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1. Introduction and definitions

Assume that A represents the family of analytic functions in the open unit disc
U={z:zeCand |7 < 1}.
For fi, f, € A, we say that f; subordinate to f; in U, indicated by
fi@) < f(2), zeU,
if there exists a Schwarz function w, defined by

weB={w:weA, |wi)|<1landw(0)=0, z€ U},


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231083

21247

that satisfies the condition
fi@) = L(w(z), z€U.
Indeed, it is known that

fi@) < f2(2) = £1(0) = f2(0) and fi(U) < fo(T).
Moreover, if the function f; is univalent in U then
fi@) < f2@) & fi(0) = f2(0) and fi(U) € fo(TD).
Let the class % be defined by
P ={heA:h0)=1and Re(h(z) > 0}.

The class of all functions in the normalized analytic function class A that are univalent in U is also
denoted by the symbol §. The maximization of the non-linear functional |a3 - ,ua§| or other classes
and subclasses of univalent functions has been the subject of a number of established results and these
results are known as Fekete-Szego problems, see [1]. If f € S and of the form (1.1), then

3 — 4y, if u<0,
|a3—,ua§| < 1+2exp(%), fOo<u<l,
4u — 3, ifu>1,

and the result |a3 - ua§| are sharp (see [1]). The Fekete-Szego problems have a rich history in literature
and for complex number pu.

In the area of geometric function theory (GFT), the g-calculus and fractional g-calculus have been
extensively employed by scholars who have developed and investigated a number of novel subclasses
of analytic, univalent and bi-univalent functions. Jackson [2, 3] first proposed the concept of the g-
calculus operator and gave the definition of the g-difference operator D, in 1909. In instance, Ismail
et al. were the first to define a class of g-starlike functions in open unit disc U using D, in [4]. The most
significant usages of g-calculus in the perspective of GFT was basically furnished and the basic (or g-)
hypergeometric functions were first used in GFT in a book chapter by Srivastava (see, for details, [5]).
See the following articles [6—10] for more information about g-calculus operator theory in GFT.

Now we review some fundamental definitions and ideas of the g-calculus, we utilize them to create
some new subclasses in this paper.

For a non-negative integer /, the g-number [/],, (0 < g < 1), is defined by

1-ql
[0, = 5 L and [0] =0,

and the g-number shift factorial is given by

—
~
[)
S
Il

(1140214031, - - - [y,
[0,! = 1.

For ¢ — 17, then [/]! reduces to [!.
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The g-generalized Pochhammer symbol is defined by
L,(l+k)

i = ,
[/1x W0

keN, [eC.

The g-gamma function I'; is defined by

_ o+l
T, =(1- )1]—[1 qﬁl

The g-generalized Pochhammer symbol is defined by
L,(l+k)

Ny = ,
[[1x o0

keN, [eC.

T(+k)
rao -

Definition 1. Jackson [3] defined the g-integral of function f(z) as follows:

Remark 1. For g — 17, then [[],x reduces to (1), =

f FQd@ = Y 2(1-9) f @' @) "
n=0

Jackson [2] introduced the g-difference operator for analytic functions as follows:
Definition 2. [2] For f € A, the g-difference operator is defined as:

f(g2) - f(2)

, z€U.
2g—-1)

qu(Z) =

Note that, forn € N, z € U and

D, =[nl, 2", D (Z az ] Z[n]qanz -1

n=1

Let A, stand for the class of analytic functions with the form

flo=2" +Zan+pz’””, peN,zelU

in the open unit disk U. More specifically, A; = A and

(oo}
f@=z+ Z an2", zeU.
n=1

Consider the g-difference operator for f € A, as follows:
Definition 3. [11] For f € A, the g-difference operator is defined as:

, eU.
2g—-1

D, f(z) =

Note that, forn € N, z € U and

o o
Dq(Zn+p) = [n + p]qzn+p_1, Dq (Z an+pzn+p) Z n+ p qan+pzn+p_] .

n=1 n=1

(1.1)

(1.2)
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Let 8* (p) represents the class of p-valent starlike functions and every f € S* (p), if
Re (Zf (2)
rf@)

and K (p) represents the class of p-valent convex functions and every f € K(p), if

1 if @
p(l +Re( I8 ]] >0, ze U.

These conditions are equivalent in terms of subordination as follows:

“(p) = d@  1+z
S(p)‘{feﬂ ) l—z}

)>O, zeU,

and

_ f @) 1+z
W(p)—{feﬂ [1+f(z))<l—z}'

The aforementioned two classes can be generalized as follows:

. _ 2f (@)
S (p,p) = {f €A, : PfQ@) < (P(Z)}

and

B zf (2)
K (p,p) = {feﬂ [1 f())< ()}

where ¢ (z) is a real part function that is positive and is normalized by the rule
©(0) =1 and ¢'(0) >0,

and ¢ maps U onto a space that is symmetric with regard to the real axis and starlike with respect to 1.
If p =1, then

S (p.o) =S (¢)
and

Kp.) =K (p).

These two classes S* (¢) and K (¢) defined by Ma [12].
A function f € A, is called p-valently starlike of order @ (0 < a < 1) with complex order
b € C\{0}, if it satisfies the inequality

1(zf )
Re{l +E(pf(z) —1) > a, ze(L{}.

The class S’;(a, b) denotes the collection of all f € A, functions that satisfy the aforementioned
condition.
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A function f € A, is called p-valently convex function of order @ (0 < a < 1) with complex order
b € C\{0}, if it satisfies the inequality

L[, 4@
Redl——+—|1+—= >a, zeUy.
{ b bp( f@ ] }
The class K,(a, b) denotes the collection of all functions f € A, that satisfy the aforementioned

condition.
Note that

1
[ €Ky (a,b) & —zf €S,(a,b).
p
Kargar et al. [13] investigated the classes S, (a, B) for f € A, and defined as follows:

feS,(ap)eax< Re(lzf @

p f@

For 0 < @ <1 < B and b € C\{0}, then the function f € A, belongs to the class K, , (@, f) if it satisfies
the inequality

)<,8, O<a<l<p, zel).

i
@

1 1
a/<Re[l——+—[1+

>t by ))<ﬁ, O<a<l<B,zel).

If p =1, then K}, , (o, B) = K, (a, ), studied by Kargar et al. in [13] and if 8 — oo in above definition,
Ko (@, B) = Ko (@, D).

Recently, Bult [14] used the definition of subordination and defined new subclasses of p-valent
starlike and convex functions associated with vertical strip domain as follows:

Sy (@.p) = {f A1ty ([%Z;(g) - 1) < flap z)}
and )
Ko (@) = {f A l-geo [1 + Z]{(g)) < f(a,ﬁ;z)},
where B
f(a,B:2) = 1+ﬁ;ailog(1 _1{”:_%]
and

O<a<l1<pB beC\{0}, zeU.

Bult [14] determined the coefficient bounds for functions belonging to these new classes.

On the basis of the geometrical interpretation of their image domains, numerous subclasses of
analytic functions have established using the concept of subordination. Right half plane [15], circular
disc [16], oval and petal type domains [17], conic domain [18, 19], leaf-like domain [20], generalized
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conic domains [21], and the most important one is shell-like curve [22-25] are some fascinating
geometrical classes we obtain with this domain. The function

1 + 1272

h(z) = (1.3)

1 —1z7-1%7?
is essential for the shell-like shape, where

1 -
2

15

T=
The image of unit circle under the function £ gives the conchoid of Maclaurin’s, due to the function

h(ei“’): \5 v sing(4cosp —1) ’
2(3-2cos¢) 23 —-2cosp)(l+cosep)

0<¢<2n.

The function given in (1.3) has the following series representation:
h@) =1+ ) (e + 4 T2
n=1
where
1-7)'-1"
Up = —""—F——>
V5

and u, produces a Fibonacci series of coefficient constants that are more closely related to the Fibonacci
numbers.

Taking motivation from the idea of circular disc and shell-like curves, Malik et al. [26] defined new

domain for analytic functions which is named as cardioid domain. A new class of analytic functions is
defined associated with cardioid domain, for more detail, see [26].

Definition 4. [26] Assume that CP (L, N) represents the class of functions p that are defined as
p(@) < p(L,N,2),
where p (L, N, z) is defined by

2L+ (L— D1z +2
ANT22+(N- 117+ 2

P(L,N,z) = (1.4)

with -1 < N<L<l,7="Yandzeu.

To understand the class CP (L, N), an explanation of the function p (L, N, z) in geometric terms
might be helpful in this instance. If we denote

R, (L, N; e”’) =u

and
I; (L. N;e") = v,
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then the image p (L, N, ei") of the unit circle is a cardioid like curve defined by

U= A+(L-1)(N-1D)T2+4LN7*+22 cos 9+4(L+N)7? cos 20
4+(N-1212+4N274+4(N-1)(7+N7?) cos §+8N72 cos 20

(1.5)

_ (L-N)(7—73) sin 6+27% sin 20
V= 4+(N- 1272 +4N24 +4(N-1)(7+N73) cos 6+8N72 cos 26

where

and

Moreover, we observe that
p(L,N,0) =1,

and
IN+9(L+N)+1+4(N-L) V5
N2 + 18N + 1 '

P(L,N,1) =
According to (1.5), the cusp of the cardioid-like curve is provided by

2LN -3(L+N)+2+(L-N)V5
2(N>=3N + 1) '

’)/(L, N) = ﬁ(L, N; eiiarccos(%)) —

The image of each inner circle is a nested cardioid-like curve if the open unit disc U is considered
a collection of concentric circles with origin at the center. As a result, the open unit disc U is mapped
onto a cardioid region by the function p(L, N, z). This means that p (L, N; U) is a cardioid domain. The
above discussed cardioid like curve with different values of parameters can be seen in Figures 1 and 2.

0.06 - e 1.0
o0 /" v(0.8,0.6) = 0.900893 ¥(0.5,-0.5) = 0.6792850867
IIIY' “""'-__ 0.54
00z I Y
'.‘ - '|||
0.00 +—¥ ; — . —t 00
(N 095 1.00/ 105 to |
II' ) "»»._7777777 7 / ‘|'
002 —
| /
\ -05-
0044\ A=08,B=06
4=05,B=-05
~0.06 4 -1.0

Figure 1. The curve (1.5) with L = 0.8, N = 0.6 and the curve (1.5) with L = 0.5, N=-0.5.
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0410—-
1 7(0.6,0.8) = 1.110008944

0.054

0.00

0.6

0.4

0.2

Y (-0.5,0.5) = 1.472135954

-0.05

~0.104 A4=06,B=08

0.0

-0.21

-0.4-

-0.64

Figure 2. The curve (1.5) with L = 0.6, N = 0.8 and the curve (1.5) with L =-0.5, N = 0.5.

The relationship N < L links the parameters L and N. The cardioid-like curve is flipped by its

voilation, as seen in the figures below.

See Figure 3, if collection of concentric circles having origin as center. Thus, the function p(L, N, 7)
maps the open unit disk U onto a cardioid region. See [26] for more details about cardioid region.

0.1- /

-0.14 Y

o0 X ¥
Q’JQ‘b\ X,

Figure 3. The open unit disk U.

The operator theory of quantum calculus is the primary result of this research. Using standard
uses in quantum calculus operator theory and the g-difference operator, we develop numerous novel
g-analogous of the differential and integral operators. We construct a large number of new classes of g-
starlike and g-convex functions using these operators and study some interesting characteristics of the
corresponding analytic functions. In this paper, we gain inspiration from recent research by [14,26,27]
and define two new classes of p-valent starlike, convex functions connected with the cardioid domain

using the g-difference operator.

Influenced by recent studies [14, 26, 27], we defined two new classes of p-valent starlike, convex

functions related with cardioid domain.

AIMS Mathematics

Volume 8, Issue 9, 21246-21269.



21254

Definition 5. The function f of the form (1.1) related with cardioid domain, represented by
S; (L,N,q,b), is defined to be the functions f such that

(LB
b\[pl, f@

where, b € C\{0} and p (L, N; z) is given by (1.4).

1)<5(L,N;z),

Definition 6. The function f of the form (1.1) related with cardioid domain, represented by
K, (L,N,q,b),is defined to be the functions f such that

1(“g%ﬂ@

1
- =+ ——
b blpl, | Duf@

where b € C\{0} and p (L, N;z) is given by (1.4) and K, (L, N, g, b) is the class of convex functions of
order b related with cardioid domain.

)<13(L,N;Z),

Special cases:

(i) Forg — 17,b = 1 and p = 1, in Definition 5, we have known class S* (L, N) of starlike functions
associated with cardioid domain proved by Zainab et al. in [27].

(i) Forg » 17,L=1,N = —1,b =1 and p = 1 in Definition 5, then class S; (L,N,q,b) =S L and
this class is defined on starlike functions associated with Fibonacci numbers, introduced and studied
by Sokét in [28].

(ili) Forg - 17, L =1, N = —1,b = 1 and p = 1 in Definition 6 then class K, (L, N, g¢,b) = K, and
this family is referred to as a class of convex functions connected with Fibonacci numbers.

There are four parts to this article. In Section 1, we briefly reviewed some basic concepts from
geometric function theory, quantum calculus, and cardioid domain, studied the g-difference operator,
and finally discussed this operator to define two new subclasses of multivalent g-starlike and g-convex
functions. The established lemmas are presented in Section 2. Our main results and some known
corollaries will be presented in Section 3, then some concluding remarks in Section 4.

2. A set of lemmas

By utilizing the following lemmas, we will determine our main results.
Lemma 1. [26] Let the function p (L, N;z) , defined by (1.4). Then,

(i) For the disc |z| < 72, the function p (L, N; z) is univalent.
(i) If h(z) < p (L, N;z), then Reh(z) > a, where

2(L+N-2)T+2QRLN-L-N)T*+16(L+N)1n
a= ,
4(N - 1)(t+ NT3) + 32N7°n

where
4+ = N*12 — 4N — (1 = N2*) y(N)

47 (1 + N272) ’

77:

AIMS Mathematics Volume 8, Issue 9, 21246-21269.
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X(N) = \/5(2N72—(N— Dr+2) N2+ (N-1)71+2),

-1<N<L<1
and
1-+5
T= )
2
(i) If
ﬁ(L’N;Z) = 1 + Z@nZH,
n=1
then
(L-N)3, forn=1,
0,={ (L-N)(5-N)%, forn=2, o)
]_TNTpn—l _Nszn—Z, forn = 3,4,5’ e
where

-1<N<L<1.
(iv) Let h(z) < p (L, N;z) and of the form A(z) = 1 + i h,z". Then

n=1

L-N
|y — vh| < %max{Z,lr(v(L—N)+N—5)l}, veC.

Lemma 2. [29] Let h € P, such that h(z) = 1 + 3 ¢,2". Then

n=1

Vo, o 2, if0<v<2,
CH 201 <max{2,2|v—-1|} = { dlv—1. elsewhere, 2.2)
and

lcal €2 for n > 1. (2.3)

Lemma 3. [30] Let h € P, such that

hz) =1+ Z 2"
n=1

Then for any complex number v

|cz - vcﬂ <2max{l,|2v -1}

and the result is sharp for

+ 72 1+z

1
]’Z(Z) = 1_—Z2 Cll’ld h(Z) = 1—

Lemma 4. [31] Let the function g given by

g = ) bt
k=1

AIMS Mathematics Volume 8, Issue 9, 21246-21269.
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be convex in U. Also let the function f given by

()

f@) = Z aZ"

k=1

be analytic in U. If
f(2) < g2),

then
|ak|<|b1|, k:1,2’3,...'

For the recently described classes of multivalent g-starlike (S;; (L, N, g, b)) and multivalent g-convex
(K, (L, N, q, b)) functions, we get sharp estimates for the coeflicients of Taylor series, Fekete-Szegd
problems and coefficient inequalities.

3. Main results

In the following theorems, we investigate the functions f(z) which can be used to find the sharpness
of the results of this article.

Theorem S. A function f € A, given by (1.1) is in the class S;, (L, N, q, b) if and only if there exists an

analytic function S,
2L+ (L- 1)1z +2

2NT222 4+ (N - D17+ 2’

S(@) <p(,N,z) =

where, p (L, N,0) = 1, such that

Z

f(z):z”exp{b[p]qfs(t)t_ldt}, zeU. (3.1)

0

Proof. Let f € S}, (L, N, g,b) and

SN
b\[pl, @

Then by integrating this equation we obtain (3.1). Conversely, if given by (3.1) with an analytic
function S (z) such that S(z) < p (L, N, z) , then by logarithmic differentiation of (3.1) we obtain

1] =h(z) < p(L,N,2).

1( 1 zD,f(2) )
l+—|————F—-1[=S(®).
+b([p]q f2) ©
Therefore we have (1 DO
D, f (z _
1+ — -1 L,N,
+b([p]q 7@ )<p( 2
and f € S; (L,N,q,b). m]

The initial coefficient bounds |a,,+1| and |ap+2| for the functions f € S; (L, N, b) are investigated in
Theorem 6 using the Lemma 2.

AIMS Mathematics Volume 8, Issue 9, 21246-21269.



21257

Theorem 6. Let f € S, (L, N, q,b) be given by (1.1), =1 < N <L < 1. Then

[p], bl (L - N)T

|ap+1| S

2 b
[p], bl (L = N) |
jap] < —— (5-N+[pl, b(L-N)).
These bounds are sharp.

Proof. Let f € S; (L, N, q,b), and of the form (1.1). Then

1 (L Zqu(Z)

— -1 p(L,N;272), 3.2
o\l 70 )<”( 2 6-2)

where
20722+ (L— D1z +2

ANT222+ (N -1z +2°
By applying the concept of subordination, there exists a function w with

p(L,N,z) =

w(0) =0 and [w(z)| <1,

such that o
1( 1 zD,f(z _
" ([p]q ) ) p L Nz )
Let
_ h(m)-1
@ = T
_ C1Z+C2Z2+C3ZS+"'
24z
1 1 1 1 1
= 01z + 3 (cz - EC%)ZZ + 3 (C3 —-cicy + Zci)f + . (3.4)
Since .
PLN;D) =1+ ) 07",
n=1
then
2
p(L,N; =1 Z _12 2 0 l _12 2
P L, 9W(Z)) - +Q1 2C1Z+2 C 2C1 Z +Q2 2C1Z+ 5 Cy 2C1 Z +
0,c 1 1.\= 0,72
= 1 12 IZ [E (C2 - EC%) Ql + 1 ! ZZ + (35)

Also consider the function
2L +(L-1) 1742

p(L,N;2) = .
PN D) = S T (N Dot 2

AIMS Mathematics Volume 8, Issue 9, 21246-21269.
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Let 7z = ay, then

2La(2)+(L— Dag+2
2Na3+(N— Dag+2

2, (=D
Lag+ =~ ap + 1

p(L,N,z)

NaZ + Thgg 41

L-1
( 3 )a/0+1)

2 - 1

1
1+§(1—N)CZ()+(
1 1 )
= 1+§(L—N)ozo+Z(L—N)(S—N)ao+~~- .
This implies that
1 1
P(L,N;z) = 1+5(L—N)Tz+Z(L—N)(S—N)T2z2+-~ . (3.6)

It is simple to observe from (3.5) that

L-N)(5 - N) 22
ﬁ(L’N;W(Z)):1+l(L_N)TQZ"'(l(L—N)T(Cz—1C%)+( ) ( )Tcl)zz_,_...' (3.7)
4 4 2 16
Since f € S}, (L, N, D), then
l LZqu(Z)_ _ 1 B ),
" b ([P]q f@ 1) =7 b[p]qal“lz"' blpl, (2aP+2 ap+1)z +eee (3.8)

It is simple to show that by utilizing (3.3) and comparing the coefficients from (3.7) and (3.8), we get
blpl, (L= N)c

dpe = . (3.9)
Applying modulus on both side, we have
|Cl |< [p]q|b|(L_N)T
p+1| = 2 .
Now again comparing the coefficients from (3.7) and (3.8), we have
2 1 1 (L-N)(5-N)1%c? 1
— =—-(L-N - = I 2
bipl, 2 gt (62 261) i 16 T ol
blpl,(L-N)t v
[apa] = === 2= 5 (3.10)

where -
v=1- E(5—N+ [plb(L = N)).

It shows that v > 2 which is satisfied by the relation L > N. Hence, by applying Lemma 2, we obtain
the required result.

AIMS Mathematics Volume 8, Issue 9, 21246-21269.
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Result is sharp for the function

f@) = zf’exp[b[p]q f ])(L[t)_ldt]
0
_ _ _ 2
_ Z,,+b[p]q(§ NT 0, bl L Z)(S N? o, G
where p (L, N, ) defined in (1.4). O

Lettingg — 17, b = 1 and p = 1 in Theorem 6, we get the known corollary proved in [32] for
starlike functions connected with cardioid domain.

Corollary 1. [32] Let f € 8" (L,N) be given by (1.2), -1 < N < L < 1. Then

L—-—N)|r
lay| < %,
_ 2
| < L= g)lﬂ {L—2N +5).

Fekete-Szegd problem ‘amz —ua,
Theorem 7.

for the functions f € S; (L,N,b) are investigated in

Theorem 7. Let f € S, (L, N, q,b) and of the form (1.1). Then

[l IbI (L = N) It
3 m

s — e, | < ax {2, |7 (= (L~ M) [plyb + N =5 +2[pl,b (L~ N) ,u)|} .

This result is sharp.

Proof. Since f € S’; (L,N, q,b), we have

(Lo
b\lpl, f(@

where w is Schwarz function such that w(0) and |w(z)| < 1 in U. Therefore

) =p(L,N;w(2), zeU,

1( 1 Zqu(z) )
== —1] = @),
i ([p]q @ @
1 zD,f(2) B l .
+[p]qb f@ b+(1+h1z+h2z + )
1
Zqu(Z) = [p]qbf(Z) (E + hiz+ h222 + .- ) "

and after some simple calculation, we have
[p]qu + [P + 1]qap+lzp+1 + [p + 2]q ap+2zp+2 +--

1
= [P]qb{zl’+ap+lzp+1 +al’+22p+2+"'}(z+h12+h2Z2+---)

AIMS Mathematics Volume 8, Issue 9, 21246-21269.
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= [p], {z" + Ay 2 F i+ } (1 + bhyz + bho> + - ) ,
Comparing the coeflicients of both sides, we get
aP+1 = [p]thl’ 2a]7+2 = [p]qb (h]ap+1 + hz) .

This implies that

Lp] 6]
[apea = | = == |+ (1= 20 [plybhi]
Lpl, 16|
= 5 |pa - vhil,

where

v=Qu-1[pl,b.
By using (iv) of Lemma 1 for

v=(2u—-1D[plsb,
we have the required result. The equality
[pl, 161 (L = N) If*

8

holds for f. given in (3.11). Consider fy: U — C defined as:

|apa = pas, | = (L =N)[plh =N +5=2[plyb (L~ N) g

FP(LN:2) -1
foz) = 2’ exp [[p]qbfudt] =z’ + % (L-=N)z"*?+ ..., (3.12)

0

where, p (L, N; z) is defined in (1.4). Hence

1{ 1 zD,f(2) ) _ )
| — —1]= L,N; .
b ([p]q 7@ p(L.N:2)

This demonstrates f; € S; (L, N, g, b). Hence the equality

[plg bl (L - N)|t|
2

|a17+2 - :uai+1| =
holds for the function f; given in (3.12). O

Lettingg — 17, b = 1 and p = 1 in Theorem 7, we get the known corollary proved in [32] for
starlike functions associated with cardioid domain.

Corollary 2. [32] Let f € 8" (L, N) and of the form (1.2). Then

las — pdd| < %max{Z,lr(—(L—2N+5)+2(L—N)/J)|}.

This result is sharp.
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Coefficient inequality for the class S, (L, N, b):
Theorem 8. For function f € A,, given by (1.1), if f € S}, (L, N, q,b) , then

n+l

1 ([k— 21, + el (- ) 5))
k=2
|ap+n — > (paHEN)
[n],!

Proof. Suppose f € S, (L, N, g, b) and the function S (z) define by

1(Lquf(z) _ 1)

S =1+ -
@=1+0\0L 70

Then by Definition 5, we have
S@ <p(L,N;2),

where, b € C\{0} and p (L, N; z) is given by (1.4). Hence, applying the Lemma 4, we get

lewl < |01], meN,

S ™(0) B
m! B

where )
S@=14+ciz+cz"+---,

and by (2.1), we have
— T
=|(L-N)=|.
@ =|e-m3
Also from (3.13), we find
2Dy f(2) = [plg{bg(2) - 1] + 1} f(2).
Since a, = 1, in view of (3.16), we obtain

[I’l + p]q - [p]q ap+n = [p]qb {cn + cn—lap+l +---+ Clap+n—l}

n

= b[p]q Z Cilpin—i-

i=1

Applying (3.14) into (3.17), we get

¢’ [nl, |ape| < [p], 161|Q4] Zl |apn-i, p.neN.
Forn = 1,2, 3, we have _
lapa| < % b0,
e
LRI

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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and
pl, [pO
|ap+3| _q;]] l3]ql| (1 + |ap+1| + |(1p+2|)
[p], [P0 [pl,, —  [pl,|PQ] pl,
o | b0, | + e ( |bQ1|)
- Lrl, |b_ | (1 i % |b§1|)([2]q * % |b§1|)
- g o 31, 121, ’

respectively. Applying the equality (3.15) and using the mathematical induction principle, we obtain

n+l

I (1 - 21, + 2 [0 )

lap| < = TN
@ﬁkzb Jo(@-ms)))
) [n],! '
This evidently completes the proof of Theorem 8. O

The initial coefficient bounds |ap+1| and |ap+2| for the functions f € K, (L, N, g, b) are investigated
in Theorem 9 using the Lemma 2.

Theorem 9. Let f € K, (L, N, q,b) be given by (1.1), -1 <N < L < 1. Then

[pl21bI(L-N)T

|"P+1|

- 2[p+1], ’
v’ [pl,(L-N)T
2
e ) (5-N+[pl, b L-N)).
These bounds are sharp.

Proof. Let f € K, (L,N, g, b), and be of the form (1.1). Then

1(“;%ﬂ@

1
= p(L,N;z2), 3.18
b+b[p]q qu(z)]<p( 2) (3.18)

where
2L+ (L— D1z +2

2NT2Z224+ (N - D1z +2°

By applying the concepts of subordination, there exists a function w with

p(L,N,z) =

w(0) =0 and |w(2)| < 1,
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such that )
1 1 2D, f(2)
1--—+ 1 =p(L,N; . 3.19
b b[p]q( D, )~ P NE) G19
Let
_ h(@-1
@ = o
_ C1Z+C2Z2+C3ZS+"'
24z
1 1 1 1 1
= Eclz+E(cz—ch)zz+§(C3—c1c2+4—1c?)z3+~-. (3.20)
Since .
PLN:D) =1+ 0,
then
_ 1 1 1 1 1., )
p(L,N;W(Z)) = 1+Q1 —C1Z+2 CZ_EC +Q2 C1Z+2 C2—§C1 75 4 ...
1 1 ,\—=
= 1+Q1261z+(§( —cl)Ql Q“]z e (3.21)
Also consider the function LS ) )
_ Loz +(L-1D)71z+
L,N;72) = .
PN ) = S T (N e+ 2
Let 7z = ap. Then
. 2La2 +(L—1Dag+2
p(L,N,z) = :
2Nag+ (N —Dag+2
Lo? + Elag + 1
© NaZ+ ¥Ng 41
L-1 1 N?—-6N +1
= (La%+( )a0+1) 1+§(1—N)a0+(T)a(2)+ ]
1 1 ’
= +§(L—N)(Z0+1(L—N)(5—N)Q’O+
This implies that
_ 1 1 )5
p(L,N;z):1+§(L—N)Tz+Z(L—N)(5—N)Tz + (3.22)
It is simple to observe from (3.21) that
1 1 1 L—-N)(5-N)t*c?
1—9(L,N;w(z)):1+Z(L—N)Tc]“(Z(L—N)T(cz—§c§)+( )(16 )Tcl)z%r (3.23)
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Since f € K, (L,N,q,b), then

D? +1 + 1]
IR0 L rlhe Vor. (29)
blpl,

1
l‘fb[p]q(“qu@J‘“m

It is simple to show that by utilizing (3.19) and comparing the coefficients from (3.23) and (3.24),
we get
b[pl; (L - N)tc,

4[p+1],

ap+1 =
Applying modulus on both side, we have

(P12 1Bl (L - N)
2[p+1],

|ap+] | S

Now again comparing the coefficients from (3.7) and (3.8), we have

2[p+2], 1 1 (L-N)5-N)T’c]  (p+1)
———a,,=~(L-N — = ! 2
blpl, 7 3l )T(C2 261) ’ 16 T
blpl,(L-N)T v,
T 2, 17729

where .
_ 2
v—1—§(5—N+[p]qb (L—N)),

it shows that v > 2 which is satisfied by the relation L > N. Hence, by applying Lemma 2, we obtain
the required result.
Result is sharp for the function

Z
p(L,N,t) -1
f&) = Zexp [b [p]; f %dt]
0
b[p?(L-N)T b[pl>(L-N)(5 - N)r?
_ Zp + [p]q Zp+l + [p](] Zp+2 o, (325)
2 8
where p (L, N, ) defined in (1.4). O

Fekete-Szegd problem ‘awz - pa,,
Theorem 10.

for the functions f € K,(L,N,q,b) are investigated in

Theorem 10. Let f € K, (L, N, q,b) and be of the form (1.1). Then

[p], IbI(L = N) ]
(p+1],-[pl,+D[p+2],

2
|ape2 = pay,,| < 1
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—(L-N)[pl;b+N-5

X max{2,|t [pLslp+2],([p+1],-[p],+1 )

[p+1];

This result is sharp.

Proof. Since f € K, (L,N,b), we have

1

1 1 ( D f(2)
- —+ 1+
b b [p]q D,f(2)

where w is Schwarz function such that w(0) and |w(z)| < 1 in U. Therefore

) =p(L,N;w(), z€U,

-5 D (“Zlf]{;)) -
+ZDD§C((ZZ)) = (%—l)b[p]q+b[p]q(1+h1z+hzzz+---),
; qu‘zf]{((;)) = (Ip), +bIpl, mz+bpl, bt +--),
+Z3]‘3]]:((ZZ)) = [pl, [1+bhiz+bhyt? +--- |,

and after some simple calculation, we have

[p]q(l +[p- 1](1) 27+ ([p+ 1]q ([P]q + l)ap+1Zp +[p+ Z]q ([p + l]q + 1)ap+2ZP+1 Foeee

= [p], {[p]qZ""1 +[p+ 1 apaz” + [p+2],ap2z”" + -} (1 + bz + by + - -+
= [pl™" +([pl, (p + 1, aper + [p]; bh1) 27
+{[p), [p + 21, ape2 + [p), [p + 1], hiapar + [p]; bha} 2.
Comparing the coefficients of both sides, we get
[P, bh: [p], b
= m, apyr =
p+1l [p+2,([p+11,-[p], +1)

([p + 1]q hla,,H + hz) .

ap+1

This implies that
[p], 1P|
(p+1],-[pl,+ DIp+2],
[ [ [p+21,[p),([p+11,- [P, + 1) )
hh+11- ) U [
[p+1],

2 —
Api2 — :uap+1 -

X

Pl bh?]

_ [p], 1Bl ,
= (p+ 1]q - [p]q +1)[p+ 2](1 (hz - Vh1),
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where

. ([p +2),[pl, (lp + 11, - [p], + 1)
lp+1];
By using (iv) of Lemma 1 for
([p +2),[pl, (Ip + 11, - [p], + 1) ]
v= p p=11lp]
[p+ 1],

we have the required result. The equality
[p], IbI(L = N) |7
4p+1],-I[pl,+DIp+2],
[p]} b ([p +1], = [pl, + 1)[p +2],(L - N)

2 —
apy2 _ﬂap+l| =

X (L=N)[p>b-N+5- u
7l [p+11;
holds for f. given in (3.25). Consider the function fy: U4 — C be defined as:
Z —
P(LN;) -1
foz) = 2exp {[P]i b f ( ‘ ) dat
0
2
T b
= 4 [pz]" (L-N)Z"* 4,
where, p (L, N; z) is defined in (1.4). Hence and
11 D f (z))
l——+ 1+ =7p(L,N;7?).
b blpl, [ D, )~ P ENE)
O
Theorem 11. Let f € A, be given by (1.1). If f € K,,(L,N, b), then
n+l [p]q .
(o1, T1 (1K = 21, + 121, 552 b (2 - ) 5)))
|ap+n < k=2 , p,neN.
(n,! ([p +nl,)
Proof. We can obtain Theorem 11, by using the same technique of Theorem 8. O

4. Conclusions

In this article, we have used the ideas of cardioid domain, multivalent analytic functions, and
g-calculus operator theory to define the new subfamilies of multivalent g-starlike and g-convex
functions. In Section 1, we discussed some basic concepts from geometric functions, analytic
functions, multivalent functions, g-calculus operator theory, and the idea of the cardioid domain. We
also define two new classes of p-valent starlike, convex functions connected with the cardioid domain

AIMS Mathematics Volume 8, Issue 9, 21246-21269.
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using the g-difference operator. The already known lemmas are presented in Section 2. In Section 3,
for the class S}, (L, N, q,b), we investigated sharp coefficient bounds, Fekete-Szegd functional, and
coefficient inequalities. Same type of results also studied for the class S}, (L, N, q,b). The research
also demonstrated how the parameters, including some new discoveries, expand and enhance the
results.

For future studies, researchers can use a number of ordinary differential and g-analogous of
difference and integral operators and can define a number of new subclasses of multivalent functions.
By applying the ideas of this article, many new results can be found. The idea presented in this article
can be implemented on papers [33—-35], and researchers can discuss the new properties of multivalent
functions associated with the cardioid domain.
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