Research article Special Issues

Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations

  • Received: 09 April 2023 Revised: 13 May 2023 Accepted: 17 May 2023 Published: 10 July 2023
  • MSC : 34A12, 34A34, 34A37, 34D09, 34D20

  • This paper is concerned with piecewise pseudo almost periodic solutions of a class of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. By adopting the exponential dichotomy of linear differential equations and the fixed point theory of contraction mapping. The sufficient conditions for the existence of piecewise pseudo almost periodic solutions of the interval general BAM neural networks with mixed time-varying delays and impulsive perturbations are obtained. By adopting differential inequality techniques and mathematical methods of induction, the global exponential stability for the piecewise pseudo almost periodic solutions of the interval general BAM neural networks with mixed time-varying delays and impulsive perturbations is discussed. An example is given to illustrate the effectiveness of the results obtained in the paper.

    Citation: Yanshou Dong, Junfang Zhao, Xu Miao, Ming Kang. Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations[J]. AIMS Mathematics, 2023, 8(9): 21828-21855. doi: 10.3934/math.20231113

    Related Papers:

  • This paper is concerned with piecewise pseudo almost periodic solutions of a class of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. By adopting the exponential dichotomy of linear differential equations and the fixed point theory of contraction mapping. The sufficient conditions for the existence of piecewise pseudo almost periodic solutions of the interval general BAM neural networks with mixed time-varying delays and impulsive perturbations are obtained. By adopting differential inequality techniques and mathematical methods of induction, the global exponential stability for the piecewise pseudo almost periodic solutions of the interval general BAM neural networks with mixed time-varying delays and impulsive perturbations is discussed. An example is given to illustrate the effectiveness of the results obtained in the paper.



    加载中


    [1] B. Kosko, Bidirectional associative memories, In: IEEE Transactions on Systems, Man and Cybernetics, New York: IEEE, 1988, 49–60. http://doi.org/10.1109/21.87054
    [2] C. D. Huang, J. Wang, X. P. Chen, J. D. Cao, Bifurcations in a fractional-order BAM neural network with four different delays, Neural Networks, 141 (2021), 344–354. http://doi.org/10.1016/j.neunet.2021.04.005 doi: 10.1016/j.neunet.2021.04.005
    [3] C. J. Xu, M. X. Liao, P. L. Li, Y. Guo, Z. X. Liu, Bifurcation properties for fractional order delayed BAM neural networks, Cogn. Comput., 13 (2021), 322–356. http://doi.org/10.1007/s12559-020-09782-w doi: 10.1007/s12559-020-09782-w
    [4] C. J. Xu, Z. X. Liu, P. L. Li, J. L. Yan, L. Y. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural network, Neural Process. Lett., 2022 (2022), 1–27. http://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [5] C. J. Xu, D. Mu, Z. X. Liu, Y. C. Pang, M. X. Liao, P. L. Li, et al., Comparative exploration on bifurcation behavior for integer-order and fractional-order delayed BAM neural networks, Nonlinear Anal. Model., 27 (2022), 1030–1053. http://doi.org/10.15388/namc.2022.27.28491 doi: 10.15388/namc.2022.27.28491
    [6] H. S. Hou, H. Zhang, Stability and hopf bifurcation of fractional complex-valued BAM neural networks with multiple time delays, Appl. Math. Comput., 450 (2023), 127986. http://doi.org/10.1016/j.amc.2023.127986 doi: 10.1016/j.amc.2023.127986
    [7] C. J. Xu, D. Mu, Z. X. Liu, Y. C. Pang, M. X. Liao, C. Aouiti, New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays, Commun. Nonlinear Sci., 118 (2023), 107043. http://doi.org/10.1016/j.cnsns.2022.107043 doi: 10.1016/j.cnsns.2022.107043
    [8] Q. R. Dai, Exploration of bifurcation and stability in a class of fractional-order super-double-ring neural network with two shared neurons and multiple delays, Chaos Soliton. Fract., 168 (2023), 113185. http://doi.org/10.1016/j.chaos.2023.113185 doi: 10.1016/j.chaos.2023.113185
    [9] C. J. Xu, W. Zhang, C. Aouiti, Z. X. Liu, L. Y. Yao, Bifurcation insight for a fractional-order stage-structured predator-prey system incorporating mixed time delays, Math. Method. Appl. Sci., 46 (2023), 9103–9118. https://doi.org/10.1002/mma.9041 doi: 10.1002/mma.9041
    [10] Y. K. Li, Y. Q. Li, Existence and exponential stability of almost periodic solution for neutral delay BAM neural networks with time-varying delays in leakage terms, J. Franklin I., 350 (2013), 2808–2825. http://doi.org/10.1016/j.jfranklin.2013.07.005 doi: 10.1016/j.jfranklin.2013.07.005
    [11] C. Wang, Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales, Commun. Nonlinear Sci., 19 (2014), 2828–2842. https://doi.org/10.1016/j.cnsns.2013.12.038 doi: 10.1016/j.cnsns.2013.12.038
    [12] Y. K. Li, L. Yang, B. Li, Existence and stability of pseudo almost periodic solution for neutral type high-order hopfield neural networks with delays in leakage terms on time scales, Neural Process. Lett., 44 (2016), 603–623. https://doi.org/10.1007/s11063-015-9483-9 doi: 10.1007/s11063-015-9483-9
    [13] C. Aouiti, I. B. Gharbia, J. D. Cao, M. S. M'hamdi, A. Alsaedi, Existence and global exponential stability of pseudo almost periodic solution for neutral delay BAM neural networks with time-varying delay in leakage terms, Chaos Soliton. Fract., 107 (2018), 111–127. https://doi.org/10.1016/j.chaos.2017.12.022 doi: 10.1016/j.chaos.2017.12.022
    [14] C. Aouiti, F. Dridi, $(\mu, \nu)$-Pseudo-almost automorphic solutions for high-order Hopfield bidirectional associative memory neural networks, Neural Comput. Applic., 32 (2020), 1435–1456. https://doi.org/10.1007/s00521-018-3651-6 doi: 10.1007/s00521-018-3651-6
    [15] C. Aouiti, I. B. Gharbia, J. D. Cao, A. Alsaedi, Dynamics of impulsive neutral-type BAM neural networks, J. Franklin I., 356 (2019), 2294–2324. https://doi.org/10.1016/j.jfranklin.2019.01.028 doi: 10.1016/j.jfranklin.2019.01.028
    [16] K. Ding, N. J. Huang, Global robust exponential stability of interval general BAM neural network with delays, Neural Process. Lett., 23 (2006), 171–182. https://doi.org/10.1007/s11063-005-5090-5 doi: 10.1007/s11063-005-5090-5
    [17] C. J. Xu, P. L. Li, Y. C. Pang, Global exponential stability for interval general bidirectional associative memory (BAM) neural networks with proportional delays, Math. Method. Appl. Sci., 39 (2016), 5720–5731. https://doi.org/10.1002/mma.3957 doi: 10.1002/mma.3957
    [18] Z. Q. Zhang, W. B. Liu, D. M. Zhou, Global asymptotic stability to a generalized Cohen-Grossberg BAM neural networks of neutral type delays, Neural Networks, 25 (2012), 94–105. https://doi.org/10.1016/j.neunet.2011.07.006 doi: 10.1016/j.neunet.2011.07.006
    [19] D. S. Wang, L. H. Huang, Z. W. Cai, On the periodic dynamics of a general Cohen-Grossberg BAM neural networks via differential inclusions, Neurocomputing, 118 (2013), 203–214. https://doi.org/10.1016/j.neucom.2013.02.030 doi: 10.1016/j.neucom.2013.02.030
    [20] Z. Q. Zhang, K. Y. Liu, Existence and global exponential stability of a periodic solution to interval general bidirectional associative memory (BAM) neural networks with multiple delays on time scales, Neural Networks, 24 (2011), 427–439. https://doi.org/10.1016/j.neunet.2011.02.001 doi: 10.1016/j.neunet.2011.02.001
    [21] X. F. Li, D. Ding, J. Z. Feng, S. B. Hu, Existence and exponential stability of anti-periodic solutions for interval general bidirectional associative memory neural networks with multiple delays, Adv. Differ. Equ., 2016 (2016), 190. https://doi.org/10.1186/s13662-016-0882-7 doi: 10.1186/s13662-016-0882-7
    [22] L. Duan, Existence and global exponential stability of pseudo almost periodic solutions of a general delayed BAM neural networks, J. Syst. Sci. Complex., 31 (2018), 608–620. https://doi.org/10.1007/s11424-017-6180-y doi: 10.1007/s11424-017-6180-y
    [23] C. Aouiti, F. Dridi, New results on interval general Cohen-Grossberg BAM neural networks, J. Syst. Sci. Complex., 33 (2020), 944–967. https://doi.org/10.1007/s11424-020-8048-9 doi: 10.1007/s11424-020-8048-9
    [24] Y. S. Dong, Y. Han, T. T. Dai, Existence and exponential stability of almost periodic solutions to general BAM neural networks with leakage delays on time scales, Chinese Quarterly Journal of Mathematics, 37 (2022), 189–202. https://doi.org/10.13371/j.cnki.chin.q.j.m.2022.02.008 doi: 10.13371/j.cnki.chin.q.j.m.2022.02.008
    [25] Y. Li, L. Yang, W. Q. Wu, Anti-periodic solution for impulsive BAM neural networks with time-varying leakage delays on time scales, Neurocomputing, 149 (2015), 536–545. https://doi.org/10.1016/j.neucom.2014.08.020 doi: 10.1016/j.neucom.2014.08.020
    [26] S. H. Cai, Q. H. Zhang, Existence and stability of periodic solutions for impulsive fuzzy BAM Cohen-Grossberg neural networks on time scales, Adv. Differ. Equ., 2016 (2016), 64. https://doi.org/10.1186/s13662-016-0762-1 doi: 10.1186/s13662-016-0762-1
    [27] C. Aouiti, M. S. M'hamdi, J. D. Cao, A. Alsaedi, Piecewise pseudo almost periodic solution for impulsive generalised high-order Hopfield neural networks with leakage delays, Neural Process. Lett., 45 (2016), 615–648. https://doi.org/10.1007/s11063-016-9546-6 doi: 10.1007/s11063-016-9546-6
    [28] C. Wang, Piecewise pseudo-almost periodic solution for impulsive non-autonomous high-order Hopfield neural networks with variable delays, Neurocomputing, 171 (2016), 1291–1301. https://doi.org/10.1016/j.neucom.2015.07.054 doi: 10.1016/j.neucom.2015.07.054
    [29] C. Aouiti, E. A. Assali, Stability analysis for a class of impulsive bidirectional associative memory (BAM) neural networks with distributed delays and leakage time-varying delays, Neural Process. Lett., 50 (2019), 851–885. https://doi.org/10.1007/s11063-018-9937-y doi: 10.1007/s11063-018-9937-y
    [30] C. Aouiti, E. A. Assali, I. B. Gharbia, Y. E. Foutayeni, Existence and exponential stability of piecewise pseudo almost periodic solution of neutral-type inertial neural networks with mixed delay and impulsive perturbations, Neurocomputing, 357 (2019), 292–309. https://doi.org/10.1016/j.neucom.2019.04.077 doi: 10.1016/j.neucom.2019.04.077
    [31] C. Aouiti, I. B. Gharbia, Piecewise pseudo almost-periodic solutions of impulsive fuzzy cellular neural networks with mixed delays, Neural Process. Lett., 51 (2020), 1201–1225. https://doi.org/10.1007/s11063-019-10130-9 doi: 10.1007/s11063-019-10130-9
    [32] M. Abdelaziz, F. Cherif, Piecewise asymptotic almost periodic solutions for impulsive fuzzy Cohen-Grossberg neural networks, Chaos Soliton. Fract., 132 (2020), 109575. https://doi.org/10.1016/j.chaos.2019.109575 doi: 10.1016/j.chaos.2019.109575
    [33] M. Bohner, G. T. Stamov, I. M. Stamova, Almost periodic solutions of Cohen-Grossberg neural networks with time-varying delay and variable impulsive perturbations, Commun. Nonlinear Sci., 80 (2020), 104952. https://doi.org/10.1016/j.cnsns.2019.104952 doi: 10.1016/j.cnsns.2019.104952
    [34] A. M. Fink, Almost periodic differential equations, Heidelberg: Springer, 1974. http://doi.org/10.1007/BFb0070324
    [35] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, Singapore: World Scientific, 1995. https://doi.org/10.1142/2892
    [36] G. T. Stamov, Almost periodic solutions of impulsive differential equations, Heidelberg: Springer, 2012. http://doi.org/10.1007/978-3-642-27546-3
    [37] F. Cherif, Pseudo almost periodic solutions of impulsive differential equations with delay, Differ. Equ. Dyn. Syst., 22 (2014), 73–91. http://doi.org/10.1007/s12591-012-0156-0 doi: 10.1007/s12591-012-0156-0
    [38] J. W. Liu, C. Y. Zhang, Composition of piecewise pseudo almost periodic functions and applications to abstract impulsive differential equations, Adv. Differ. Equ., 2013 (2013), 11. https://doi.org/10.1186/1687-1847-2013-11 doi: 10.1186/1687-1847-2013-11
    [39] C. Aouiti, Oscillation of impulsive neutral delay generalized high-order Hopfield neural networks, Neural Comput. Applic., 29 (2018), 477–495. https://doi.org/10.1007/s00521-016-2558-3 doi: 10.1007/s00521-016-2558-3
    [40] Z. N. Xia, Pseudo almost periodic mild solution of nonautonomous impulsive integro-differential equations, Mediterr. J. Math., 13 (2016), 1065–1086. https://doi.org/10.1007/s00009-015-0532-4 doi: 10.1007/s00009-015-0532-4
    [41] C. Y. Zhang, Almost periodic type functions and ergodicity, Dordrecht: Springer, 2003.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2413) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog