U(t1)‖2≤17E‖Φ−1ℜ(Sα(t2)−Sα(t1))Φx0‖2+17E‖℘ℜ(1−α)V(α)Γ(α)∫t10Φ−1[(t2−s)α−1−(t1−s)α−1]Bu(s)ds‖2+17E‖℘ℜ(1−α)V(α)Γ(α)∫t2t1Φ−1(t2−s)α−1Bu(s)ds‖2+17E‖℘ℜ(1−α)V(α)Γ(α)∫t10Φ−1[(t2−s)α−1−(t1−s)α−1]f(s)ds‖2+17E‖℘ℜ(1−α)V(α)Γ(α)∫t2t1Φ−1(t2−s)α−1f(s)ds‖2+17E‖℘ℜ(1−α)V(α)Γ(α)∫t10Φ−1[(t2−s)α−1−(t1−s)α−1]¯h(s)dBH(s)‖2+17E‖℘ℜ(1−α)V(α)Γ(α)∫t2t1Φ−1(t2−s)α−1¯h(s)dBH(s)‖2+17E‖℘ℜ(1−α)V(α)Γ(α)∫t10Φ−1[(t2−s)α−1−(t1−s)α−1]∫Z¯y(s,ξ)˜N(ds,dξ)‖2+17E‖℘ℜ(1−α)V(α)Γ(α)∫t2t1Φ−1(t2−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)‖2+17E‖αℜ2V(α)∫t10Φ−1[Qα(t2−s)−Qα(t1−s)]Bu(s)ds‖2+17E‖αℜ2V(α)∫t2t1Φ−1Qα(t2−s)Bu(s)ds‖2+17E‖αℜ2V(α)∫t10Φ−1[Qα(t2−s)−Qα(t1−s)]f(s)ds‖2+17E‖αℜ2V(α)∫t2t1Φ−1Qα(t2−s)f(s)ds‖2+17E‖αℜ2V(α)∫t10Φ−1[Qα(t2−s)−Qα(t1−s)]¯h(s)dBH(s)‖2+17E‖αℜ2V(α)∫t2t1Φ−1Qα(t2−s)¯h(s)dBH(s)‖2+17E‖αℜ2V(α)∫t10Φ−1[Qα(t2−s)−Qα(t1−s)]∫Z¯y(s,ξ)˜N(ds,dξ)‖2+17E‖αℜ2V(α)∫t2t1Φ−1Qα(t2−s)∫Z¯y(s,ξ)˜N(ds,dξ)‖2. |
Applying the H¨older inequality and conditions (A0)–(A5), we get
E‖U(t2)−U(t1)‖2≤17[θψ(1−α)‖Φ−1‖ςBV(α)Γ(α)]2∫t10[(t2−s)α−1−(t1−s)α−1]×∫t10[(t2−s)α−1−(t1−s)α−1]E‖u(s)‖2ds+17θ2‖Φ−1‖2‖Φ‖2E‖(Sα(t2)−Sα(t1))x0‖2+17[θψ(1−α)‖Φ−1‖ςBV(α)Γ(α)]2{(t2−t1)αα}∫t2t1(t2−s)α−1E‖u(s)‖2ds+17[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2∫t10[(t2−s)α−1−(t1−s)α−1]×∫t10[(t2−s)α−1−(t1−s)α−1]E‖f(s)‖2ds+17[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2{(t2−t1)αα}∫t2t1(t2−s)α−1E‖f(s)‖2ds+17[θψ(1−α)‖Φ−1‖V(α)Γ(α)]22HC2H−1∫t10[(t2−s)α−1−(t1−s)α−1]2gr(s)ds+17[θψ(1−α)‖Φ−1‖V(α)Γ(α)]22HC2H−1∫t2t1(t2−s)2α−2gr(s)ds+17[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2∫t10[(t2−s)α−1−(t1−s)α−1]2Cr(s)ds+17[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2∫t2t1(t2−s)2α−2Cr(s)ds+17[θ2α‖Φ−1‖ςBV(α)]2∫t10‖Qα(t2−s)−Qα(t1−s)‖2E‖u(s)‖2ds+17[θ2α‖Φ−1‖J∗1ςBV(α)]2{(t2−t1)αα}∫t2t1(t2−s)α−1E‖u(s)‖2ds+17[θ2α‖Φ−1‖V(α)]2∫t10‖Qα(t2−s)−Qα(t1−s)‖2E‖f(s)‖2ds+17[θ2α‖Φ−1‖J∗1V(α)]2{(t2−t1)αα}∫t2t1(t2−s)α−1E‖f(s)‖2ds+17[θ2α‖Φ−1‖V(α)]22HC2H−1∫t10‖Qα(t2−s)−Qα(t1−s)‖2gr(s)ds+17[θ2α‖Φ−1‖V(α)]22HC2H−1∫t2t1‖Qα(t2−s)‖2gr(s)ds+17[θ2α‖Φ−1‖V(α)]2∫t10‖Qα(t2−s)−Qα(t1−s)‖2Cr(s)ds+17[θ2α‖Φ−1‖V(α)]2∫t2t1‖Qα(t2−s)‖2Cr(s)ds. |
The right-hand side of the aforementioned inequality tends to zero as t2→t1 due to the strongly continuous operator Qα(t). As a result, uniform operator topological continuity is required by (A1). T(Qr) is hence equicontinuous.
Step 4. E(t)={U(t),U∈T(¯Qr)} is a relatively compact on X.
The case t=0 is trivial. Consider 0<t≤C, x∈¯Qr. Then, for all K∈(0,t), define an operator
UK(t)=Φ−1ℜSα(t)Φx0+℘ℜ(1−α)V(α)Γ(α)∫t−K0Φ−1(t−s)α−1{Bu(s)+f(s)}ds+℘ℜ(1−α)V(α)Γ(α)∫t−K0Φ−1(t−s)α−1¯h(s)dBH(s)+℘ℜ(1−α)V(α)Γ(α)∫t−K0Φ−1(t−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫t−K0Φ−1Qα(t−s){Bu(s)+f(s)}ds+αℜ2V(α)∫t−K0Φ−1Qα(t−s)¯h(s)dBH(s)+αℜ2V(α)∫t−K0Φ−1Qα(t−s)∫Z¯y(s,ξ)˜N(ds,dξ), |
where f∈Sϱ,x, ¯h∈Sσ,x and ¯y∈Sℏ,x. From (A1), therefore, EK(t)={UK(t),UK∈TK(x),x∈¯Qr} is relatively compact in X for all K∈(0,t). In addition, for every x∈¯Qr, by using H¨older inequality, we have
E‖U(t)−UK(t)‖2≤8E‖℘ℜ(1−α)V(α)Γ(α)∫tt−KΦ−1(t−s)α−1Bu(s)ds‖2+8E‖℘ℜ(1−α)V(α)Γ(α)∫tt−KΦ−1(t−s)α−1f(s)ds‖2+8E‖℘ℜ(1−α)V(α)Γ(α)∫tt−KΦ−1(t−s)α−1¯h(s)dBH(s)‖2+8E‖℘ℜ(1−α)V(α)Γ(α)∫tt−KΦ−1(t−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)‖2+8E‖αℜ2V(α)∫tt−KΦ−1Qα(t−s)Bu(s)ds‖2+8E‖αℜ2V(α)∫tt−KΦ−1Qα(t−s)f(s)ds‖2+8E‖αℜ2V(α)∫tt−KΦ−1Qα(t−s)¯h(s)dBH(s)‖2+8E‖αℜ2V(α)∫tt−KΦ−1Qα(t−s)∫Z¯y(s,ξ)˜N(ds,dξ)‖2. |
Hence,
E‖U(t)−UK(t)‖2≤8[{θψ(1−α)‖Φ−1‖ςBV(α)Γ(α)}2+{θ2α‖Φ−1‖J∗1ςBV(α)}2]Kαα∫tt−K(t−s)α−1E‖u(s)‖2ds+8[{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2+{θ2α‖Φ−1‖J∗1V(α)}2]Kαα∫tt−K(t−s)α−1E‖f(s)‖2ds+8[{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2+{θ2α‖Φ−1‖J∗1V(α)}2]2HC2H−1∫tt−K(t−s)2α−2E‖¯h(s)‖2ds+8[{θψ(1−α)‖Φ−1‖V(α)Γ(α)}2+{θ2α‖Φ−1‖J∗1V(α)}2]Kαα∫tt−K(t−s)α−1E‖∫Z¯y(s,ξ)˜N(ds,dξ)‖2. |
The above inequality gives us,
E‖U(t)−UK(t)‖2→0,whenK→0+. |
Hence, there are relatively compact sets arbitrarily close to the set E(t)={U(t),U∈T(¯Qr)} which implies E(t) is also relatively compact in X.
Step 5. T(x) has a closed graph.
Let xm→x∗(m→∞), Um→U∗(m→∞). We will prove that U∗∈T(x∗). Since Um∈T(xm), there exist fm∈Sϱ,xm, ¯hm∈Sσ,xm and ¯ym∈Sℏ,xm, s.t. for each t∈(0,C),
Um(t)=Φ−1ℜSα(t)Φx0+℘ℜ(1−α)V(α)Γ(α)∫t−K0Φ−1(t−s)α−1{Bu(s)+fm(s)}ds+℘ℜ(1−α)V(α)Γ(α)∫t−K0Φ−1(t−s)α−1¯hm(s)dBH(s)+℘ℜ(1−α)V(α)Γ(α)∫t−K0Φ−1(t−s)α−1∫Z¯ym(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫t−K0Φ−1Qα(t−s){Bu(s)+fm(s)}ds+αℜ2V(α)∫t−K0Φ−1Qα(t−s)¯hm(s)dBH(s)+αℜ2V(α)∫t−K0Φ−1Qα(t−s)∫Z¯ym(s,ξ)˜N(ds,dξ). |
Finally, we will prove the existence of f∗∈Sϱ,x∗, ¯h∗∈Sσ,x∗ and ¯y∗∈Sℏ,x∗ s.t. for each t∈(0,C]
U∗(t)=Φ−1ℜSα(t)Φx0+℘ℜ(1−α)V(α)Γ(α)∫t−K0Φ−1(t−s)α−1{Bu(s)+f∗(s)}ds+℘ℜ(1−α)V(α)Γ(α)∫t−K0Φ−1(t−s)α−1¯h∗(s)dBH(s)+℘ℜ(1−α)V(α)Γ(α)∫t−K0Φ−1(t−s)α−1∫Z¯y∗(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫t−K0Φ−1Qα(t−s){Bu(s)+f∗(s)}ds+αℜ2V(α)∫t−K0Φ−1Qα(t−s)¯h∗(s)dBH(s)+αℜ2V(α)∫t−K0Φ−1Qα(t−s)∫Z¯y∗(s,ξ)˜N(ds,dξ). |
Now,
E‖{Um(t)−Φ−1ℜSα(t)Φx0}−{U∗(t)−Φ−1ℜSα(t)Φx0}‖2→0asm→∞. |
Consider
Σ:L2(J,X)→C(J,X), |
where
(f,¯h,¯y)→Σ(f,¯h,¯y)(t)=℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1f(s)ds+αℜ2V(α)∫t0Φ−1Qα(t−s)f(s)ds+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1¯h(s)dBH(s)+αℜ2V(α)∫t0Φ−1Qα(t−s)¯h(s)dBH(s)+℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫t0Φ−1Qα(t−s)∫Z¯y(s,ξ)˜N(ds,dξ)−℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1BB∗Q∗α(C−s)ℵ(κ,ΔC0)×[℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1f(s)ds+αℜ2V(α)∫C0Φ−1Qα(C−s)f(s)ds]ds−αℜ2V(α)∫t0Φ−1Qα(t−s)BB∗Q∗α(C−s)ℵ(κ,ΔC0)×[℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1f(s)ds+αℜ2V(α)∫C0Φ−1Qα(C−s)f(s)ds]ds−℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1BB∗Q∗α(C−s)ℵ(κ,ΔC0)×[℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1¯h(s)dBH(s)+αℜ2V(α)∫C0Φ−1Qα(C−s)¯h(s)dBH(s)]ds−αℜ2V(α)∫t0Φ−1Qα(t−s)BB∗Q∗α(C−s)ℵ(κ,ΔC0)×[℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1¯h(s)dBH(s)+αℜ2V(α)∫C0Φ−1Qα(C−s)¯h(s)dBH(s)]ds−℘ℜ(1−α)V(α)Γ(α)∫t0Φ−1(t−s)α−1BB∗Q∗α(C−s)ℵ(κ,ΔC0)×[℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫C0Φ−1Qα(C−s)∫Z¯y(s,ξ)˜N(ds,dξ)]ds−αℜ2V(α)∫t0Φ−1Qα(t−s)BB∗Q∗α(C−s)ℵ(κ,ΔC0)×[℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1(C−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫C0Φ−1Qα(C−s)∫Z¯y(s,ξ)˜N(ds,dξ)]ds. |
It is evident from Lemma 2.2 that Σ∘Sϱ,σ,ℏ is a closed graph operator, where Sϱ,σ,ℏ={f∈ϱ(t,x(t))}×{¯h∈σ(t,x(t))}×{¯y∈ℏ(t,x(t))}. From the definition of Σ, we get
{Um(t)−Φ−1ℜSα(t)Φx0}∈Σ(Sϱ,σ,ℏ,xm). |
Since, xm tends to x∗, as a result of Lemma 2.2,
{U∗(t)−Φ−1ℜSα(t)Φx0}∈Σ(Sϱ,σ,ℏ,x∗). |
It is clear from this that U∗∈T(x∗). Hence, T has a closed graph.
Since T is a completely continuous multi-valued map with a compact value, we can infer that T is u.s.c. from Proposition 2.1. According to Lemma 2.3, operator T has a fixed point on Qr, which is a mild solution of (1.1).
Theorem 3.2. If (A0)–(A7) are satisfied, then (1.1) is approximately controllable on J.
Proof. We can quickly demonstrate that the operator T has a fixed point in Qr, where r=r(κ), for every 0<κ<1 by using the method described in Theorem 3.1. A fixed point of T in Qr is defined as xκ(⋅). Any fixed point of the operator T is a mild solution of (1.1). This indicates that for each t∈(0,C], by stochastic Fubini theorem, there exists fκ∈Sϱ,xκ, ¯hκ∈Sσ,xκ and ¯yκ∈Sℏ,xκ,
xκ(C)=˜xC−κ(κI−ΔC0)−1{E˜xC+∫C0˜γ(s)dBH(s)−Φ−1ℜSα(C)Φx0}+℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1κ(κI−ΔC0)−1(C−s)α−1fκ(s)ds+℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1κ(κI−ΔC0)−1(C−s)α−1¯hκ(s)dBH(s)+℘ℜ(1−α)V(α)Γ(α)∫C0Φ−1κ(κI−ΔC0)−1(C−s)α−1∫Z¯yκ(s,ξ)˜N(ds,dξ)+αℜ2V(α)∫C0Φ−1κ(κI−ΔC0)−1Qα(C−s)fκ(s)ds+αℜ2V(α)∫C0Φ−1κ(κI−ΔC0)−1Qα(C−s)¯hκ(s)dBH(s)+αℜ2V(α)∫C0Φ−1κ(κI−ΔC0)−1Qα(C−s)∫Z¯yκ(s,ξ)˜N(ds,dξ). |
In addition, the Dunford-Pettis theorem and conditions on f,¯h and ¯y, we have that fκ,¯hκ and ¯yκ are weakly compact in L2(J,X). Thus, there are subsequences determined by fκ,¯hκ and ¯yκ weakly converging to say f,¯h and ¯y. Now, we have
E‖xκ(C)−˜xC‖2≤14E‖κ(κI−ΔC0)−1[E˜xC−Φ−1ℜSα(C)Φx0]‖2+28HC2H−1∫C0E‖˜γ(s)‖2L2Θds+14[℘ℜ(1−α)V(α)Γ(α)]2E{∫C0‖Φ−1κ(κI−ΔC0)−1(C−s)α−1{fκ(s)−f(s)}‖ds}2+14[℘ℜ(1−α)V(α)Γ(α)]2E{∫C0‖Φ−1κ(κI−ΔC0)−1(C−s)α−1f(s)‖ds}2+28HC2H−1[℘ℜ(1−α)V(α)Γ(α)]E{∫C0‖Φ−1κ(κI−ΔC0)−1(C−s)α−1{¯hκ(s)−¯h(s)}‖ds}2+28HC2H−1[℘ℜ(1−α)V(α)Γ(α)]E{∫C0‖Φ−1κ(κI−ΔC0)−1(C−s)α−1¯h(s)‖ds}2+14[℘ℜ(1−α)V(α)Γ(α)]E{∫C0‖Φ−1κ(κI−ΔC0)−1(C−s)α−1∫Z¯y(s,ξ)˜N(ds,dξ)‖}2+14[℘ℜ(1−α)V(α)Γ(α)]E{∫C0‖Φ−1κ(κI−ΔC0)−1(C−s)α−1∫Z{¯yκ(s,ξ)−¯y(s,ξ)}˜N(ds,dξ)‖}2+14[αℜ2V(α)]2E{∫C0‖Φ−1κ(κI−ΔC0)−1Qα(C−s){fκ(s)−f(s)}‖ds}2+14[αℜ2V(α)]2E{∫C0‖Φ−1κ(κI−ΔC0)−1Qα(C−s)f(s)‖ds}2+28HC2H−1[αℜ2V(α)]E{∫C0‖Φ−1κ(κI−ΔC0)−1Qα(C−s){¯hκ(s)−¯h(s)}‖2ds}2+28HC2H−1[αℜ2V(α)]E{∫C0‖Φ−1κ(κI−ΔC0)−1Qα(C−s)¯h(s)‖ds}2+14[αℜ2V(α)]E{∫C0‖Φ−1κ(κI−ΔC0)−1Qα(C−s)∫Z{¯yκ(s,ξ)−¯y(s,ξ)}˜N(ds,dξ)‖}2+14[αℜ2V(α)]E{∫C0‖Φ−1κ(κI−ΔC0)−1Qα(C−s)∫Z¯y(s,ξ)˜N(ds,dξ)‖}2. |
According to the assumption (A0), the operator κ(κI−ΔC0)−1→0 strongly as κ→0+ and also κ(κI−ΔC0)−1≤1. Thus, by the Lebesgue dominated convergence theorem and the compactness of Qα(t), it is implied that
E‖xκ(C)−˜xC‖2→0asκ→0+. |
Hence, we deduce the approximate controllability of the system (1.1).
We consider the stochastic partial differential inclusion with the AB fractional derivative:
ABCD3/40+[{1−∂2∂ζ2}x(t,ζ)]∈∂2∂ζ2x(t,ζ)+˜φ(t,ζ)+e−t1+e−tsin(x(t,ζ))+σ(t,x(t,ζ))dBH(t)dt+∫Zℏ(t,x(t,ζ),ξ)˜N(dt,dξ),t∈J:=(0,1],ζ∈[0,π],x(t,0)=x(t,π)=0,t∈(0,1]. | (4.1) |
To write the above system (4.1) into the abstract system (1.1), we choose the space X=Y=U=L2([0,π],R) and define the operators A:D(A)⊂X→X and Φ:D(A)⊂X→X, t≥0 by A=∂2∂ζ2 and Φ=1−A with D(A)=D(Φ)={x∈X;x,∂x∂ζbeabsolutelycontinuous,∂2x∂ζ2∈X,x(0)=x(π)=0}. Then, A and Φ can be written as
Ax=∞∑k=1k2⟨x,xk⟩xk,x∈D(A),Φx=∞∑k=1(1+k2)⟨x,xk⟩xk,x∈D(Φ). |
Furthermore, for x∈X we get
AΦ−1x=∞∑k=1k21+k2⟨x,xk⟩xk,Φ−1x=∞∑k=111+k2⟨x,xk⟩xk. |
AΦ−1 is self-adjoint and xk=√2πsin(kx),k=1,2,⋯ be the orthonormal basis of X. However, AΦ−1 forms a uniformly strongly continuous semigroup of bounded linear operators S(t),t≥0, on a separable Hilbert space X which is in the form
S(t)x=∞∑k=1e−k2t⟨x,xk⟩xk,x∈D(A). |
Assume that ϖ(t)(ζ)=x(t,ζ),t∈J,ζ∈[0,π]. Now, construct the bounded linear operator B:U→X and the function ϱ:J×X→X, respectively, for any ϖ(t)∈X.
ϱ(t,ϖ(t))(ζ)=e−t1+e−tsin(x(t,ζ)),Bu(t)(ζ)=˜φ(t,ζ),0<ζ<π, |
where ˜φ:J×[0,π]→[0,π] is continuous in t and B=B∗=I. Therefore, (4.1) can be reformulated as the abstract system (1.1). Clearly, all the assumptions of Theorem 3.1 are satisfied, and
[Λ+C2α−12α−1‖n‖L1/qΠι+2HC2H−1Λ]{9[θψ(1−α)‖Φ−1‖V(α)Γ(α)]2+9[θ2α‖Φ−1‖J∗1V(α)]2}˜K<1, |
where
˜K={1+8[θψ(1−α)‖Φ−1‖J∗1ςBV(α)Γ(α)κ]2C4α−2(2α−1)2+8[θ2α‖Φ−1‖J∗1ςBV(α)κ]2C4α−2(2α−1)2}. |
As a result, the system (4.1) has a mild solution on J, in addition, it is approximately controllable on J, according to Theorem 3.2.
In this work, a new control model was presented with the Sobolev-type Atangana-Baleanu fractional stochastic differential inclusions including the fractional Brownian motion and Poisson jumps. We investigated the approximate controllability for the proposed problem (1.1). Our results were obtained with the aid of nonsmooth analysis, fractional calculus, stochastic analysis, and fixed-point theorems. Finally, we provided an example to illustrate the applicability of the results.
For future work, we can present neutral Atangana-Baleanu fractional stochastic differential inclusions with Clarke subdifferential.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through the Re-search Group Project under Grant Number (RGP2/441/44).
The authors declare no conflict of interest.
[1] |
K. Li, R. Li, L. Cao, Y. Feng, B. Onasanya, Periodically intermittent control of Memristor-based hyper-chaotic bao-like system, Mathematics, 11 (2023), 1264. http://dx.doi.org/10.3390/math11051264 doi: 10.3390/math11051264
![]() |
[2] |
Y. Xue, J. Han, Z. Tu, X. Chen, Stability analysis and design of cooperative control for linear delta operator system, AIMS Mathematics, 8 (2023), 12671–12693. http://dx.doi.org/10.3934/math.2023637 doi: 10.3934/math.2023637
![]() |
[3] |
A. Sayed Ahmed, Existence and uniqueness of mild solutions to neutral impulsive fractional stochastic delay differential equations driven by both Brownian motion and fractional Brownian motion, Differ. Equat. Appl., 14 (2022), 433–446. http://dx.doi.org/10.7153/dea-2022-14-30 doi: 10.7153/dea-2022-14-30
![]() |
[4] |
H. Ahmed, Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions, J. Theor. Probab., 28 (2015), 667–680. http://dx.doi.org/10.1007/s10959-013-0520-1 doi: 10.1007/s10959-013-0520-1
![]() |
[5] |
A. Sayed Ahmed, Stochastic delayed fractional-order differential equations driven by fractional Brownian motion, Malaya Journal of Matematik, 10 (2022), 187–197. http://dx.doi.org/10.26637/mjm1003/001 doi: 10.26637/mjm1003/001
![]() |
[6] |
A. Sayed Ahmed, H. Ahmed, Hilfer-Katugampola fractional stochastic differential equations with nonlocal conditions, Int. J. Nonlinear Anal. Appl., 3 (2022), 1–11. http://dx.doi.org/10.22075/ijnaa.2022.27337.3562 doi: 10.22075/ijnaa.2022.27337.3562
![]() |
[7] | G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, London: Cambridge University Press, 2014. http://dx.doi.org/10.1017/CBO9780511666223 |
[8] | X. Mao, Stochastic differential equations and applications, Chichester: Elsevier, 1997. |
[9] |
N. Durga, P. Muthukumar, Optimal control of Sobolev-type stochastic Hilfer fractional non-instantaneous impulsive differential inclusion involving Poisson jumps and Clarke subdifferential, IET Control Theory Appl., 14 (2020), 887–899. http://dx.doi.org/10.1049/iet-cta.2019.0167 doi: 10.1049/iet-cta.2019.0167
![]() |
[10] |
Y. Zhao, Q. Zhu, Stabilization of stochastic highly nonlinear delay systems with neutral term, IEEE T. Automat. Contr., 68 (2023), 2544–2551. http://dx.doi.org/10.1109/TAC.2022.3186827 doi: 10.1109/TAC.2022.3186827
![]() |
[11] |
Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE T. Automat. Contr., 64 (2019), 3764–3771. http://dx.doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067
![]() |
[12] |
G. Li, Y. Zhang, Y. Guan, W. Li, Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse, Math. Biosci. Eng., 20 (2023), 7020–7041. http://dx.doi.org/10.3934/mbe.2023303 doi: 10.3934/mbe.2023303
![]() |
[13] | A. Sayed Ahmed, Implicit Hilfer-Katugampula-type fractional pantograph differential equations with nonlocal Katugampola fractional integral condition, Palestine Journal of Mathematics, 11 (2022), 74–85. |
[14] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, San Diego: Academic Press, 1999. |
[15] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and application of fractional differential equations, Amsterdam: Elsevier, 2006. |
[16] |
H. Ahmed, M. El-Borai, H. El-Owaidy, A. Ghanem, Impulsive Hilfer fractional differential equations, Adv. Differ. Equ., 2018 (2018), 226. http://dx.doi.org/10.1186/s13662-018-1679-7 doi: 10.1186/s13662-018-1679-7
![]() |
[17] |
H. Ahmed, M. El-Borai, Hilfer fractional stochastic integro-differential equations, Appl. Math. Comput., 331 (2018), 182–189. http://dx.doi.org/10.1016/j.amc.2018.03.009 doi: 10.1016/j.amc.2018.03.009
![]() |
[18] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and nonsingular kernel: theory and application to heat transfer model, arXiv: 1602.03408. |
[19] |
H. Khan, A. Khan, F. Jarad, A. Shah, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. http://dx.doi.org/10.1016/j.chaos.2019.109477 doi: 10.1016/j.chaos.2019.109477
![]() |
[20] |
M. Mallika Arjunan, T. Abdeljawad, V. Kavitha, A. Yousef, On a new class of Atangana-Baleanu fractional Volterra-Fredholm integrodifferential inclusions with non-instantaneous impulses, Chaos Soliton. Fract., 148 (2021), 111075. http://dx.doi.org/10.1016/j.chaos.2021.111075 doi: 10.1016/j.chaos.2021.111075
![]() |
[21] |
M. Omaba, C. Enyi, Atangana-Baleanu time-fractional stochastic integrodifferential equation, Partial Differential Equations in Applied Mathematics, 4 (2021), 100100. http://dx.doi.org/10.1016/j.padiff.2021.100100 doi: 10.1016/j.padiff.2021.100100
![]() |
[22] |
S. Panda, C. Ravichandran, B. Hazarika, Results on system of Atangana-Baleanu fractional order Willis aneurysm and nonlinear singularly perturbed boundary value problems, Chaos Soliton. Fract., 142 (2021), 110390. http://dx.doi.org/10.1016/j.chaos.2020.110390 doi: 10.1016/j.chaos.2020.110390
![]() |
[23] |
J. Huang, D. Luo, Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness, Chaos, 33 (2023), 013120. http://dx.doi.org/10.1063/5.0125651 doi: 10.1063/5.0125651
![]() |
[24] |
K. Balachandran, J. Kim, Sample controllability of nonlinear stochastic integrodifferential systems, Nonlinear Anal.-Hybri., 4 (2010), 543–549. http://dx.doi.org/10.1016/j.nahs.2010.02.001 doi: 10.1016/j.nahs.2010.02.001
![]() |
[25] |
H. Ahmed, Controllability of fractional stochastic delay equations, Lobachevskii J. Math., 30 (2009), 195–202. http://dx.doi.org/10.1134/S1995080209030019 doi: 10.1134/S1995080209030019
![]() |
[26] |
J. Wang, M. Fˇeckan, Y. Zhou, Controllability of Sobolev type fractional evolution systems, Dynam. Part. Differ. Eq., 11 (2014), 71–87. http://dx.doi.org/10.4310/DPDE.2014.v11.n1.a4 doi: 10.4310/DPDE.2014.v11.n1.a4
![]() |
[27] |
J. Wang, H. Ahmed, Null controllability of nonlocal Hilfer fractional stochastic differential equations, Miskolc Math. Notes, 18 (2017), 1073–1083. http://dx.doi.org/10.18514/MMN.2017.2396 doi: 10.18514/MMN.2017.2396
![]() |
[28] |
H. Ahmed, J. Wang, Exact null controllability of Sobolev-type Hilfer fractional stochastic differential equations with fractional Brownian motion and Poisson jumps, Bull. Iran. Math. Soc., 44 (2018), 673–690. http://dx.doi.org/10.1007/s41980-018-0043-8 doi: 10.1007/s41980-018-0043-8
![]() |
[29] |
Z. Liu, X. Li, Approximate controllability of fractional evolution systems with Riemann-Liouville fractional derivatives, SIAM J. Control Optim., 53 (2015), 1920–1933. http://dx.doi.org/10.1137/120903853 doi: 10.1137/120903853
![]() |
[30] |
N. Mahmudov, M. Mckibben, On the approximate controllability of fractional evolution equations with generalized Riemann-Liouville fractional derivative, J. Funct. Space., 2015 (2015), 263823. http://dx.doi.org/10.1155/2015/263823 doi: 10.1155/2015/263823
![]() |
[31] |
H. Ahmed, Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space, Adv. Differ. Equ., 2014 (2014), 113. http://dx.doi.org/10.1186/1687-1847-2014-113 doi: 10.1186/1687-1847-2014-113
![]() |
[32] |
S. Subramaniam, Approximate controllability of Sobolev-type nonlocal Hilfer fractional stochastic differential system, Int. J. Dyn. Syst. Diffe., 12 (2022), 412–430. http://dx.doi.org/10.1504/IJDSDE.2022.127811 doi: 10.1504/IJDSDE.2022.127811
![]() |
[33] |
Y. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, K. Nisar, Approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions, Ain Shams Eng. J., 14 (2023), 101882. http://dx.doi.org/10.1016/j.asej.2022.101882 doi: 10.1016/j.asej.2022.101882
![]() |
[34] |
T. Caraballo, M. Garrido-Atienza, T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal.-Theor., 74 (2011), 3671–3684. http://dx.doi.org/10.1016/j.na.2011.02.047 doi: 10.1016/j.na.2011.02.047
![]() |
[35] | K. Deimling, Multivalued differential equations, Berlin: De Gruyter, 1992. http://dx.doi.org/10.1515/9783110874228 |
[36] |
R. Sakthivel, R. Ganesh, S. Anthoni, Approximate controllability of fractional nonlinear differential inclusions, Appl. Math. Comput., 225 (2013), 708–717. http://dx.doi.org/10.1016/j.amc.2013.09.068 doi: 10.1016/j.amc.2013.09.068
![]() |
[37] |
Y. Maa, V. Vijayakumar, A. Shukla, K. Nisar, K. Thilagavathi, H. Nashine, et al., Discussion on the existence of mild solution for fractional derivative by Mittag-Leffler kernel to fractional stochastic neutral differential inclusions, Alex. Eng. J., 63 (2023), 271–282. http://dx.doi.org/10.1016/j.aej.2022.08.006 doi: 10.1016/j.aej.2022.08.006
![]() |
1. | Rajesh Dhayal, Quanxin Zhu, The averaging principle of Atangana–Baleanu fractional stochastic integro-differential systems with delay, 2024, 32, 0971-3611, 3565, 10.1007/s41478-024-00823-3 | |
2. | Noorah Mshary, Hamdy M. Ahmed, Discussion on exact null boundary controllability of nonlinear fractional stochastic evolution equations in Hilbert spaces, 2025, 10, 2473-6988, 5552, 10.3934/math.2025256 |