In this work, we consider an adaptive control method, which is simpler and generalized to obtain some conditions on the parameters for hyperchaotic models determined by using a Lyapunov direct method. Further, an adaptive controller for synchronization is designed by using Lyapunov functions by which the deriving system and the response system can realize adaptive modified function projective synchronization up to scaling matrix. Numerical simulation of each system is discussed in detail with graphical results. The graphical results are presented in detail in order to validate the theoretical results. These results in this article generalize and improve the corresponding results of the recent works.
Citation: M. M. El-Dessoky, Nehad Almohammadi, Ebraheem Alzahrani. Control and adaptive modified function projective synchronization of different hyperchaotic dynamical systems[J]. AIMS Mathematics, 2023, 8(10): 23621-23634. doi: 10.3934/math.20231201
In this work, we consider an adaptive control method, which is simpler and generalized to obtain some conditions on the parameters for hyperchaotic models determined by using a Lyapunov direct method. Further, an adaptive controller for synchronization is designed by using Lyapunov functions by which the deriving system and the response system can realize adaptive modified function projective synchronization up to scaling matrix. Numerical simulation of each system is discussed in detail with graphical results. The graphical results are presented in detail in order to validate the theoretical results. These results in this article generalize and improve the corresponding results of the recent works.
[1] | S. K. Agrawal, S. Das, Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method, J. Process Control, 24 (2014), 517–530. https://doi.org/10.1016/j.jprocont.2014.02.013 doi: 10.1016/j.jprocont.2014.02.013 |
[2] | H. N. Agiza, On the analysis of stability, bifurcation, chaos and chaos control of kopel map, Chaos, Solitons Fract., 10 (1999), 1909–1916. https://doi.org/10.1016/S0960-0779(98)00210-0 doi: 10.1016/S0960-0779(98)00210-0 |
[3] | E. W. Bai, K. E. Lonngren, Sequential synchronization of two Lorenz system using active control, Chaos, Solitons Fract., 11 (2000), 1041–1044. https://doi.org/10.1016/S0960-0779(98)00328-2 doi: 10.1016/S0960-0779(98)00328-2 |
[4] | N. Cai, Y. Jing, S. Zhang, Modified projective synchronization of chaotic systems with disturbances via active sliding mode control, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 1613–1620. https://doi.org/10.1016/j.cnsns.2009.06.012 doi: 10.1016/j.cnsns.2009.06.012 |
[5] | T. L. Carroll, L. M. Perora, Synchronizing chaotic circuits, IEEE Trans. Circuits Syst., 38 (1991), 453–456. https://doi.org/10.1109/31.75404 doi: 10.1109/31.75404 |
[6] | G. Chen, Chaos on some controllability conditions for chaotic dynamics control, Chaos, Solitons Fract., 8 (1997), 1461–1470. https://doi.org/10.1016/S0960-0779(96)00146-4 doi: 10.1016/S0960-0779(96)00146-4 |
[7] | Y. Chen, X. Li, Function projective synchronization between two identical chaotic systems, Int. J. Mod. Phys. C, 18 (2007), 883–888. https://doi.org/10.1142/S0129183107010607 doi: 10.1142/S0129183107010607 |
[8] | S. Dadras, H. R. Momeni, Control of a fractional-order economical system via sliding mode, Phys. A, 389 (2010), 2434–2442. https://doi.org/10.1016/j.physa.2010.02.025 doi: 10.1016/j.physa.2010.02.025 |
[9] | H. Du, Q. Zeng, C. Wang, Function projective synchronization of different chaotic systems with uncertain parameters, Phys. Lett. A, 372 (2008), 5402–5410. https://doi.org/10.1016/j.physleta.2008.06.036 doi: 10.1016/j.physleta.2008.06.036 |
[10] | E. M. Elabbasy, H. N. Agiza, M. M. El-Dessoky, Global chaos synchronization for four-scroll attractor by nonlinear control, Sci. Res. Essay, 1 (2006), 65–71. |
[11] | E. M. Elabbasy, M. M. El-Dessoky, Adaptive coupled synchronization of coupled chaotic dynamical systems, Trends Appl. Sci. Res., 2 (2007), 88–102. |
[12] | E. M. Elabbasy, M. M. El-Dessoky, Synchronization of van der Pol oscillator and Chen chaotic dynamical system, Chaos, Solitons Fract., 36 (2008), 1425–1435. https://doi.org/10.1016/j.chaos.2006.08.039 doi: 10.1016/j.chaos.2006.08.039 |
[13] | M. M. El-Dessoky, Synchronization and anti-synchronization of a hyperchaotic Chen system, Chaos, Solitons Fract., 39 (2009), 1790–1797. https://doi.org/10.1016/j.chaos.2007.06.053 doi: 10.1016/j.chaos.2007.06.053 |
[14] | M. M. El-Dessoky, Anti-synchronization of four scroll attractor with fully unknown parameters, Nonlinear Anal.: Real World Appl., 11 (2010), 778–783. https://doi.org/10.1016/j.nonrwa.2009.01.048 doi: 10.1016/j.nonrwa.2009.01.048 |
[15] | M. M. El-Dessoky, E. O. Alzahrany, N. A. Almohammadi, Function projective synchronization for four scroll attractor by nonlinear control, Appl. Math. Sci., 11 (2017), 1247–1259. https://doi.org/10.12988/ams.2017.7259 doi: 10.12988/ams.2017.7259 |
[16] | M. M. El-Dessoky, E. O. Alzahrany, N. A. Almohammadi, Chaos control and function projective synchronization of noval chaotic dynamical system, J. Comput. Anal. Appl., 27 (2019), 162–172. |
[17] | M. M. El-Dessoky, M. T. Yassen, Adaptive feedback control for chaos control and synchronization for new chaotic dynamical system, Math. Probl. Eng., 2012 (2012), 1–12. https://doi.org/10.1155/2012/347210 doi: 10.1155/2012/347210 |
[18] | A. Hegazi, H. N. Agiza, M. M. El-Dessoky, Controlling chaotic behaviour for spin generator and rossler dynamical systems with feedback control, Chaos, Solitons Fract., 12 (2001), 631–658. https://doi.org/10.1016/S0960-0779(99)00192-7 doi: 10.1016/S0960-0779(99)00192-7 |
[19] | J. Huang, Adaptive synchronization between different hyperchaotic systems with fully uncertain parameters, Phys. Lett. A, 372 (2008), 4799–4804. https://doi.org/10.1016/j.physleta.2008.05.025 doi: 10.1016/j.physleta.2008.05.025 |
[20] | C. C. Hwang, J. Y. Hsieh, R. S. Lin, A linear continuous feedback control of Chua's circuit, Chaos, Solitons Fract., 8 (1997), 1507–1515. https://doi.org/10.1016/S0960-0779(96)00150-6 doi: 10.1016/S0960-0779(96)00150-6 |
[21] | G. H. Li, Modified projective synchronization of chaotic system, Chaos, Solitons Fract., 32 (2007), 1786–1790. https://doi.org/10.1016/j.chaos.2005.12.009 doi: 10.1016/j.chaos.2005.12.009 |
[22] | G. H. Li, Generalized synchronization of chaos based on suitable separation, Chaos, Solitons Fract., 39 (2009), 2056–2062. https://doi.org/10.1016/j.chaos.2007.06.055 doi: 10.1016/j.chaos.2007.06.055 |
[23] | R. Luo, Z. Wei, Adaptive function projective synchronization of unified chaotic systems with uncertain parameters, Chaos, Solitons Fract., 42 (2009), 1266–1272. https://doi.org/10.1016/j.chaos.2009.03.076 doi: 10.1016/j.chaos.2009.03.076 |
[24] | C. X. Liu, A new hyperchaotic dynamical system, Chinese Phys., 16 (2007). https://doi.org/10.1088/1009-1963/16/11/022 doi: 10.1088/1009-1963/16/11/022 |
[25] | A. Loria, Master-slave synchronization of fourth order Lu chaotic oscillators via linear output feadback, IEEE Trans. Circuits Syst., 57 (2010), 213–217. https://doi.org/10.1109/TCSII.2010.2040303 doi: 10.1109/TCSII.2010.2040303 |
[26] | K. Ojo, S. Ogunjo, A. Olagundoye, Projective synchronization via active control of identical chaotic oscillators with parametric and external excitation, Int. J. Nonlinear Sci., 24 (2017), 76–83. |
[27] | E. Ott, C. Grebogi, J. A. Yorke, Controlling chaos, Phys. Rev. Lett., 64 (1990). https://doi.org/10.1103/PhysRevLett.64.1196 doi: 10.1103/PhysRevLett.64.1196 |
[28] | J. H. Park, Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos, Solitons Fract., 34 (2007), 1552–1559. https://doi.org/10.1016/j.chaos.2006.04.047 doi: 10.1016/j.chaos.2006.04.047 |
[29] | L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821–824. https://doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821 |
[30] | J. Petereit, A. Pikovsky, Chaos synchronization by nonlinear coupling, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 344–351. https://doi.org/10.1016/j.cnsns.2016.09.002 doi: 10.1016/j.cnsns.2016.09.002 |
[31] | N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, H. D. I. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems, Phys. Rev. E, 51 (1995), 980–994. https://doi.org/10.1103/PhysRevE.51.980 doi: 10.1103/PhysRevE.51.980 |
[32] | A. Singh, S. Gakkhar, Controlling chaos in a food chain model, Math. Comput. Simul., 115 (2015), 24–36. https://doi.org/10.1016/j.matcom.2015.04.001 doi: 10.1016/j.matcom.2015.04.001 |
[33] | Y. Tang, J. Fang, General method for modified projective synchronization of hyperchaotic systems with known or unknown parameter, Phys. Lett. A, 372 (2008), 1816–1826. https://doi.org/10.1016/j.physleta.2007.10.043 doi: 10.1016/j.physleta.2007.10.043 |
[34] | K. Vishal, S. K. Agrawal, On the dynamics, existence of chaos, control and synchronization of a novel complex chaotic system, Chin. J. Phys., 55 (2017), 519–532. https://doi.org/10.1016/j.cjph.2016.11.012 doi: 10.1016/j.cjph.2016.11.012 |
[35] | C. Chen, L. Sheu, H. Chen, J. Chen, H. Wang, Y. Chao, et al., A new hyper-chaotic system and its synchronization, Nonlinear Anal.: Real World Appl., 4 (2009), 2088–2096. |
[36] | X. Xu, Generalized function projective synchronization of chaotic systems for secure communication, EURASIP J. Adv. Signal Process., 2011 (2011), 14. https://doi.org/10.1186/1687-6180-2011-14 doi: 10.1186/1687-6180-2011-14 |
[37] | C. H. Yang, C. L. Wu, Nonlinear dynamic analysis and synchronization of four-dimensional Lorenz-Stenflo system and its circuit experimental implementation, Abstr. Appl. Anal., 2014 (2014), 1–17. https://doi.org/10.1155/2014/213694 doi: 10.1155/2014/213694 |
[38] | S. S Yang, C. K. Duan, Generalized synchronization in chaotic systems, Chaos, Solitons Fract., 9 (1998), 1703–1707. https://doi.org/10.1016/S0960-0779(97)00149-5 doi: 10.1016/S0960-0779(97)00149-5 |
[39] | X. S. Yang, A framework for synchronization theory, Chaos, Solitons Fract., 11 (2000), 1365–1368. https://doi.org/10.1016/S0960-0779(99)00045-4 doi: 10.1016/S0960-0779(99)00045-4 |
[40] | Y. Yu, H. X. Li, Adaptive generalized function projective synchronization of uncertain chaotic systems, Nonlinear Anal.: Real World Appl., 11 (2010), 2456–2464. https://doi.org/10.1016/j.nonrwa.2009.08.002 doi: 10.1016/j.nonrwa.2009.08.002 |
[41] | S. Zheng, Adaptive modified function projective synchronization of unknown chaotic systems with different order, Appl. Math. Comput., 218 (2012), 5891–5899. https://doi.org/10.1016/j.amc.2011.11.034 doi: 10.1016/j.amc.2011.11.034 |
[42] | S. Zheng, G. Dong, Q. Bi, Adaptive modified function projective synchronization of hyperchaotic systems with unknown parameters, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 3547–3556. https://doi.org/10.1016/j.cnsns.2009.12.010 doi: 10.1016/j.cnsns.2009.12.010 |
[43] | G. M. Mahmoud, E. E. Mahmoud, A. A. Arafa, On modified time delay hyperchaotic complex Lü system, Nonlinear Dyn., 80 (2015), 855–869. https://doi.org/10.1007/s11071-015-1912-9 doi: 10.1007/s11071-015-1912-9 |
[44] | G. M. Mahmoud, M. E. Ahmed, T. M. Abed-Elhameed, Active control technique of fractional-order chaotic complex systems, Eur. Phys. J. Plus, 131 (2016), 200. https://doi.org/10.1140/epjp/i2016-16200-x doi: 10.1140/epjp/i2016-16200-x |
[45] | G. M. Mahmoud, M. E. Ahmed, T. M. Abed-Elhameed, On fractional-order hyperchaotic complex systems and their generalized function projective combination synchronization, Optik, 130 (2017), 398–406. https://doi.org/10.1016/j.ijleo.2016.10.095 doi: 10.1016/j.ijleo.2016.10.095 |
[46] | X. Liu, X. Tong, Z. Wang, M. Zhang, A new n-dimensional conservative chaos based on Generalized Hamiltonian System and its' applications in image encryption, Chaos, Solitons Fract., 154 (2022), 111693. https://doi.org/10.1016/j.chaos.2021.111693 doi: 10.1016/j.chaos.2021.111693 |
[47] | S. Nasr, H. Mekki, K. Bouallegue, A multi-scroll chaotic system for a higher coverage path planning of a mobile robot using flatness controller, Chaos, Solitons Fract., 118 (2019), 366–375. https://doi.org/10.1016/j.chaos.2018.12.002 doi: 10.1016/j.chaos.2018.12.002 |
[48] | K. Sugandha, P. P. Singh, Generation of a multi-scroll chaotic system via smooth state transformation, J. Comput. Electron., 21 (2022), 781–791. https://doi.org/10.1007/s10825-022-01892-y doi: 10.1007/s10825-022-01892-y |
[49] | X. Liu, X. Tong, Z. Wang, M. Zhang, Construction of controlled multi-scroll conservative chaotic system and its application in color image encryption, Nonlinear Dyn., 110 (2022), 1897–1934. https://doi.org/10.1007/s11071-022-07702-1 doi: 10.1007/s11071-022-07702-1 |
[50] | Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and the event-triggered feedback control, IEEE Trans. Autom. Control, 64 (2019), 3764–3771. https://doi.org/10.1109/TAC.2018.2882067 doi: 10.1109/TAC.2018.2882067 |
[51] | Q. Zhu, H. Wang, Output feedback stabilization of stochastic feedforward systems with unknown control coefficients and unknown output function, Automatica, 87 (2018), 166–175. https://doi.org/10.1016/j.automatica.2017.10.004 doi: 10.1016/j.automatica.2017.10.004 |
[52] | L. Liu, X. J. Xie, State feedback stabilization for stochastic feedforward nonlinear systems with time-varying delay, Automatica, 49 (2013), 936–942. https://doi.org/10.1016/j.automatica.2013.01.007 doi: 10.1016/j.automatica.2013.01.007 |
[53] | L. Liu, M. Kong, A new design method to global asymptotic stabilization of strict-feedforward stochastic nonlinear time delay systems, Automatica, 151 (2023), 110932. https://doi.org/10.1016/j.automatica.2023.110932 doi: 10.1016/j.automatica.2023.110932 |
[54] | R. Rao, Z. Lin, X. Ai, J. Wu, Synchronization of epidemic systems with neumann boundary value under delayed impulse, Mathematics, 10 (2022), 2064. https://doi.org/10.3390/math10122064 doi: 10.3390/math10122064 |