Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Control and adaptive modified function projective synchronization of different hyperchaotic dynamical systems

  • Received: 24 February 2023 Revised: 04 July 2023 Accepted: 07 July 2023 Published: 31 July 2023
  • MSC : 37N35, 34D06, 34H10

  • In this work, we consider an adaptive control method, which is simpler and generalized to obtain some conditions on the parameters for hyperchaotic models determined by using a Lyapunov direct method. Further, an adaptive controller for synchronization is designed by using Lyapunov functions by which the deriving system and the response system can realize adaptive modified function projective synchronization up to scaling matrix. Numerical simulation of each system is discussed in detail with graphical results. The graphical results are presented in detail in order to validate the theoretical results. These results in this article generalize and improve the corresponding results of the recent works.

    Citation: M. M. El-Dessoky, Nehad Almohammadi, Ebraheem Alzahrani. Control and adaptive modified function projective synchronization of different hyperchaotic dynamical systems[J]. AIMS Mathematics, 2023, 8(10): 23621-23634. doi: 10.3934/math.20231201

    Related Papers:

    [1] Fahad Alsharari, Ahmed O. M. Abubaker, Islam M. Taha . On r-fuzzy soft γ-open sets and fuzzy soft γ-continuous functions with some applications. AIMS Mathematics, 2025, 10(3): 5285-5306. doi: 10.3934/math.2025244
    [2] Dina Abuzaid, Samer Al-Ghour . Supra soft Omega-open sets and supra soft Omega-regularity. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303
    [3] Rui Gao, Jianrong Wu . Filter with its applications in fuzzy soft topological spaces. AIMS Mathematics, 2021, 6(3): 2359-2368. doi: 10.3934/math.2021143
    [4] Arife Atay . Disjoint union of fuzzy soft topological spaces. AIMS Mathematics, 2023, 8(5): 10547-10557. doi: 10.3934/math.2023535
    [5] Ibtesam Alshammari, Islam M. Taha . On fuzzy soft β-continuity and β-irresoluteness: some new results. AIMS Mathematics, 2024, 9(5): 11304-11319. doi: 10.3934/math.2024554
    [6] Orhan Göçür . Amply soft set and its topologies: AS and PAS topologies. AIMS Mathematics, 2021, 6(4): 3121-3141. doi: 10.3934/math.2021189
    [7] Rehab Alharbi, S. E. Abbas, E. El-Sanowsy, H. M. Khiamy, Ismail Ibedou . Soft closure spaces via soft ideals. AIMS Mathematics, 2024, 9(3): 6379-6410. doi: 10.3934/math.2024311
    [8] Tareq M. Al-shami, Zanyar A. Ameen, A. A. Azzam, Mohammed E. El-Shafei . Soft separation axioms via soft topological operators. AIMS Mathematics, 2022, 7(8): 15107-15119. doi: 10.3934/math.2022828
    [9] G. Şenel, J. I. Baek, S. H. Han, M. Cheong, K. Hur . Compactness and axioms of countability in soft hyperspaces. AIMS Mathematics, 2025, 10(1): 72-96. doi: 10.3934/math.2025005
    [10] Dina Abuzaid, Samer Al Ghour . Three new soft separation axioms in soft topological spaces. AIMS Mathematics, 2024, 9(2): 4632-4648. doi: 10.3934/math.2024223
  • In this work, we consider an adaptive control method, which is simpler and generalized to obtain some conditions on the parameters for hyperchaotic models determined by using a Lyapunov direct method. Further, an adaptive controller for synchronization is designed by using Lyapunov functions by which the deriving system and the response system can realize adaptive modified function projective synchronization up to scaling matrix. Numerical simulation of each system is discussed in detail with graphical results. The graphical results are presented in detail in order to validate the theoretical results. These results in this article generalize and improve the corresponding results of the recent works.



    In this paper, we consider the following Rao-Nakra sandwich beam with time-varying weights and frictional dampings in (x,t)(0,L)×(0,),

    ρ1h1uttE1h1uxxk(u+v+αwx)+α1(t)f1(ut)=0,ρ3h3vttE3h3vxx+k(u+v+αwx)+α2(t)f2(vt)=0,ρhwtt+EIwxxxxαk(u+v+αwx)x+α3(t)f3(wt)=0, (1.1)

    in which u and v denote the longitudinal displacement and shear angle of the bottom and top layers, and w represents the transverse displacement of the beam. The positive constants ρi, hi, and Ei (i=1,3) are physical parameters representing, respectively, density, thickness, and Young's modulus of the i-th layer for i=1,2,3 and ρh=ρ1h1+ρ2h2+ρ3h3. EI=E1I1+E3I3, α=h2+(h1+h32), k=1h2(E22(1+μ)), where μ is the Poisson ratio 1<μ<12. The functions α1(t), α2(t), α3(t) are the time dependent of the nonlinear frictional dampings f1(ut), f2(vt), f3(wt), respectively. For the system (1.1), we consider the following Dirichlet-Neumann boundary conditions

    u(0,t)=u(L,t)=0,t(0,),v(0,t)=v(L,t)=0,t(0,),w(0,t)=wx(0,t)=0,t(0,),w(L,t)=wx(L,t)=0,t(0,), (1.2)

    and the initial conditions

    u(x,0)=u0,ut(x,0)=u1in (0,L),v(x,0)=v0,vt(x,0)=v1in (0,L),w(x,0)=w0,wt(x,0)=w1in (0,L). (1.3)

    The system (1.1)–(1.3) consists of one Euler-Bernoulli beam equation for the transversal displacement, and two wave equations for the longitudinal displacements of the top and bottom layers.

    Our aim is to investigate the asymptotic behavior of solutions for the system (1.1)–(1.3). We study the effect of the three nonlinear dampings on the asymptotic behavior of the energy function. Under nonrestrictive on the growth assumption on the frictional damping terms, we establish exponential and general energy decay rates for this system by using the multiplier approach. The results generalize some earlier decay results on the Rao-Nakra sandwich beam equation.

    First, let's review some previous findings about multilayered sandwich beam models. By applying the Riesz basis approach, Wang et al. [1] studied a sandwich beam system with a boundary control and established the exponential stability as well as the exact controllability and observability of the system. The author of [2] employed the multiplier approach to determine the precise controllability of a Rao-Nakra sandwich beam with boundary controls rather than the Riesz basis approach. Hansen and Imanuvilov [3,4] investigated a multilayer plate system with locally distributed control in the boundary and used Carleman estimations to determine the precise controllability results. Özer and Hansen [5,6] succeeded in obtaining, for a multilayer Rao-Nakra sandwich beam, boundary feedback stabilization and perfect controllability. One viscous damping effect on either the beam equation or one of the wave equations was all that was taken into account by Liu et al. [7] when they established the polynomial decay rate using the frequency domain technique. The semigroup created by the system is polynomially stable of order 1/2, according to Wang [8], who analyzed a Rao-Nakra beam with boundary damping only on one end for two displacements using the same methodology. One can find additional results on the multilayer beam in [9,10,11,12,13,14,15].

    In this paper, we consider a Rao-Nakra sandwich beam with time-varying weights and frictional dampings, i.e., system (1.1)–(1.3). The main results are twofold:

    (I) We establish an exponential decay of the system in the case of linear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi.

    (II) We establish more general decay of the system in the case of nonlinear frictional dampings by using the multiplier approach, and the decay result depends on the time-varying weights αi and the frictional dampings fi. To the best of our knowledge, there is no stability results on the Rao-Nakra sandwich beam with nonlinear frictional dampings. The remainder of the paper is as follows. In Section 2, we introduce some notations and preliminary results. In Section 3, we state the theorem of the stability and give a detailed proof.

    In this section, we present some materials needed in the proof of our results. Throughout this paper, c and ε are used to denote generic positive constants. We consider the following assumptions:

    (H1) For (i=1,2,3), the functions fi:RR are C0 nondecreasing satisfying, for c1,c2>0,

    s2+f2i(s)|F1i(sfi(s))for all|s|ri,c1|s||fi(s)|c2|s|for all|s|ri, (2.1)

    where Fi:(0,)(0,) (i=1,2,3) are C1 functions, which are linear or strictly increasing and strictly convex C2 functions on (0,ri] with Fi(0)=Fi(0)=0.

    (H2) For (i=1,2,3), the time dependent functions αi:[0,)(0,) are C1 functions satisfying 0αi(t)dt=.

    Remark 2.1. (1) Hypothesis (H1) implies that sfi(s)>0, for all s0. This condition (H1) was introduced and employed by Lasiecka and Tataru [16]. It was shown there that the monotonicity and continuity of fi guarantee the existence of the function Fi with the properties stated in (H1).

    (2) For more results on the convexity properties on the nonlinear frictional dampings and sharp energy decay rates, we refer to the works by Boussouira and her co-authors [17,18,19].

    The following lemmas will be of essential use in establishing our main results.

    Lemma 3.1. [20] Let E:R+R+ be a nonincreasing function and γ:R+R+ be a strictly increasing C1-function, with γ(t)+ as t+. Assume that there exists c>0 such that

    Sγ(t)E(t)dtcE(S),1S<+,

    then there exist positive constants k and ω such that

    E(t)keωγ(t).

    Lemma 3.2. Let E:R+R+ be a differentiable and nonincreasing function and let χ:R+R+ be a convex and increasing function such that χ(0)=0. Assume that

    +sχ(E(t))dtE(s),s0, (3.1)

    then E satisfies the estimate

    E(t)ψ1(h(t)+ψ(E(0))),t0, (3.2)

    where ψ(t)=1t1χ(s)ds for t>0, and

    {h(t)=0,0tE(0)χ(E(0)),h1(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0)))),t>0.

    Proof. Since E(t)0, this implies E(0)E(t0) for all tt00. If E(t0)=0 for t00, then E(t)=0 for all tt00, and there is nothing to prove in this case. As in [21], we assume that E(t)>0 for t0 without loss of generality. Let

    L(s)=sχ(E(t))dt,s0.

    We have L(s)E(s),s0. The functional L is positive, decreasing, and of class C1(0,) satisfying

    L(s)=χ(E(s))χ(L(s)),s0.

    Since the functional χ is decreasing, we have

    χ(L(s))=L(s)χ(L(s))1,s0.

    Integrating this differential equation over (0,t), we get

    χ(L(t))t+ψ(E(0)),t0. (3.3)

    Since χ is convex and χ(0)=0, we have

    χ(s)sχ(1),s[0,1]andχ(s)sχ(1),s1.

    We find limt0ψ(t)= and [ψ(E(0)),))Image(ψ), then (3.3) imply that

    L(t)ψ1(t+ψ(E(0))),t0. (3.4)

    Now, using the properties of χ and E, we have

    L(s)tsχ(E(τ))dτ(ts)χ(E(t)),ts0. (3.5)

    Since limt0χ(t)=,χ(0)=0, and χ is increasing, (3.4) and (3.5) imply that

    E(t)χ1(infs[0,t)ψ1(t+ψ(E(0)))ts),t>0. (3.6)

    Now, let t>E(0)χ(E(0)) and J(s)=ψ1(t+ψ(E(0)))ts,s[0,t).

    The function J is differentiable, then we have

    J(s)=(ts)2[ψ1(s+ψ(E(0)))(ts)χ(ψ1(s+ψ(E(0))))]. (3.7)

    Thus, J(s)=0K(s)=t and J(s)<0K(s)<t, where

    K(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0)))).

    Since K(0)=E(0)χ(E(0)) and K is increasing (because ψ1 is decreasing and ssχ(s),s>0 is nonincreasing thanks to the fact χ is convex), for t>E(0)χ(E(0)), we have

    infs[0,t)J(K1(t))=J(h(t)).

    Since h satisfies J(h(t))=0, we conclude from (3.6) our desired estimate (3.2).

    We define the energy associated to the problem (1.1)–(1.3) by the following formula

    E(t)=12[ρ1h1L0u2tdx+E1h1L0u2xdx+ρ3h3L0v2tdx+E3h3L0v2xdx+ρhL0w2tdx+EIL0w2xxdx+kL0(u+v+αwx)2dx]. (3.8)

    Lemma 3.3. The energy E(t) satisfies

    E(t)α1(t)L0utf1(ut)dxα2(t)L0vtf2(vt)dxα3(t)L0wtf3(wt)dx0. (3.9)

    Proof. Multiplying (1.1)1 by ut, (1.1)2 by vt, (1.1)3 by wt and integrating each of them by parts over (0,L), we get the desired result.

    In this section, we state and prove our main result. For this purpose, we establish some lemmas. From now on, we denote by c various positive constants, which may be different at different occurrences. For simplicity, we consider the case α(t)=α1(t)=α2(t)=α3(t).

    Lemma 4.1. (Case: Fi is linear) For T>S0, the energy functional of the system (1.1)–(1.3) satisfies

    TSα(t)E(t)dtcE(S). (4.1)

    Proof. Multiplying (1.1)1 by αu and integrating over (S,T)×(0,L), we obtain

    TSα(t)L0u[ρ1h1uttE1h1uxxk(u+v+αwx)+α(t)f1(ut)]dxdt=0.

    Notice that

    uttu=(utu)tu2t.

    Using integration by parts and the boundary conditions, we get

    TSα(t)L0ρ1h1u2tdxdt+TSα(t)L0E1h1u2xdxdtTSα(t)L0ku(u+v+αwx)dxdt=ρ1h1[α(t)L0uutdx]TSTSα2(t)L0uf1(ut)dxdt. (4.2)

    Adding 2TSα(t)L0ρ1h1u2tdxdt to both sides of the above equation, we have

    TSα(t)L0ρ1h1u2tdxdt+TSα(t)L0E1h1u2xdxdtTSα(t)L0ku(u+v+αwx)dxdt=ρ1h1[α(t)L0uutdx]TSTSα2(t)L0uf1(ut)dxdt+2TSα(t)L0ρ1h1u2tdxdt. (4.3)

    Similarly, multiplying (1.1)2 by α(t)v and (1.1)3 by α(t)w, and integrating each of them over (S,T)×(0,L), we obtain

    TSα(t)L0ρ3h3v2tdxdt+TSα(t)L0E3h3v2xdxdt+TSα(t)L0kv(u+v+αwx)dxdt=ρ3h3[L0α(t)vvtdx]TSTSα2(t)L0vf2(vt)dxdt+2TSα(t)L0ρ3h3v2tdxdt, (4.4)

    and

    TSα(t)L0ρhw2tdxdt+TSα(t)L0EIw2xxdxdtTSα(t)L0kαw(u+v+αwx)xdxdt=ρh[L0α(t)wwtdx]TSTSα2(t)L0wf3(wt)dxdt+2TSα(t)L0ρhw2tdxdt. (4.5)

    Recalling the definition of E, and from (4.2)–(4.5), we get

    2TSα(t)E(t)dtρ1h1[α(t)L0uutdx]TSρ3h3[α(t)L0vvtdx]TSρh[α(t)L0wwtdx]TSTSα2(t)L0uf1(ut)dxdtTSα2(t)L0vf2(vt)dxdtTSα2(t)L0wf3(wt)dxdt+2TSα(t)L0ρ1h1u2tdxdt+2TSα(t)L0ρ3h3v2tdxdt+2TSα(t)L0ρhw2tdxdt. (4.6)

    Now, using Young's and Poincaré inequalities, we get for any εi>0(i=1,2,3),

    L0uutdxε1L0u2dx+14ε1L0u2tdxcpε1L0u2xdx+14ε1L0u2tdxcE(t),L0zztdxε2L0z2dx+14ε2L0z2tdxcpε2L0z2dx+14ε2L0z2tdxcE(t),L0wwtdxε3L0w2dx+14ε3L0w2tdxcpε3L0w2dx+14ε3L0w2tdxcE(t), (4.7)

    which implies that

    [α(t)L0uutdx]TScα(S)E(S)cα(S)E(T)cE(S),
    [α(t)L0vvtdx]TScE(S),

    and

    [α(t)L0wwtdx]TScE(S).

    Using (H1), the fact that F1 is linear, Hölder and Poincaré inequalities, we obtain

    α2(t)L0uf1(ut)dxα2(t)(L0|u|2dx)12(L0|f1(ut)|2dx)12α32||u||2(αL0utf1(ut)dx)12cE12(t)(E(t))12. (4.8)

    Applying Young's inequality on the term E12(t)(E(t))12, we obtain for ε>0

    α2(t)L0uf1(ut)dxcα(t)(εE(t)CεE(t))cεα(t)E(t)CεE(t), (4.9)

    which implies that

    TSα2(t)(L0(uf1(ut))dx)dtcεTSα(t)E(t)dt+CεE(S). (4.10)

    In the same way, we have

    TSα2(t)(L0(vf2(vt))dx)dtcεTSα(t)E(t)dt+CεE(S), (4.11)

    and

    TSα2(t)(L0(wf3(wt))dx)dtcεTSα(t)E(t)dt+CεE(S). (4.12)

    Finally, using (H1), and the fact that F1 is linear, we find that

    2TSα(t)L0ρ1h1u2tdxdtcTSα(t)L0utf1(ut)dxdtcTS(E(t))dtcE(S). (4.13)

    Similarly, we get

    2TSα(t)L0ρ3h3v2tdxdtcE(S),and2TSα(t)L0ρhw2tdxdtcE(S). (4.14)

    We combine the above estimates and take ε small enough to get the estimate (4.1).

    Lemma 4.2. (Case: Fi are nonlinear) For T>S0, the energy functional of the system (1.1)–(1.3) satisfies

    TSα(t)Λ(E(t))dtcΛ(E(S))+cTSα(t)Λ(E)EL0(|ut|2+|uf1(ut)|)dxdt+cTSα(t)Λ(E)EL0(|vt|2+|vf2(vt)|)dxdt+cTSα(t)Λ(E)EL0(|vt|2+|vf3(wt)|)dxdt, (4.15)

    where Λ is convex, increasing, and of class C1[0,) such that Λ(0)=0.

    Proof. We multiply (1.1)1 by α(t)Λ(E)Eu and integrate over (0,L)×(S,T) to get

    ρ1h1TSα(t)Λ(E)EL0u2tdxdt+E1h1TSα(t)Λ(E)EL0u2xdxdtkTSα(t)Λ(E)EL0u(u+v+αwx)dxdt=ρ1h1TSα(t)Λ(E)EL0(uut)tdxdtTSα2(t)Λ(E)EL0uf1(ut)dxdt+2ρ1h1TSα(t)Λ(E)EL0u2tdxdt. (4.16)

    Also, we multiply (1.1)2 by α(t)Λ(E)Ev and integrate over (0,L)×(S,T) to get

    ρ3h3TSα(t)Λ(E)EL0v2tdxdt+E3h3TSα(t)Λ(E)EL0v2xdxdt+kTSα(t)Λ(E)EL0v(u+v+αwx)dxdt=ρ3h3TSα(t)Λ(E)EL0(vvt)tdxdtTSα2(t)Λ(E)EL0vf2(vt)dxdt+2ρ3h3TSα(t)Λ(E)EL0v2tdxdt. (4.17)

    Similarly, we multiply (1.1)3 by α(t)Λ(E)Ew and integrate over (0,L)×(S,T) to get

    ρhTSα(t)Λ(E)EL0w2tdxdt+EhTSα(t)Λ(E)EL0w2xxdxdt+αkTSα(t)Λ(E)EL0wx(u+v+αwx)dxdt=ρhTSα(t)Λ(E)EL0(wwt)tdxdtTSα2(t)Λ(E)EL0wf3(wt)dxdt+2ρhTSα(t)Λ(E)EL0w2tdxdt. (4.18)

    Integrating by parts in the first term of the righthand side of the Eq (4.16), we find that Eq (4.16) becomes

    ρ1h1TSα(t)Λ(E)EL0u2tdxdt+E1h1TSα(t)Λ(E)EL0u2xdxdtkTSα(t)Λ(E)EL0u(u+v+αwx)dxdt=ρ1h1[α(t)Λ(E)EL0uutdx]TS+ρ1h1TSL0ut(α(t)Λ(E)Eu+α(t)(Λ(E)E)u)dxdt+2ρ1h1TSα(t)Λ(E)EL0u2tdxdtTSα2(t)Λ(E)EL0uf1(ut)dxdt.

    Using the fact that L0uutdxcE(t), the properties of α(t), and the facts that the function sΛ(s)s is nondecreasing and E is nonincreasing, we have

    TSα(t)Λ(E)EL0uutdxdtcTSα(t)Λ(E)EE(t)dtcΛ(E(S))TSα(t)dtcΛ(E(S)). (4.19)

    Similarly, we get

    TSα(t)(Λ(E)E)L0uutdxdtE(S)TSα(t)(Λ(E)E)dtE(S)[α(t)Λ(E)E]TSE(S)TSα(t)Λ(E)EdtE(S)(α(T)Λ(E(T))E(T)α(S)Λ(E(S))E(S))E(S)Λ(E(S))E(S)TSα(t)dtE(S)α(T)Λ(E(T))E(T)Λ(E(S))(α(T)α(S))E(S)α(S)Λ(E(S))E(S)+Λ(E(S))α(S)cΛ(E(S)). (4.20)

    Combining (4.19)–(4.20), we have

    ρ1h1TSα(t)Λ(E)EL0u2tdxdt+E1h1TSα(t)Λ(E)EL0u2xdxdtkTSα(t)Λ(E)EL0u(u+v+αwx)dxdtcΛ(E(S))+2ρ1h1TSα(t)Λ(E)EL0u2tdxdtTSα2(t)Λ(E)EL0uf1(ut)dxdt.

    Similarly, we have

    ρ3h3TSα(t)Λ(E)EL0v2tdxdt+E3h3TSα(t)Λ(E)EL0v2xdxdt+kTSα(t)Λ(E)EL0v(u+v+αwx)dxdtcΛ(E(S))+2ρ3h3TSα(t)Λ(E)EL0v2tdxdtTSα2(t)Λ(E)EL0vf2(vt)dxdt,

    and

    ρhTSα(t)Λ(E)EL0w2tdxdt+EhTSα(t)Λ(E)EL0w2xxdxdt+αkTSα(t)Λ(E)EL0wx(u+v+αwx)dxdtcΛ(E(S))+2ρhTSα(t)Λ(E)EL0w2tdxdtTSα2(t)Λ(E)EL0wf3(wt)dxdt.

    Gathering all the above estimations by using (3.8), we obtain

    TSα(t)Λ(E(t))dtcΛ(E(S))+cTSα2(t)Λ(E)EL0(|ut|2+|uf1(ut)|)dxdt+cTSα2(t)Λ(E)EL0(|vt|2+|vf2(vt)|)dxdt+cTSα2(t)Λ(E)EL0(|wt|2+|wf3(wt)|)dxdt. (4.21)

    This completes the proof of the estimate (4.15).

    In order to finalize the proof of our result, we let

    Λ(s)=2ε0sFi(ε20s), Ψi(s)=Fi(s2),

    where Fi and Ψi denote the dual functions of the convex functions Fi and Ψi, respectively, in the sense of Young (see Arnold [22], pp. 64).

    Lemma 4.3. Suppose Fi(i=1,2,3) are nonlinear, then the following estimates

    Fi(Λ(s)s)Λ(s)s(Fi)1(Λ(s)s) (4.22)

    and

    Ψi(Λ(s)s)ε0Λ(s), (4.23)

    hold.

    Proof. We prove for i=1, and the remaining are similar. Since F1 and Ψ1 are the dual functions of the convex functions F1 and Ψ1, respectively, then

    F1(s)=s(F1)1(s)F1[(F1)1(s)]s(F1)1(s) (4.24)

    and

    Ψ1(s)=s(Ψ1)1(s)Ψ1[(Ψ1)1(s)]s(Ψ1)1(s). (4.25)

    Using (4.24) and the definition of Λ, we obtain (4.22).

    For the proof of (4.23), we use (4.25) and the definitions of Ψ1 and Λ to obtain

    Λ(s)s(Ψ1)1(Λ(s)s)2ε0sF1(ε20s)(Ψ1)1(2ε0sF1(ε20s))=2ε0sF1(ε20s)(Ψ1)1(Ψ1(ε0s))=2ε20sF1(ε20s)=ε0Λ(s). (4.26)

    Now, we state and prove our main decay results.

    Theorem 4.4. Let (u0,u1)×(z0,z1)[H20(0,L)×L2(0,L)]2. Assume that (H1) and (H2) hold, then there exist positive constants k and c such that, for t large, the solution of the system (1.1)–(1.3) satisfies

    E(t)kect0α(s)ds,if Fi is linear,  (4.27)
    E(t)ψ1(h(˜α(t))+ψ(E(0))),t0,if Fi are nonlinear,  (4.28)

    where ˜α(t)=t0α(t)dt, ψ(t)=1t1χ(s)ds, χ(t)=cΛ(t), and

    {h(t)=0,0tE(0)χ(E(0)),h1(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0)))),t>0.

    Proof. To establish (4.27), we use (4.1), and Lemma 3.1 for γ(t)=t0α(s)ds. Consequently, the result follows.

    For the proof of (4.28), we re-estimate the terms of (4.15) as follows:

    We consider the following partition of the domain (0,L):

    Ω1={x(0,L):|ut|ε1},Ω2={x(0,L):|ut|ε1}.

    So,

    TSα(t)Λ(E)EΩ1(|ut|2+|uf1(ut)|)dxdt=TSα(t)Λ(E)EΩ1|ut|2dxdt+TSα(t)Λ(E)EΩ1|uf1(ut)|dxdt:=I1+I2.

    Using the definition of Ω1, condition (H1), and (3.9), we have

    I1cTSα(t)Λ(E)EΩ1utf1(ut)dxdtcTSΛ(E)E(E(t))dtcΛ(E(S)). (4.29)

    After applying Young's inequality, and the condition (H1), we obtain

    I2εTSα(t)Λ2(E)Edt+c(ε)TSα(t)Ω1|f1(ut)|2dt. (4.30)

    The definition of Ω1, the condition (H1), (3.8), (3.9), and (4.30) lead to

    I2εTSα(t)Λ2(E)Edt+c(ε)TSα(t)Ω1utf1(ut)dxdtεTSα(t)Λ2(E)Edt+c(ε)E(S). (4.31)

    Using the definition of Λ, and the convexity of F1, (4.31) becomes

    I2εTSα(t)Λ2(E)Edt+cεE(S)=2εε0TSα(t)Λ(E)F1(ε20E(t))dt+cεE(S)2εε0TSα(t)Λ(E)F1(ε20E(0))dt+cεE(S)2cεε0TSα(t)Λ(E)dt+cεE(S). (4.32)

    Using Young's inequality, Jensen's inequality, condition (H1), and (3.8), we get

    TSα(t)Λ(E)EΩ2(|ut|2+|uf1(ut)|)dxdtTSα(t)Λ(E)EΩ2F11(utf1(ut))dxdt+TSα(t)Λ(E)Eu12(Ω2F11(utf1(ut))dx)12dxdtLTSα(t)Λ(E)EF11(1LL0utf1(ut)dx)dt+TSα(t)Λ(E)EELF11(1LL0utf1(ut)dx)dt. (4.33)

    We apply the generalized Young inequality

    ABF(A)+F(B)

    to the first term of (4.33) with A=Λ(E)E and B=F11(1LL0utf1(ut)dx) to get

    Λ(E)EF11(1LL0utf1(ut)dx)F1(Λ(E)E)+1LL0utf1(ut)dx. (4.34)

    We then apply it to the second term of (4.33) with A=Λ(E)EE and

    B=LF11(1LL0utf1(ut)dx) to obtain

    Λ(E)EELF11(1LL0utf1(ut)dx)F1(Λ(E)EE)+LF11(1LL0utf1(ut)dx). (4.35)

    Combining (4.33)–(4.35), using (4.22), and (4.23), we arrive at

    TSα(t)Λ(E)EΩ2(|ut|2+|uf1(ut)|)dxdtcTSα(t)(F1(Λ(E)EE)+F1(Λ(E)E))dt+cTSα(t)Ωutf1(ut)dxdtcTSα(t)(ε0+(F1)1(Λ(E)E)E)Λ(E)dt+cE(S). (4.36)

    Using the fact that s(F1)1(s) is nondecreasing, we deduce that, for 0<ε0E(0),

    TSα(t)Λ(E)EΩ2(|ut|2+|uf1(ut)|)dxdtcε0TSα(t)Λ(E)dt+cE(S).

    Therefore, combining (4.15), (4.29), and (4.32), we find that

    TSα(t)Λ(E)EL0(|ut|2+|uf1(ut)|)dxdtcΛ(E(S))+cεε0TSα(t)Λ(E)dt+cεE(S),

    and similarly,

    TSα(t)Λ(E)EL0(|vt|2+|vf2(vt)|)dxdtcΛ(E(S))+cεε0TSα(t)Λ(E)dt+cεE(S),

    and

    TSα(t)Λ(E)EL0(|wt|2+|wf3(wt)|)dxdtcΛ(E(S))+cεε0TSα(t)Λ(E)dt+cεE(S),

    Combining all the above estimations with choosing ε and ε0 small enough, we arrive at

    TSα(t)Λ(E(t))dtc(1+Λ(E(S))E(S))E(S).

    Using the facts that E is nonincreasing and sΛ(s)s is nondecareasing, we can deduce that

    +Sα(t)Λ(E(t))dtcE(S).

    Now, let ˜E=E˜α1, where ˜α(t)=t0α(s)ds, then we deduce from this inequality that

    SΛ(˜E(t))dt=SΛ(E(˜α1(t)))dt=˜α1(S)α(η)Λ(E(η))dηcE(˜α1(S))c˜E(S).

    Using Lemma 3.1 for ˜E and χ(s)=cΛ(s), we deduce from (3.1) the following estimate

    ˜E(t)ψ1(h(t)+ψ(E(0)))

    which, using the definition of ˜E and the change of variables, gives (4.28).

    Remark 4.1. The stability result (4.28) is a decay result. Indeed,

    h1(t)=t+ψ1(t+ψ(E(0)))χ(ψ1(t+ψ(E(0))))=t+c2ε0cF(ε20ψ1(t+r))t+c2ε0cF(ε20ψ1(r))t+˜c,

    where F=min{Fi} and i=1,2,3. Hence, limth1(t)=, which implies that limth(t)=. Using the convexity of F, we have

    ψ(t)=1t1χ(s)ds=1tc2ε0sF(ε20s)1tcsF(ε20)c[ln|s|]1t=clnt,

    where F=min{Fi} and i=1,2,3. Therefore, limt0+ψ(t)=, which leads to limtψ1(t)=0.

    Example 1. Let fi(s)=sm, (i=1,2,3), where m1, then the function F (F=min{Fi}) is defined in the neighborhood of zero by

    F(s)=csm+12

    which gives, near zero,

    χ(s)=c(m+1)2sm+12.

    So,

    ψ(t)=c1t2(m+1)sm+12ds={ctm12,if   m>1;clnt,if   m=1,

    then in the neighborhood of ,

    ψ1(t)={ct2m1,if   m>1;cet,if   m=1.

    Using the fact that h(t)=t as t goes to infinity, we obtain from (4.27) and (4.28):

    E(t){c(t0α(s)ds)2m1,if   m>1;cet0α(s)ds,if   m=1.

    Example 2. Let fi(s)=smlns, (i=1,2,3), where m1, then the function F is defined in the neighborhood of zero by

    F(s)=csm+12lns,

    which gives, near zero,

    χ(s)=csm+12(lns)12(m+12(lns)14).

    Therefore,

    ψ(t)=c1t1sm+12(lns)12(m+12(lns)14)ds=c1t1τm2(lnτ)12(m+12lnτ14)dτ={ctm12lnt,if   m>1;clnt,if   m=1,

    then in the neighborhood of ,

    ψ1(t)={ct2m1(lnt)1m1,if   m>1;cet2,if   m=1.

    Using the fact that h(t)=t as t goes to infinity, we obtain

    E(t){c(t0α(s)ds)2m1(ln(t0α(s)ds))1m1,if   m>1;ce(t0α(s)ds)2,if   m=1.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors would like to acknowledge the support provided by King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia. The support provided by the Interdisciplinary Research Center for Construction & Building Materials (IRC-CBM) at King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia, for funding this work through Project No. INCB2402, is also greatly acknowledged.

    The authors declare that there is no conflict of interest.



    [1] S. K. Agrawal, S. Das, Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method, J. Process Control, 24 (2014), 517–530. https://doi.org/10.1016/j.jprocont.2014.02.013 doi: 10.1016/j.jprocont.2014.02.013
    [2] H. N. Agiza, On the analysis of stability, bifurcation, chaos and chaos control of kopel map, Chaos, Solitons Fract., 10 (1999), 1909–1916. https://doi.org/10.1016/S0960-0779(98)00210-0 doi: 10.1016/S0960-0779(98)00210-0
    [3] E. W. Bai, K. E. Lonngren, Sequential synchronization of two Lorenz system using active control, Chaos, Solitons Fract., 11 (2000), 1041–1044. https://doi.org/10.1016/S0960-0779(98)00328-2 doi: 10.1016/S0960-0779(98)00328-2
    [4] N. Cai, Y. Jing, S. Zhang, Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1613–1620. https://doi.org/10.1016/j.cnsns.2009.06.012 doi: 10.1016/j.cnsns.2009.06.012
    [5] T. L. Carroll, L. M. Perora, Synchronizing chaotic circuits, IEEE Trans. Circuits Syst., 38 (1991), 453–456. https://doi.org/10.1109/31.75404 doi: 10.1109/31.75404
    [6] G. Chen, Chaos on some controllability conditions for chaotic dynamics control, Chaos, Solitons Fract., 8 (1997), 1461–1470. https://doi.org/10.1016/S0960-0779(96)00146-4 doi: 10.1016/S0960-0779(96)00146-4
    [7] Y. Chen, X. Li, Function projective synchronization between two identical chaotic systems, Int. J. Mod. Phys. C, 18 (2007), 883–888. https://doi.org/10.1142/S0129183107010607 doi: 10.1142/S0129183107010607
    [8] S. Dadras, H. R. Momeni, Control of a fractional-order economical system via sliding mode, Phys. A, 389 (2010), 2434–2442. https://doi.org/10.1016/j.physa.2010.02.025 doi: 10.1016/j.physa.2010.02.025
    [9] H. Du, Q. Zeng, C. Wang, Function projective synchronization of different chaotic systems with uncertain parameters, Phys. Lett. A, 372 (2008), 5402–5410. https://doi.org/10.1016/j.physleta.2008.06.036 doi: 10.1016/j.physleta.2008.06.036
    [10] E. M. Elabbasy, H. N. Agiza, M. M. El-Dessoky, Global chaos synchronization for four-scroll attractor by nonlinear control, Sci. Res. Essay, 1 (2006), 65–71.
    [11] E. M. Elabbasy, M. M. El-Dessoky, Adaptive coupled synchronization of coupled chaotic dynamical systems, Trends Appl. Sci. Res., 2 (2007), 88–102.
    [12] E. M. Elabbasy, M. M. El-Dessoky, Synchronization of van der Pol oscillator and Chen chaotic dynamical system, Chaos, Solitons Fract., 36 (2008), 1425–1435. https://doi.org/10.1016/j.chaos.2006.08.039 doi: 10.1016/j.chaos.2006.08.039
    [13] M. M. El-Dessoky, Synchronization and anti-synchronization of a hyperchaotic Chen system, Chaos, Solitons Fract., 39 (2009), 1790–1797. https://doi.org/10.1016/j.chaos.2007.06.053 doi: 10.1016/j.chaos.2007.06.053
    [14] M. M. El-Dessoky, Anti-synchronization of four scroll attractor with fully unknown parameters, Nonlinear Anal.: Real World Appl., 11 (2010), 778–783. https://doi.org/10.1016/j.nonrwa.2009.01.048 doi: 10.1016/j.nonrwa.2009.01.048
    [15] M. M. El-Dessoky, E. O. Alzahrany, N. A. Almohammadi, Function projective synchronization for four scroll attractor by nonlinear control, Appl. Math. Sci., 11 (2017), 1247–1259. https://doi.org/10.12988/ams.2017.7259 doi: 10.12988/ams.2017.7259
    [16] M. M. El-Dessoky, E. O. Alzahrany, N. A. Almohammadi, Chaos control and function projective synchronization of noval chaotic dynamical system, J. Comput. Anal. Appl., 27 (2019), 162–172.
    [17] M. M. El-Dessoky, M. T. Yassen, Adaptive feedback control for chaos control and synchronization for new chaotic dynamical system, Math. Probl. Eng., 2012 (2012), 1–12. https://doi.org/10.1155/2012/347210 doi: 10.1155/2012/347210
    [18] A. Hegazi, H. N. Agiza, M. M. El-Dessoky, Controlling chaotic behaviour for spin generator and rossler dynamical systems with feedback control, Chaos, Solitons Fract., 12 (2001), 631–658. https://doi.org/10.1016/S0960-0779(99)00192-7 doi: 10.1016/S0960-0779(99)00192-7
    [19] J. Huang, Adaptive synchronization between different hyperchaotic systems with fully uncertain parameters, Phys. Lett. A, 372 (2008), 4799–4804. https://doi.org/10.1016/j.physleta.2008.05.025 doi: 10.1016/j.physleta.2008.05.025
    [20] C. C. Hwang, J. Y. Hsieh, R. S. Lin, A linear continuous feedback control of Chua's circuit, Chaos, Solitons Fract., 8 (1997), 1507–1515. https://doi.org/10.1016/S0960-0779(96)00150-6 doi: 10.1016/S0960-0779(96)00150-6
    [21] G. H. Li, Modified projective synchronization of chaotic system, Chaos, Solitons Fract., 32 (2007), 1786–1790. https://doi.org/10.1016/j.chaos.2005.12.009 doi: 10.1016/j.chaos.2005.12.009
    [22] G. H. Li, Generalized synchronization of chaos based on suitable separation, Chaos, Solitons Fract., 39 (2009), 2056–2062. https://doi.org/10.1016/j.chaos.2007.06.055 doi: 10.1016/j.chaos.2007.06.055
    [23] R. Luo, Z. Wei, Adaptive function projective synchronization of unified chaotic systems with uncertain parameters, Chaos, Solitons Fract., 42 (2009), 1266–1272. https://doi.org/10.1016/j.chaos.2009.03.076 doi: 10.1016/j.chaos.2009.03.076
    [24] C. X. Liu, A new hyperchaotic dynamical system, Chinese Phys., 16 (2007). https://doi.org/10.1088/1009-1963/16/11/022 doi: 10.1088/1009-1963/16/11/022
    [25] A. Loria, Master-slave synchronization of fourth order Lu chaotic oscillators via linear output feadback, IEEE Trans. Circuits Syst., 57 (2010), 213–217. https://doi.org/10.1109/TCSII.2010.2040303 doi: 10.1109/TCSII.2010.2040303
    [26] K. Ojo, S. Ogunjo, A. Olagundoye, Projective synchronization via active control of identical chaotic oscillators with parametric and external excitation, Int. J. Nonlinear Sci., 24 (2017), 76–83.
    [27] E. Ott, C. Grebogi, J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 64 (1990). https://doi.org/10.1103/PhysRevLett.64.1196 doi: 10.1103/PhysRevLett.64.1196
    [28] J. H. Park, Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos, Solitons Fract., 34 (2007), 1552–1559. https://doi.org/10.1016/j.chaos.2006.04.047 doi: 10.1016/j.chaos.2006.04.047
    [29] L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821–824. https://doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821
    [30] J. Petereit, A. Pikovsky, Chaos synchronization by nonlinear coupling, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 344–351. https://doi.org/10.1016/j.cnsns.2016.09.002 doi: 10.1016/j.cnsns.2016.09.002
    [31] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, H. D. I. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51 (1995), 980–994. https://doi.org/10.1103/PhysRevE.51.980 doi: 10.1103/PhysRevE.51.980
    [32] A. Singh, S. Gakkhar, Controlling chaos in a food chain model, Math. Comput. Simul., 115 (2015), 24–36. https://doi.org/10.1016/j.matcom.2015.04.001 doi: 10.1016/j.matcom.2015.04.001
    [33] Y. Tang, J. Fang, General method for modified projective synchronization of hyperchaotic systems with known or unknown parameter, Phys. Lett. A, 372 (2008), 1816–1826. https://doi.org/10.1016/j.physleta.2007.10.043 doi: 10.1016/j.physleta.2007.10.043
    [34] K. Vishal, S. K. Agrawal, On the dynamics, existence of chaos, control and synchronization of a novel complex chaotic system, Chin. J. Phys., 55 (2017), 519–532. https://doi.org/10.1016/j.cjph.2016.11.012 doi: 10.1016/j.cjph.2016.11.012
    [35] C. Chen, L. Sheu, H. Chen, J. Chen, H. Wang, Y. Chao, et al., A new hyper-chaotic system and its synchronization, Nonlinear Anal.: Real World Appl., 4 (2009), 2088–2096.
    [36] X. Xu, Generalized function projective synchronization of chaotic systems for secure communication, EURASIP J. Adv. Signal Process., 2011 (2011), 14. https://doi.org/10.1186/1687-6180-2011-14 doi: 10.1186/1687-6180-2011-14
    [37] C. H. Yang, C. L. Wu, Nonlinear dynamic analysis and synchronization of four-dimensional Lorenz-Stenflo system and its circuit experimental implementation, Abstr. Appl. Anal., 2014 (2014), 1–17. https://doi.org/10.1155/2014/213694 doi: 10.1155/2014/213694
    [38] S. S Yang, C. K. Duan, Generalized synchronization in chaotic systems, Chaos, Solitons Fract., 9 (1998), 1703–1707. https://doi.org/10.1016/S0960-0779(97)00149-5 doi: 10.1016/S0960-0779(97)00149-5
    [39] X. S. Yang, A framework for synchronization theory, Chaos, Solitons Fract., 11 (2000), 1365–1368. https://doi.org/10.1016/S0960-0779(99)00045-4 doi: 10.1016/S0960-0779(99)00045-4
    [40] Y. Yu, H. X. Li, Adaptive generalized function projective synchronization of uncertain chaotic systems, Nonlinear Anal.: Real World Appl., 11 (2010), 2456–2464. https://doi.org/10.1016/j.nonrwa.2009.08.002 doi: 10.1016/j.nonrwa.2009.08.002
    [41] S. Zheng, Adaptive modified function projective synchronization of unknown chaotic systems with different order, Appl. Math. Comput., 218 (2012), 5891–5899. https://doi.org/10.1016/j.amc.2011.11.034 doi: 10.1016/j.amc.2011.11.034
    [42] S. Zheng, G. Dong, Q. Bi, Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3547–3556. https://doi.org/10.1016/j.cnsns.2009.12.010 doi: 10.1016/j.cnsns.2009.12.010
    [43] G. M. Mahmoud, E. E. Mahmoud, A. A. Arafa, On modified time delay hyperchaotic complex Lü system, Nonlinear Dyn., 80 (2015), 855–869. https://doi.org/10.1007/s11071-015-1912-9 doi: 10.1007/s11071-015-1912-9
    [44] G. M. Mahmoud, M. E. Ahmed, T. M. Abed-Elhameed, Active control technique of fractional-order chaotic complex systems, Eur. Phys. J. Plus, 131 (2016), 200. https://doi.org/10.1140/epjp/i2016-16200-x doi: 10.1140/epjp/i2016-16200-x
    [45] G. M. Mahmoud, M. E. Ahmed, T. M. Abed-Elhameed, On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization, Optik, 130 (2017), 398–406. https://doi.org/10.1016/j.ijleo.2016.10.095 doi: 10.1016/j.ijleo.2016.10.095
    [46] X. Liu, X. Tong, Z. Wang, M. Zhang, A new n-dimensional conservative chaos based on Generalized Hamiltonian System and its' applications in image encryption, Chaos, Solitons Fract., 154 (2022), 111693. https://doi.org/10.1016/j.chaos.2021.111693 doi: 10.1016/j.chaos.2021.111693
    [47] S. Nasr, H. Mekki, K. Bouallegue, A multi-scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller, Chaos, Solitons Fract., 118 (2019), 366–375. https://doi.org/10.1016/j.chaos.2018.12.002 doi: 10.1016/j.chaos.2018.12.002
    [48] K. Sugandha, P. P. Singh, Generation of a multi-scroll chaotic system via smooth state transformation, J. Comput. Electron., 21 (2022), 781–791. https://doi.org/10.1007/s10825-022-01892-y doi: 10.1007/s10825-022-01892-y
    [49] X. Liu, X. Tong, Z. Wang, M. Zhang, Construction of controlled multi-scroll conservative chaotic system and its application in color image encryption, Nonlinear Dyn., 110 (2022), 1897–1934. https://doi.org/10.1007/s11071-022-07702-1 doi: 10.1007/s11071-022-07702-1
    [50] Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Autom. Control, 64 (2019), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067
    [51] Q. Zhu, H. Wang, Output feedback stabilization of stochastic feedforward systems with unknown control coefficients and unknown output function, Automatica, 87 (2018), 166–175. https://doi.org/10.1016/j.automatica.2017.10.004 doi: 10.1016/j.automatica.2017.10.004
    [52] L. Liu, X. J. Xie, State feedback stabilization for stochastic feedforward nonlinear systems with time-varying delay, Automatica, 49 (2013), 936–942. https://doi.org/10.1016/j.automatica.2013.01.007 doi: 10.1016/j.automatica.2013.01.007
    [53] L. Liu, M. Kong, A new design method to global asymptotic stabilization of strict-feedforward stochastic nonlinear time delay systems, Automatica, 151 (2023), 110932. https://doi.org/10.1016/j.automatica.2023.110932 doi: 10.1016/j.automatica.2023.110932
    [54] R. Rao, Z. Lin, X. Ai, J. Wu, Synchronization of epidemic systems with neumann boundary value under delayed impulse, Mathematics, 10 (2022), 2064. https://doi.org/10.3390/math10122064 doi: 10.3390/math10122064
  • This article has been cited by:

    1. Mohammed Abu Saleem, On soft covering spaces in soft topological spaces, 2024, 9, 2473-6988, 18134, 10.3934/math.2024885
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1338) PDF downloads(56) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog