In this study, we consider the quantum difference operator to define new subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the cardioid domain. We investigate a number of interesting problems for functions that belong to these newly defined classes, such as bounds for the first two Taylor-Maclaurin coefficients, estimates for the Fekete-Szeg ö type functional, and coefficient inequalities. The important point of this article is that all the bounds that we have investigated are sharp. Many well-known corollaries are also presented to demonstrate the relationship between prior studies and the results of this article.
Citation: Mohammad Faisal Khan, Ahmad A. Abubaker, Suha B. Al-Shaikh, Khaled Matarneh. Some new applications of the quantum-difference operator on subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the Cardioid domain[J]. AIMS Mathematics, 2023, 8(9): 21246-21269. doi: 10.3934/math.20231083
In this study, we consider the quantum difference operator to define new subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the cardioid domain. We investigate a number of interesting problems for functions that belong to these newly defined classes, such as bounds for the first two Taylor-Maclaurin coefficients, estimates for the Fekete-Szeg ö type functional, and coefficient inequalities. The important point of this article is that all the bounds that we have investigated are sharp. Many well-known corollaries are also presented to demonstrate the relationship between prior studies and the results of this article.
[1] | M. Fekete, G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. London Math. Soc., 1 (1933), 85–89. https://doi.org/10.1112/jlms/s1-8.2.85 doi: 10.1112/jlms/s1-8.2.85 |
[2] | F. H. Jackson, On $q$-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. Edinburgh, 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[3] | F. H. Jackson, On $q$-definite integrals, Pure Appl. Math., 41 (1910), 193–203. |
[4] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[5] | H. M. Srivastava, Univalent functions, fractional calculus, and their applications, John Wiley Sons, 1989. |
[6] | S. Mahmood, J. Sokół, New subclass of analytic functions in conical domain associated with ruscheweyh $q$-differential operator, Results Math., 71 (2017), 1345–1357. https://doi.org/10.1007/s00025-016-0592-1 doi: 10.1007/s00025-016-0592-1 |
[7] | S. Kanas, D. Rǎducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9 |
[8] | H. Aldweby, M. Darus, Some subordination results on $q$ -analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563 |
[9] | G. I. Oros, L. I. Cotîrlă, Coefficient estimates and the Fekete-Szegö problem for new classes of $m$-fold symmetric bi-univalent functions, Mathematics, 10 (2022), 129. https://doi.org/10.3390/math10010129 doi: 10.3390/math10010129 |
[10] | H. M. Srivastava, N. Khan, M. Darus, S. Khan, Q. Z. Ahmad, S. Hussain, Fekete-Szegö type problems and their applications for a subclass of $q$-starlike functions with respect to symmetrical points, Mathematics, 8 (2020), 842. https://doi.org/10.3390/math8050842 doi: 10.3390/math8050842 |
[11] | B. Khan, Z. G. Liu, H. M. Srivastava, N. Khan, M. Darus, M. Tahir, A study of some families of multivalent $q$-starlike functions involving higher-order $q$-derivatives, Mathematics, 8 (2020), 1470. https://doi.org/10.3390/math8091470 doi: 10.3390/math8091470 |
[12] | W. Ma, A unified treatment of some special classes of functions, Proc. Conf. Complex Anal., 1994. |
[13] | R. Kargar, A. Ebadian, J. Sokół, Some properties of analytic functions related with bounded positive real part, Int. J. Nonlinear Anal. Appl., 8 (2017), 235–244. https://doi.org/10.22075/IJNAA.2017.1154.1308 doi: 10.22075/IJNAA.2017.1154.1308 |
[14] | S. Bulut, Coefficient bounds for $p$-valent close-to-convex functions associated with vertical strip domain, Korean J. Math., 29 (2021), 395–407. https://doi.org/10.11568/kjm.2021.29.2.395 doi: 10.11568/kjm.2021.29.2.395 |
[15] | A. W. Goodman, Univalent functions, Mariner Publishing Company, 1983. |
[16] | W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Polon. Math., 28 (1973), 297–326. https://doi.org/10.4064/AP-28-3-297-326 doi: 10.4064/AP-28-3-297-326 |
[17] | K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. https://doi.org/10.1016/j.camwa.2011.07.006 doi: 10.1016/j.camwa.2011.07.006 |
[18] | S. Kanas, A. Wisniowska, Conic regions and $k$-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. https://doi.org/10.1016/S0377-0427(99)00018-7 doi: 10.1016/S0377-0427(99)00018-7 |
[19] | S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–657. |
[20] | E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 157 (1996), 89–94. |
[21] | K. I. Noor, S. N. Malik, On a new class of analytic functions associated with conic domain, Comput. Math. Appl., 62 (2011), 367–375. https://doi.org/10.1016/j.camwa.2011.05.018 doi: 10.1016/j.camwa.2011.05.018 |
[22] | J. Dziok, R. K. Raina, J. Sokół, Certain results for a class of convex functions related to shell-like curve connected with Fibonacci numbers, Comput. Math. Appl., 61 (2011), 2605–2613. https://doi.org/10.1016/j.camwa.2011.03.006 doi: 10.1016/j.camwa.2011.03.006 |
[23] | J. Dziok, R. K. Raina, J. Sokół, On $\alpha $-convex functions related to shell-like functions connected with Fibonacci numbers, Appl. Math. Comput., 218 (2011), 996–1002. https://doi.org/10.1016/j.amc.2011.01.059 doi: 10.1016/j.amc.2011.01.059 |
[24] | J. Dziok, R. K. Raina, J. Sokół, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Modell., 57 (2013), 1203–1211, https://doi.org/10.1016/j.mcm.2012.10.023 doi: 10.1016/j.mcm.2012.10.023 |
[25] | N. Y. Özgür, J. Sokół, On starlike functions connected with $k$-Fibonacci numbers, Bull. Malays. Math. Sci. Soc., 38 (2015), 249–258. https://doi.org/10.1007/s40840-014-0016-x doi: 10.1007/s40840-014-0016-x |
[26] | S. N. Malik, M. Raza, J. Sokół, S. Zainab, Analytic functions associated with cardioid domain, Turk. J. Math., 44 (2020), 1127–1136. https://doi.org/10.3906/mat-2003-96 doi: 10.3906/mat-2003-96 |
[27] | S. Zainab, M. Raza, J. Sokół, S. N. Malik, On starlike functions associated with cardiod domain, Publ. Inst. Math., 109 (2021), 95–107. https://doi.org/10.2298/PIM2123095Z doi: 10.2298/PIM2123095Z |
[28] | J. Sokół, On starlike functions connected with Fibonacci numbers, Folia Scient. Univ. Tech. Resoviensis, 175 (1999), 111–116. |
[29] | P. L. Duren, Univalent functions, Springer, 1983. |
[30] | V. Ravichandran, A. Gangadharan, M. Darus, Fekete-Szego inequality for certain class of Bazilevic functions, Far East J. Math. Sci., 15 (2004), 171–180. |
[31] | W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., 48 (1945), 48–82. https://doi.org/10.1112/plms/s2-48.1.48 doi: 10.1112/plms/s2-48.1.48 |
[32] | M. Raza, S. Mushtaq, S. N. Malik, J. Sokół, Coefficient inequalities for analytic functions associated with cardioid domains, Hacet. J. Math. Stat., 49 (2020), 2017–2027. https://doi.org/10.15672/hujms.595068 doi: 10.15672/hujms.595068 |
[33] | H. Tang, S. Khan, S. Hussain, N. Khan, Hankel and Toeplitz determinant for a subclass of multivalent $q$-starlike functions of order $ \alpha$, AIMS Math., 6 (2021), 5421–5439. https://doi.org/10.3934/math.2021320 doi: 10.3934/math.2021320 |
[34] | A. K. Wanas, L. I. Cotîrlă, Initial coefficient estimates and Fekete-Szegö inequalities for new families of bi-univalent functions governed by ($p$-$q)$-Wanas operator, Symmetry, 13 (2021), 2118. https://doi.org/10.3390/sym13112118 doi: 10.3390/sym13112118 |
[35] | H. Orhan, L. I. Cotîrlă, Fekete-Szegö inequalities for some certain subclass of analytic functions defined with Ruscheweyh derivative operator, Axioms, 11 (2022), 560. https://doi.org/10.3390/axioms11100560 doi: 10.3390/axioms11100560 |