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obtain some conditions on the parameters for hyperchaotic models determined by using a Lyapunov
direct method. Further, an adaptive controller for synchronization is designed by using Lyapunov
functions by which the deriving system and the response system can realize adaptive modified function
projective synchronization up to scaling matrix. Numerical simulation of each system is discussed in
detail with graphical results. The graphical results are presented in detail in order to validate the
theoretical results. These results in this article generalize and improve the corresponding results of the
recent works.
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1. Introduction

The concepts of synchronization and chaos control has gotten considerable attention in the past
three decades. They have wide applicability in different areas, such as engineering, chemical reactions,
biological networks and secure communication [36, 46, 47]. To date, researchers have developed so
many methods and techniques for chaos control, such as linear feedback control, back-stepping design,
nonlinear feedback control and adaptive control [2, 6, 8, 18, 20, 27, 32, 49–53]. Regarding nonlinear
chaotic systems, the phenomenon of synchronization is a well-known subject; see, for example [3, 5,
10–12, 17, 19, 22, 25, 29–31, 34, 37–39, 54] and the references therein. Up to now, various kinds of
synchronization have been presented, which including complete and anti-synchronization [13, 14] and
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projective synchronization. Among these kinds, the projective synchronization topic has garnered a
lot of interest from researchers [26]. Regarding the projective synchronization, a lot of methods have
been considered and presented for projective synchronization, e.g., function projective synchronization
(FPS) [1, 7, 9, 15, 16, 23, 40], modified projective synchronization (MPS) [4, 21, 28, 33] and modified
function projective synchronization (MFPS) [41, 42], which is a more general definition of MPS and
FPS. A system that has at least one positive Lyapunov exponent is known as a chaotic system [48],
while a system that has more than one positive Lyapunov exponent is known as a hyperchaotic
system [43–45]. However, many existing MFPS studies focus on chaotic systems only. To the
best of the authors’ knowledge, existing literature only contains a few investigations into the use of
the adaptive control method to obtain the MFPS between hyperchaotic systems. Due to its wide
applicability in many areas, in the present work, we use the adaptive control method to analyze the
stability of an unstable equilibrium point. Moreover, a controller is designed to gain the MFPS between
a hyperchaotic Chen system and hyperchaotic Liu system.

Some existing literature on chaos control and synchronization have been presented here: In Section
1, while the remaining sections in the paper are organized as follows. The descriptions of each system
and their dynamical properties (the divergence, equilibrium points and its stability) are presented in
Section 2. The adaptive control technique is applied to hyperchaotic Liu and Chen systems in Section
3, which also contains some numerical results in the form of graphs. In Section 4, AMFPS among
two different hyperchaotic systems is determined and some associated graphical results are presented,
which confirm the importance of the given method. Finally, the conclusion is presented in Section 5,
summarizing the paper.

2. Systems and dynamical properties

In this section, we present some different dynamical systems with numerical results. In what
follows, each system is described by its equations, with graphical results.

2.1. Liu system

The Liu hyperchaotic system given in [24] can be shown through the following set of equations:


ṗ = a(q − p),
q̇ = bp + kpr + es,

ṙ = −cr − hp2 + ms,

ṡ = −dq,

(2.1)

where the state variables are given by p, q, r and s and the parameters and their values are chosen as
follows: h = 4, e = 1, a = 10, k = 1, b = 40, c = 2.5, d = 2.5 and m = 1. For these values of the
parameters, we give the graphical results depicted in Figures 1 and 2, which are the phase portraits.
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Figure 1. Liu hyperchaotic system in three dimensions.

Figure 2. The Liu hyperchaotic system in two dimensions.

Dynamical properties

In this subsection, we give some important properties of the dynamical systems. We give the
following definitions:

• The divergence: The divergence of a vector field can be obtained as follows:

∇ · V =
∂ ṗ
∂p
+
∂q̇
∂q
+
∂ṙ
∂r
+
∂ṡ
∂s
= −a − c = −12.5 < 0;

therefore, system (2.1) is dissipative.
• Equilibrium points and stability: By assuming that ṗ = q̇ = ṙ = ṡ = 0, we can obtain
O(0, 0, 0, 0) as the equilibrium point of (2.1).

At the equilibrium point O, the evaluation of the model (2.1) and determination of the Jacobian
matrix lead to the characteristics, which give eigenvalues that can show the model stability at that
particular equilibrium. We have

λ4 + 12.5λ3 − 372.5λ2 − 968.75λ + 62.50 = 0.

The solution of the fourth-order polynomial leads to the following eigenvalues:

λ1 = −2.5, λ2 = 15.51557,
λ3 = −25.5785, λ4 = 0.06299.

It shows clearly that the equilibrium O is unstable.
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2.2. Chen system

Here, we describe the Chen system and its analysis about the specific equilibrium point and give
its numerical result. Chen et al. reported a hyperchaotic system in [35]. This hyperchaotic system is
shown by the following equations: 

ṗ = −qr + f p,

q̇ = pr + gq,

ṙ = 1
3 pq + jr + 0.2s,

ṡ = lp + 0.5qr + 1.05s.

(2.2)

Here, p, q, r and s represent the state variables, and the parameters with their specific values are given
by f = 5, g = −10, j = −3.8 and l = 0.1. The graphical results corresponding to these specific
parameters are presented in Figures 3 and 4.

Figure 3. The graphical representation of the Chen hyperchaotic system in three dimensions.

Figure 4. The graphical representation of the Chen hyperchaotic system in two dimensions.

Dynamical properties

• The divergence: The system (2.2) is dissipative since its divergence is negative, as shown below:

∇ · V =
∂ ṗ
∂p
+
∂q̇
∂q
+
∂ṙ
∂r
+
∂ṡ
∂s
= a + b + c + 1.05 = −7.75 < 0.
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• Equilibrium points and stability: By assuming that ṗ = q̇ = ṙ = ṡ = 0, an equilibrium point
can be easily obtained, say, E(0, 0, 0, 0). The evaluation of system (2.2) at this equilibrium point
leads to the Jacobian matrix and, further, to the following characteristics, which show the model
stability that can be described by the sign of eigenvalues.

λ4 + 7.75λ3 − 40.24λ2 − 157.45λ + 199.5 = 0.

Therefore, the eigenvalues are obtained as follows:

λ1 = −3.8, λ2 = 1.05,
λ3 = 5, λ4 = −10.

Here, it can be seen clearly that the two eigenvalues are positive, which shows that the system
(2.2) at the equilibrium point E is unstable.

3. Adaptive control

Here, we apply the adaptive control method to the different chaotic systems of Liu and Chen. The
numerical results for the given parameters are presented. We discuss each system in detail in the
following subsections.

3.1. Controlling the hyperchaotic Liu system

Consider the system (2.1) in terms of adaptive control representations:
ṗ = a(q − p) + u1(t),
q̇ = bp + kpr + es + u2(t),
ṙ = −cr − hp2 + ms + u3(t),
ṡ = −dq + u4(t).

(3.1)

In system (3.1), the controllers to be designed are given by u1, u2, u3 and u4, and the state variables
are given by p, q, r and s. The asymptotic stability of the system (3.1) can be shown through the
Lyapunov function. Define the Lyapunov function:

V(p, q, r, s) =
1
2

(p2 + q2 + r2 + s2);

then,

V̇ = p(a(q − p) + u1(t)) + q(bp + kpr + es + u2(t)) + r(−cr − hp2 + ms + u3(t))
+ s(−dq + u4(t)).

(3.2)

Thus, the control functions can be formulated as follows:

u1(t) = −aq, u2(t) = −bq − bp − kpr − es, u3(t) = −ms + hp2, u4(t) = dq − ds. (3.3)

Substituting (3.3) into (3.2), we obtain

V̇ = −(ap2 + bq2 + cr2 + ds2).

It can be seen that V̇ ≤ 0, which shows the asymptotic stability of the model (3.1) at the given
equilibrium point.
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3.2. Controlling the hyperchaotic Chen system

In terms of adaptive control, the model (2.2) can be described by the below equations:
ṗ = −qr + f p + u1(t),
q̇ = pr + gq,

ṙ = 1
3 pq + jr + 0.2s + u2(t),

ṡ = lp + 0.5qr + 1.05s + u3(t).

(3.4)

In system (3.4), the state variables are given by p, q, r and s, while the controllers to be designed are
u1, u2 and u3. We use a Lyapunov function to show whether the model (3.4) is asymptotically stable.
To do this, let us define the Lyapunov function below:

V(p, q, r, s) =
1
2

(p2 + q2 + r2 + s2);

after taking the time derivative, we get

V̇ = p(−qr + f p + u1(t)) + q(pr + gq) + r(
1
3

pq + jr + 0.2s + u2(t))

+ s(lp + 0.5qr + 1.05s + u3(t)).
(3.5)

Thus, the control functions can be formulated as follows:

u1(t) = −2 f p, u3(t) = −
1
3

pq − 0.2s, u3(t) = −2.1s − 0.5qr − lp. (3.6)

Substituting (3.6) into (3.5), we obtain

V̇ = −( f p2 − gq2 − jr2 + 1.05s2).

Obviously, V̇ ≤ 0, which ensures the asymptotic stability of the model (3.4) at the given equilibrium
point.

3.3. Simulation results

Here, we discuss the simulation results for the controlling hyperchaotic Liu and Chen systems. The
numerical results were obtained by using Maple software version 16. The numerical results have been
obtained in the form of graphics, which show the effectiveness of the method proposed. The initial
conditions associated with hyperchaotic Liu system (2.1) and the hyperchaotic Chen system (2.2) are
as follows: q1(0) = 2.2, p1(0) = 2.4, r1(0) = 0.8, s1(0) = 0, q2(0) = 0.1 r2(0) = 0.1, p2(0) = 0.2
and s2(0) = 0.2. Figure 5, with subgraphs (a) and (b), is presented to show the convergence of the
trajectories of the controlled systems at the equilibrium points O and E. The convergence of the
trajectory at O for the uncontrolled system (2.1) is shown in Figure 5(a), while, in Figure 5(b), we give
the convergence of the trajectory at E for the uncontrolled system (2.2).

In the simulation, the error dynamics approximately tended to zero. The presented method of
adaptive control shows that they are valid for application in hyperchaotic systems.
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(a) (b)
Figure 5. Hyperchaotic (a) Liu and (b) Chen systems controlled to a fixed point.

4. AMFPS of Liu and Chen chaotic dynamical systems

Here, we present Liu and Chen chaotic dynamical systems with adaptive MFPS. In what follows,
we explain each system in detail.

The drive system for AMFPS of a Liu hyperchaotic system can be described by the following
equations: 

ṗ1 = a(q1 − p1),
q̇1 = bp1 + kp1r1 + es1,

ṙ1 = −cr1 − hp2
1 + ms1,

ṡ1 = −dq1,

(4.1)

and the Chen hyperchaotic model, as a response model, is described by the following equations:
ṗ2 = −q2r2 + f p2 + u1,

q̇2 = p2r2 + gq2 + u2,

ṙ2 = 1
3 p2q2 + jr2 + 0.2s2 + u3,

ṡ2 = lp2 + 0.5q2r2 + 1.05s2 + u4,

(4.2)

where the nonlinear controllers are given by ui, for i = 1, 2, 3, 4, and, in the sense of MFPS, the
synchronization of the two chaotic systems is given by

lim
t→+∞
∥p2 − (α11 p1 + α12)p1∥ = 0,

lim
t→+∞
∥q2 − (α21q1 + α22)q1∥ = 0,

lim
t→+∞
∥r2 − (α31r1 + α32)r1∥ = 0,

lim
t→+∞
∥s2 − (α41s1 + α42)s1∥ = 0.

(4.3)
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The error dynamics between (4.1) and (4.2) are given by

ė1 = −q2r2 + f p2 − 2α11ap1q1 + 2α11ap2
1 − α12aq1 + α12ap1 + u1,

ė2 = p2r2 + gq2 − 2α21bp1q1 − 2α21kp1q1r1 − 2α21eq1s1 − α22bp1 − α22kp1r1 − α22es1 + u2,

ė3 = 1
3 p2q2 + jr2 + 0.2s2 + 2α31cr2

1 + 2α31hr1 p2
1 − 2α31mr1s1 + α32cr1

+α32hp2
1 − α32ms1 + u3,

ė4 = lp2 + 0.5q2r2 + 1.05s2 + 2α41dq1s1 + α42dq1 + u4.

(4.4)

By defining the state errors e1(t) = p2 − (α11 p1 + α12)p1, e2(t) = q2 − (α21q1 + α22)q1, e3(t) =
r2 − (α31r1 + α32)r1 and e4(t) = s2 − (α41s1 + α42)s1.

The main purpose is to determine the controls ui (i = 1, 2, 3, 4) that could stabilize the error variables
of the model (4.4). So, the following control law is presented:

u1 = q2r2 − 2 f p2 + 2aα11 p1q1 − 2aα11 p2
1 + aα12q1 − α12ap1 + α11 f p2

1 + α12 f p1,

u2 = −p2r2 + 2α21bp1q1 + 2α21kp1q1r1 + 2α21eq1s1 + α22bp1 + α22kp1r1

+α22es1 + gα21q2
1 + gα22q1,

u3 = −1
3 p2q2 − 0.2s2 − 2α31cr2

1 − 2α31hr1 p2
1 + 2α31mr1s1 − α32hp2

1

+α32ms1 − α32cr1 + α31 jr2
1 + α32 jr1,

u4 = −lp2 − 0.5q2r2 − 2.1s2 + 1.05α41s2
1 + 1.05α42s1 − 2dα41q1s1 − α42dq1.

(4.5)

So, we have the below result:

Theorm 1. For nonzero scalars α1, α2, α3 and α4, the AMFPS among the two models (4.1) and (4.2)
will be induced by the control input (4.5).

Proof of Theorem 1. Consider the function

V =
1
2

(e2
1 + e2

2 + e2
3 + e2

4). (4.6)

Then

V̇ = ė1e1 + ė2e2 + ė3e3 + ė4e4

= e1( − q2r2 + f p2 − 2α11ap1q1 + 2α11ap2
1 − α12aq1 + α12ap1 + u1)

+ e2(p2r2 + gq2 − 2α21bp1q1 − 2α21kp1q1r1 − 2α21eq1s1 − α22bp1 − α22kp1r1 − α22es1 + u2)

+ e3(
1
3

p2q2 + jr2 + 0.2s2 + 2α31cr2
1 + 2α31hr1 p2

1 − 2α31mr1s1 + α32cr1 + α32hp2
1 − α32ms1 + u3)

+ e4(lp2 + 0.5q2r2 + 1.05s2 + 2α41dq1s1 + α42dq1 + u4);
(4.7)

substituting the control input (4.5) gives

dV
dt
= e1( − f p2 + α11 f p2

1 + α12 f p1) + e2(gq2 + gα21q2
1 + gα22q1)

+ e3( jr2 + α31 jr2
1 + α32 jr1) + e4( − 1.05s2 + 1.05α41s2

1 + 1.05α42s1),

⇒
dV
dt
= − f e2

1 + ge2
2 + je2

3 − 1.05e2
4.

(4.8)
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Then, we have

dV
dt
= −eT Pe, (4.9)

where

e =


e1

e2

e3

e4

 , P =


f 0 0 0
0 −g 0 0
0 0 − j 0
0 0 0 1.05

 =

5 0 0 0
0 10 0 0
0 0 3.8 0
0 0 0 1.05

 ;

since V̇ is negative definite, it shows that the controller (4.5) induces AMFPS in the driving system via
the response system. □

4.1. Simulation results

In the present section, we obtain the numerical results of the systems described above. To obtain
the simulation results, we used Maple 16. The graphical results were obtained that verify the proposed
synchronization method. The initial conditions of the variables in the hyperchaotic Liu system (2.1) and
the hyperchaotic Chen system (2.2) were considered as follows: p1(0) = 2.4, q1(0) = 2.2, r1(0) = 0.8,
s1(0) = 0, p2(0) = 0.2, q2(0) = 0.1, r2(0) = 0.1 and s2(0) = 0.2. The simulation results for the
synchronization are shown in Figure 6. First, we chose the scaling functions as follows:

φ1 = 0.5p1 + 2, φ2 = q1 + 1, φ3 = 2r1 + 3, φ4 = 2s1 + 1;

then the AMFPS between (4.1) and (4.2) was achieved as shown in Figure 6(a). Figure 6(b) shows the
generalized FPS, when the scaling functions are as follows: φ1 = 0.5p1, φ2 = 0.3q1, φ3 = 2r1, φ4 = s1.
Furthermore, by choosing the simplified scaling functions as φ1 = 1, φ2 = 2, φ4 = 4 and φ3 = 3, we
obtained MPS as shown in Figure 6(c). Moreover, by simplifying the scaling functions to φi = 1, for
i = 1, 2, 3, 4, we obtained complete synchronization, as shown in Figure 6(d). Finally, Figure 6(e)
shows the anti-synchronization as a result of choosing φi = −1 (i = 1, 2, 3, 4).

As can be seen, the error dynamics have approximately tended to zero. The MFPS applied to the
hyperchaotic systems is valid and gives effective results.
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(a) (b) (c)

(d) (e)
Figure 6. The errors between the Liu and Chen hyperchaotic systems for (a) AMFPS, (b)
GFPS, (c) MPS, (d) complete synchronization and (e) anti-synchronization.

5. Conclusions

We successfully presented and applied the adaptive control technique to the hyperchaotic Liu and
Chen systems. The asymptotic stability of each system on the path to the specific equilibrium point is
discussed. Further, we assigned specific values to the parameters and obtained the graphical results in
detail. The Lyapunov function constructed for each system and its asymptotic stability are discussed.
Further, MFPS was used to synchronize the two different hyperchaotic systems through the use of a
Lyapunov function. Under the conditions of the controller, MFPS of the hyperchaotic Liu system and
hyperchaotic Chen system was successfully achieved. Based on the simulation results, we discussed
the scaling function simplified to scaling factor. All of the simulation results are demonstrated the
corresponding figures to show that the system errors approached zero. The work of this paper provides
a theoretical reference for the control and synchronization of hyperchaotic systems. In future work, we
may apply the idea to applications in the engineering field, such as information processing and secure
communication.
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system, Nonlinear Dyn., 80 (2015), 855–869. https://doi.org/10.1007/s11071-015-1912-9

44. G. M. Mahmoud, M. E. Ahmed, T. M. Abed-Elhameed, Active control technique
of fractional-order chaotic complex systems, Eur. Phys. J. Plus, 131 (2016), 200.
https://doi.org/10.1140/epjp/i2016-16200-x

AIMS Mathematics Volume 8, Issue 10, 23621–23634.

http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2016.09.002
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.51.980
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2015.04.001
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2007.10.043
http://dx.doi.org/https://doi.org/10.1016/j.cjph.2016.11.012
http://dx.doi.org/https://doi.org/10.1186/1687-6180-2011-14
http://dx.doi.org/https://doi.org/10.1186/1687-6180-2011-14
http://dx.doi.org/https://doi.org/10.1155/2014/213694
http://dx.doi.org/https://doi.org/10.1016/S0960-0779(97)00149-5
http://dx.doi.org/https://doi.org/10.1016/S0960-0779(99)00045-4
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2009.08.002
http://dx.doi.org/https://doi.org/10.1016/j.amc.2011.11.034
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2009.12.010
http://dx.doi.org/https://doi.org/10.1007/s11071-015-1912-9
http://dx.doi.org/https://doi.org/10.1140/epjp/i2016-16200-x


23634

45. G. M. Mahmoud, M. E. Ahmed, T. M. Abed-Elhameed, On fractional-order hyperchaotic complex
systems and their generalized function projective combination synchronization, Optik, 130 (2017),
398–406. https://doi.org/10.1016/j.ijleo.2016.10.095

46. X. Liu, X. Tong, Z. Wang, M. Zhang, A new n-dimensional conservative chaos based on
Generalized Hamiltonian System and its’ applications in image encryption, Chaos, Solitons Fract.,
154 (2022), 111693. https://doi.org/10.1016/j.chaos.2021.111693

47. S. Nasr, H. Mekki, K. Bouallegue, A multi-scroll chaotic system for a higher coverage path
planning of a mobile robot using flatness controller, Chaos, Solitons Fract., 118 (2019), 366–375.
https://doi.org/10.1016/j.chaos.2018.12.002

48. K. Sugandha, P. P. Singh, Generation of a multi-scroll chaotic system via smooth state
transformation, J. Comput. Electron., 21 (2022), 781–791. https://doi.org/10.1007/s10825-022-
01892-y

49. X. Liu, X. Tong, Z. Wang, M. Zhang, Construction of controlled multi-scroll conservative chaotic
system and its application in color image encryption, Nonlinear Dyn., 110 (2022), 1897–1934.
https://doi.org/10.1007/s11071-022-07702-1

50. Q. Zhu, Stabilization of stochastic nonlinear delay systems with exogenous disturbances and
the event-triggered feedback control, IEEE Trans. Autom. Control, 64 (2019), 3764–3771.
https://doi.org/10.1109/TAC.2018.2882067

51. Q. Zhu, H. Wang, Output feedback stabilization of stochastic feedforward systems with
unknown control coefficients and unknown output function, Automatica, 87 (2018), 166–175.
https://doi.org/10.1016/j.automatica.2017.10.004

52. L. Liu, X. J. Xie, State feedback stabilization for stochastic feedforward
nonlinear systems with time-varying delay, Automatica, 49 (2013), 936–942.
https://doi.org/10.1016/j.automatica.2013.01.007

53. L. Liu, M. Kong, A new design method to global asymptotic stabilization of strict-
feedforward stochastic nonlinear time delay systems, Automatica, 151 (2023), 110932.
https://doi.org/10.1016/j.automatica.2023.110932

54. R. Rao, Z. Lin, X. Ai, J. Wu, Synchronization of epidemic systems with neumann boundary value
under delayed impulse, Mathematics, 10 (2022), 2064. https://doi.org/10.3390/math10122064

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 10, 23621–23634.

http://dx.doi.org/https://doi.org/10.1016/j.ijleo.2016.10.095
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2021.111693
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2018.12.002
http://dx.doi.org/https://doi.org/10.1007/s10825-022-01892-y
http://dx.doi.org/https://doi.org/10.1007/s10825-022-01892-y
http://dx.doi.org/https://doi.org/10.1007/s11071-022-07702-1
http://dx.doi.org/https://doi.org/10.1109/TAC.2018.2882067
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2017.10.004
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2013.01.007
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2023.110932
http://dx.doi.org/https://doi.org/10.3390/math10122064
http://creativecommons.org/licenses/by/4.0

	Introduction
	Systems and dynamical properties
	Liu system
	Chen system

	 Adaptive control
	Controlling the hyperchaotic Liu system
	Controlling the hyperchaotic Chen system 
	Simulation results

	 AMFPS of Liu and Chen chaotic dynamical systems
	Simulation results

	Conclusions

