Research article

Some new applications of the quantum-difference operator on subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the Cardioid domain

  • Received: 19 April 2023 Revised: 11 June 2023 Accepted: 18 June 2023 Published: 03 July 2023
  • MSC : 05A30, 11B65, 30C45, 47B38

  • In this study, we consider the quantum difference operator to define new subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the cardioid domain. We investigate a number of interesting problems for functions that belong to these newly defined classes, such as bounds for the first two Taylor-Maclaurin coefficients, estimates for the Fekete-Szeg ö type functional, and coefficient inequalities. The important point of this article is that all the bounds that we have investigated are sharp. Many well-known corollaries are also presented to demonstrate the relationship between prior studies and the results of this article.

    Citation: Mohammad Faisal Khan, Ahmad A. Abubaker, Suha B. Al-Shaikh, Khaled Matarneh. Some new applications of the quantum-difference operator on subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the Cardioid domain[J]. AIMS Mathematics, 2023, 8(9): 21246-21269. doi: 10.3934/math.20231083

    Related Papers:

  • In this study, we consider the quantum difference operator to define new subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the cardioid domain. We investigate a number of interesting problems for functions that belong to these newly defined classes, such as bounds for the first two Taylor-Maclaurin coefficients, estimates for the Fekete-Szeg ö type functional, and coefficient inequalities. The important point of this article is that all the bounds that we have investigated are sharp. Many well-known corollaries are also presented to demonstrate the relationship between prior studies and the results of this article.



    加载中


    [1] M. Fekete, G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. London Math. Soc., 1 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85
    [2] F. H. Jackson, On $q$-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. Edinburgh, 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [3] F. H. Jackson, On $q$-definite integrals, Pure Appl. Math., 41 (1910), 193–203.
    [4] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [5] H. M. Srivastava, Univalent functions, fractional calculus, and their applications, John Wiley Sons, 1989.
    [6] S. Mahmood, J. Sokół, New subclass of analytic functions in conical domain associated with ruscheweyh $q$-differential operator, Results Math., 71 (2017), 1345–1357. https://doi.org/10.1007/s00025-016-0592-1 doi: 10.1007/s00025-016-0592-1
    [7] S. Kanas, D. Rǎducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [8] H. Aldweby, M. Darus, Some subordination results on $q$ -analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563
    [9] G. I. Oros, L. I. Cotîrlă, Coefficient estimates and the Fekete-Szegö problem for new classes of $m$-fold symmetric bi-univalent functions, Mathematics, 10 (2022), 129. https://doi.org/10.3390/math10010129 doi: 10.3390/math10010129
    [10] H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of $q$-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 842. https://doi.org/10.3390/math8050842 doi: 10.3390/math8050842
    [11] B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent $q$-starlike functions involving higher-order $q$-derivatives, Mathematics, 8 (2020), 1470. https://doi.org/10.3390/math8091470 doi: 10.3390/math8091470
    [12] W. Ma, A unified treatment of some special classes of functions, Proc. Conf. Complex Anal., 1994.
    [13] R. Kargar, A. Ebadian, J. Sokół, Some properties of analytic functions related with bounded positive real part, Int. J. Nonlinear Anal. Appl., 8 (2017), 235–244. https://doi.org/10.22075/IJNAA.2017.1154.1308 doi: 10.22075/IJNAA.2017.1154.1308
    [14] S. Bulut, Coefficient bounds for $p$-valent close-to-convex functions associated with vertical strip domain, Korean J. Math., 29 (2021), 395–407. https://doi.org/10.11568/kjm.2021.29.2.395 doi: 10.11568/kjm.2021.29.2.395
    [15] A. W. Goodman, Univalent functions, Mariner Publishing Company, 1983.
    [16] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297–326. https://doi.org/10.4064/AP-28-3-297-326 doi: 10.4064/AP-28-3-297-326
    [17] K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. https://doi.org/10.1016/j.camwa.2011.07.006 doi: 10.1016/j.camwa.2011.07.006
    [18] S. Kanas, A. Wisniowska, Conic regions and $k$-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. https://doi.org/10.1016/S0377-0427(99)00018-7 doi: 10.1016/S0377-0427(99)00018-7
    [19] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–657.
    [20] E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 157 (1996), 89–94.
    [21] K. I. Noor, S. N. Malik, On a new class of analytic functions associated with conic domain, Comput. Math. Appl., 62 (2011), 367–375. https://doi.org/10.1016/j.camwa.2011.05.018 doi: 10.1016/j.camwa.2011.05.018
    [22] J. Dziok, R. K. Raina, J. Sokół, Certain results for a class of convex functions related to shell-like curve connected with Fibonacci numbers, Comput. Math. Appl., 61 (2011), 2605–2613. https://doi.org/10.1016/j.camwa.2011.03.006 doi: 10.1016/j.camwa.2011.03.006
    [23] J. Dziok, R. K. Raina, J. Sokół, On $\alpha $-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput., 218 (2011), 996–1002. https://doi.org/10.1016/j.amc.2011.01.059 doi: 10.1016/j.amc.2011.01.059
    [24] J. Dziok, R. K. Raina, J. Sokół, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Modell., 57 (2013), 1203–1211, https://doi.org/10.1016/j.mcm.2012.10.023 doi: 10.1016/j.mcm.2012.10.023
    [25] N. Y. Özgür, J. Sokół, On starlike functions connected with $k$-Fibonacci numbers, Bull. Malays. Math. Sci. Soc., 38 (2015), 249–258. https://doi.org/10.1007/s40840-014-0016-x doi: 10.1007/s40840-014-0016-x
    [26] S. N. Malik, M. Raza, J. Sokół, S. Zainab, Analytic functions associated with cardioid domain, Turk. J. Math., 44 (2020), 1127–1136. https://doi.org/10.3906/mat-2003-96 doi: 10.3906/mat-2003-96
    [27] S. Zainab, M. Raza, J. Sokół, S. N. Malik, On starlike functions associated with cardiod domain, Publ. Inst. Math., 109 (2021), 95–107. https://doi.org/10.2298/PIM2123095Z doi: 10.2298/PIM2123095Z
    [28] J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, 175 (1999), 111–116.
    [29] P. L. Duren, Univalent functions, Springer, 1983.
    [30] V. Ravichandran, A. Gangadharan, M. Darus, Fekete-Szego inequality for certain class of Bazilevic functions, Far East J. Math. Sci., 15 (2004), 171–180.
    [31] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48 (1945), 48–82. https://doi.org/10.1112/plms/s2-48.1.48 doi: 10.1112/plms/s2-48.1.48
    [32] M. Raza, S. Mushtaq, S. N. Malik, J. Sokół, Coefficient inequalities for analytic functions associated with cardioid domains, Hacet. J. Math. Stat., 49 (2020), 2017–2027. https://doi.org/10.15672/hujms.595068 doi: 10.15672/hujms.595068
    [33] H. Tang, S. Khan, S. Hussain, N. Khan, Hankel and Toeplitz determinant for a subclass of multivalent $q$-starlike functions of order $ \alpha$, AIMS Math., 6 (2021), 5421–5439. https://doi.org/10.3934/math.2021320 doi: 10.3934/math.2021320
    [34] A. K. Wanas, L. I. Cotîrlă, Initial coefficient estimates and Fekete-Szegö inequalities for new families of bi-univalent functions governed by ($p$-$q)$-Wanas operator, Symmetry, 13 (2021), 2118. https://doi.org/10.3390/sym13112118 doi: 10.3390/sym13112118
    [35] H. Orhan, L. I. Cotîrlă, Fekete-Szegö inequalities for some certain subclass of analytic functions defined with Ruscheweyh derivative operator, Axioms, 11 (2022), 560. https://doi.org/10.3390/axioms11100560 doi: 10.3390/axioms11100560
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(959) PDF downloads(74) Cited by(0)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog