Research article Special Issues

Class of crosscap two graphs arising from lattices-Ⅱ

  • Received: 10 May 2023 Revised: 26 July 2023 Accepted: 03 August 2023 Published: 23 August 2023
  • MSC : Primary: 05C75, 05C10, 05C25; Secondary: 06A07, 06B99

  • In this series of papers, we study the crosscap two embedding of a class of multipartite graphs, namely, annihilating-ideal graphs of a lattice. In Part 1 of the series [Class of crosscap two graphs arising from lattices-Ⅰ, Mathematics, 11 (2023), 1-26], we classified lattices with the number of atoms less than or equal to 4, whose annihilating-ideal graph can be embedded in the Klein bottle. In this paper, which is Part 2 of the series, we classify all finite lattices with at least 5 atoms whose annihilating-ideal graph is embedded in crosscap two surfaces. These characterizations help us to identify classes of multipartite graphs, which are embedded in the Klein bottle.

    Citation: Jehan A. Al-Bar, T. Asir, K. Mano, Wafaa M. Fakieh. Class of crosscap two graphs arising from lattices-Ⅱ[J]. AIMS Mathematics, 2023, 8(10): 24802-24824. doi: 10.3934/math.20231265

    Related Papers:

  • In this series of papers, we study the crosscap two embedding of a class of multipartite graphs, namely, annihilating-ideal graphs of a lattice. In Part 1 of the series [Class of crosscap two graphs arising from lattices-Ⅰ, Mathematics, 11 (2023), 1-26], we classified lattices with the number of atoms less than or equal to 4, whose annihilating-ideal graph can be embedded in the Klein bottle. In this paper, which is Part 2 of the series, we classify all finite lattices with at least 5 atoms whose annihilating-ideal graph is embedded in crosscap two surfaces. These characterizations help us to identify classes of multipartite graphs, which are embedded in the Klein bottle.



    加载中


    [1] M. Afkhami, S. Bahrami, K. Khashyarmanesh, F. Shahsavar, The annihilating-ideal graph of a lattice, Georgian Math. J., 23 (2016), 1–7. https://doi.org/10.1515/gmj-2015-0031 doi: 10.1515/gmj-2015-0031
    [2] D. F. Anderson, T. Asir, A. Badawi, T. T. Chelvam, Graphs from rings, 1 Ed., Cham: Springer, 2021. https://doi.org/10.1007/978-3-030-88410-9
    [3] T. Asir, K. Mano, J. A. Al-Bar, W. M. Fakieh, Class of crosscap two graphs arising from lattices-Ⅰ, Mathematics, 11 (2023), 1–26. https://doi.org/10.3390/math11061553 doi: 10.3390/math11061553
    [4] T. Asir, K. Mano, Classification of non-local rings with genus two zero-divisor graphs, Soft Comput., 24 (2020), 237–245. https://doi.org/10.1007/s00500-019-04345-0 doi: 10.1007/s00500-019-04345-0
    [5] T. Asir, K. Mano, Classification of rings with crosscap two class of graphs, Discrete Appl. Math., 256 (2019), 13–21. https://doi.org/10.1016/j.dam.2019.03.026 doi: 10.1016/j.dam.2019.03.026
    [6] H. H. Glover, J. P. Huneke, C. S. Wang, 103 graphs that are irreducible for the projective plane, J. Combin. Theory Ser. B, 27 (1979), 332–370.
    [7] S. Lawrencenko, A. M. Magomedov, Generating the triangulations of the torus with the vertex-labeled complete 4-partite graph $K_{2, 2, 2, 2}$, Symmetry, 13 (2021), 1–15. https://doi.org/10.3390/sym13081418 doi: 10.3390/sym13081418
    [8] S. Lawrencenko, S. Negami, Constructing the graphs that triangulate both the torus and the Klein bottle, J. Combin. Theory Ser. B, 77 (1999), 211–218.
    [9] A. Parsapour, K. A. Javaheri, Line graphs associated to annihilating-ideal graph attached to lattices of genus one, Trans. Comb., 12 (2023), 175–190. https://doi.org/10.22108/TOC.2022.125344.1771 doi: 10.22108/TOC.2022.125344.1771
    [10] A. Parsapour, K. A. Javaheri, The embedding of annihilating-ideal graphs associated to lattices in the projective plane, Bull. Malays. Math. Sci. Soc., 42 (2019), 1625–1638. https://doi.org/10.1007/s40840-017-0568-7 doi: 10.1007/s40840-017-0568-7
    [11] A. Parsapour, K. A. Javaheri, Projective zero divisor graphs of partially ordered sets, Afr. Mat., 28 (2017), 575–593. https://doi.org/10.1007/s13370-016-0464-6 doi: 10.1007/s13370-016-0464-6
    [12] A. Parsapour, K. A. Javaheri, When a line graph associated to annihilating-ideal graph of a lattice is planar or projective, Czech. Math. J., 68 (2018), 19–34. https://doi.org/10.21136/CMJ.2018.0635-15 doi: 10.21136/CMJ.2018.0635-15
    [13] F. Shahsavar, On the planar and outer planar annihilating-ideal graphs of a lattice, Algebras Groups Geom., 32 (2015), 479–494.
    [14] C. Thomassen, A simpler proof of the excluded minor theorem for higher surfaces, J. Combin. Theory Ser. B, 70 (1997), 306–311. https://doi.org/10.1006/jctb.1997.1761 doi: 10.1006/jctb.1997.1761
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(902) PDF downloads(49) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog