Research article

Ekeland's variational principle in fuzzy quasi-normed spaces

  • Received: 18 April 2022 Revised: 19 June 2022 Accepted: 23 June 2022 Published: 29 June 2022
  • MSC : 46S40, 58E30

  • Fuzzy quasi-normed space provides an ideal mathematical framework for studying asymmetric phenomena. In this paper, we prove a version of the Ekeland variational principle in fuzzy quasi-normed spaces and apply it to Caristi's fixed point theorem and Takahashi minimization theorem. Moreover, we prove the equivalence relations among these theorems.

    Citation: Wei Zhou, Jianrong Wu. Ekeland's variational principle in fuzzy quasi-normed spaces[J]. AIMS Mathematics, 2022, 7(9): 15982-15991. doi: 10.3934/math.2022874

    Related Papers:

  • Fuzzy quasi-normed space provides an ideal mathematical framework for studying asymmetric phenomena. In this paper, we prove a version of the Ekeland variational principle in fuzzy quasi-normed spaces and apply it to Caristi's fixed point theorem and Takahashi minimization theorem. Moreover, we prove the equivalence relations among these theorems.



    加载中


    [1] C. Alegre, S. Romaguera, Characterizations of metrizable topological vector spaces and their asymmetric generalizations in terms of fuzzy (quasi-)norms, Fuzzy Sets Syst., 161(2010), 2181-2192. https://doi.org/10.1016/j.fss.2010.04.002 doi: 10.1016/j.fss.2010.04.002
    [2] S. Al-Homidan, Q. H. Ansari, G. Kassay, Takahashi's minimization theorem and some related results in quasi-metric spaces, J. Fixed Point Theory Appl., 21 (2019), 38. https://doi.org/10.1007/s11784-019-0676-0 doi: 10.1007/s11784-019-0676-0
    [3] T. Q. Bao, S. Cobzaş, A. Soubeyran, Variational principles, completeness and the existence of traps in behavioral sciences, Ann. Oper. Res., 269 (2018), 53-79. https://doi.org/10.1007/s10479-016-2368-0 doi: 10.1007/s10479-016-2368-0
    [4] T. Q. Bao, B. S. Mordukhovich, A. Soubeyran, Variational analysis in psychological modeling, J. Optim. Theory Appl., 164 (2015), 390-315. https://doi.org/10.1007/s10957-014-0569-8 doi: 10.1007/s10957-014-0569-8
    [5] T. Q. Bao, B. S. Mordukhovich, A. Soubeyran, Fixed points and variational principles with applications to capability theory of wellbeing via variational rationality, Set-Valued Var. Anal., 23 (2015), 375-398. https://doi.org/10.1007/s11228-014-0313-4 doi: 10.1007/s11228-014-0313-4
    [6] T. Q. Bao, A. Soubeyran, Variational analysis in cone pseudo-quasimetric spaces and applications to group dynamics, J. Optim. Theory Appl., 170 (2016), 458-475. https://doi.org/10.1007/s10957-016-0933-y doi: 10.1007/s10957-016-0933-y
    [7] E. M. Bednarczuk, D. Zagrodny, A smooth vector variational principle, SIAM J. Control Optim., 48 (2010), 3735-3745. https://doi.org/10.1137/090758271 doi: 10.1137/090758271
    [8] H. Brézis, F. E. Browder, A general principle on ordered sets in nonlinear functional analysis, Adv. Math., 21 (1976), 355-364. https://doi.org/10.1016/S0001-8708(76)80004-7 doi: 10.1016/S0001-8708(76)80004-7
    [9] L. C. Ceng, G. Mastroeni, J. C. Yao, Existence of solutions and variational principles for generalized vector systems, J. Optim. Theory Appl., 137 (2008), 485-495. https://doi.org/10.1007/s10957-007-9348-0 doi: 10.1007/s10957-007-9348-0
    [10] S. S. Chang, Q. Luo, Caristi's fixed point theorem for fuzzy mappings and Ekeland's variational principle, Fuzzy Sets Syst., 64 (1994), 119-125. https://doi.org/10.1016/0165-0114(94)90014-0 doi: 10.1016/0165-0114(94)90014-0
    [11] S. Cobzas, Functional analysis in asymmetric normed spaces, Birkhä user: Springer, 2013. https://doi.org/10.1007/978-3-0348-0478-3
    [12] S. Cobzas, Completeness in quasi-metric spaces and Ekeland variational principle, Topol. Appl., 158 (2011), 1073-1084. https://doi.org/10.1016/j.topol.2011.03.003 doi: 10.1016/j.topol.2011.03.003
    [13] S. Cobzaş, Ekeland variational principle in asymmetric locally convex spaces, Topol. Appl., 159 (2012), 2558-2569. https://doi.org/10.1016/j.topol.2012.04.015 doi: 10.1016/j.topol.2012.04.015
    [14] S. Cobzaş, Ekeland, Takahashi and Caristi principles in quasi-pseudo metric spaces, Topol. Appl., 265 (2019), 106831. https://doi.org/10.1016/j.topol.2019.106831 doi: 10.1016/j.topol.2019.106831
    [15] I. Ekeland, Sur les problemes variationnels, C. R. Acad. Sci. Paris, 275 (1972), 1057-1059.
    [16] I. Ekeland, On the variational principle, J. Math. Anal. Appl., 47 (1974), 324-353. https://doi.org/10.1016/0022-247X(74)90025-0 doi: 10.1016/0022-247X(74)90025-0
    [17] I. Ekeland, Nonconvex minimization problems, Bull. Amer. Math. Soc., 1 (1979), 443-474. https://doi.org/10.1090/S0273-0979-1979-14595-6 doi: 10.1090/S0273-0979-1979-14595-6
    [18] R. Gao, X. X. Li, J. R. Wu, The decomposition theorem for a fuzzy quasi-norm, J. Math., 2020 (2020), 8845283. https://doi.org/10.1155/2020/8845283 doi: 10.1155/2020/8845283
    [19] L. M. García-Raffi, S. Romaguera, E. A. Sánchez-Pérez, Weak topologies on asymmetric normed linear spaces and non-asymptotic criteria in the theory of complexity analysis of algorithms, J. Anal. Appl., 2 (2004), 125-138.
    [20] A. George, P. Veeramani, On some results in fuzzy metric space, Fuzz Sets Syst., 64 (1994), 395-399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [21] C. Gutiérrez, B. Jiménez, V. Novo, L. Thibault, Strict approximate solutions in set-valued optimization with applications to the approximate Ekeland variational principle, Nonlinear Anal.-Theor., 73 (2010), 3842-3855. https://doi.org/10.1016/j.na.2010.08.012 doi: 10.1016/j.na.2010.08.012
    [22] E. Karapinar, S. Romaguera, On the weak form of Ekeland's variational principle in quasi-metric spaces, Topol. Appl., 184 (2015), 54-60. https://doi.org/10.1016/j.topol.2015.01.011 doi: 10.1016/j.topol.2015.01.011
    [23] B. S. Mordukhovich, Variational analysis and generalized differentiation, I: Basic Theory, II: Applications, Berlin: Springer, 2006.
    [24] R Phelps, Convex functions, monotone operators and differentiability, Springer-Verlag, 1993. https://doi.org/10.1007/978-3-540-46077-0
    [25] J. H. Qiu, Ekeland's variational principle in locally complete spaces, Math. Nachr., 257 (2003), 55-58. https://doi.org/10.1002/mana.200310077 doi: 10.1002/mana.200310077
    [26] J. H. Qiu, Local completeness, drop theorem and Ekeland's variational principle, J. Math. Anal. Appl., 311 (2005), 23-39. https://doi.org/10.1016/j.jmaa.2004.12.045 doi: 10.1016/j.jmaa.2004.12.045
    [27] J. H. Qiu, Ekeland's variational principle in locally convex spaces and the density of extremal points, J. Math. Anal. Appl., 360 (2009), 317-327. https://doi.org/10.1016/j.jmaa.2009.06.054 doi: 10.1016/j.jmaa.2009.06.054
    [28] J. Robinson, A survey of Ekeland's variational principle and related theorems and applications, UNLV Theses, 2014. http://doi.org/10.34917/7048610
    [29] S. Romaguera, M. Schellekens, Quasi-metric properties of complexity spaces, Topol. Appl., 98 (1999), 311-322. https://doi.org/10.1016/S0166-8641(98)00102-3 doi: 10.1016/S0166-8641(98)00102-3
    [30] S. Romaguera, M. Schellekens, Duality and quasi-normability for complexity spaces, Appl. Gen. Topol., 3 (2002), 91-112. https://doi.org/10.4995/agt.2002.2116 doi: 10.4995/agt.2002.2116
    [31] B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 314-334. https://doi.org/10.2140/pjm.1960.10.313 doi: 10.2140/pjm.1960.10.313
    [32] J. R. Wu, X. Tang, Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem in fuzzy quasi-metric spaces, Topol., Appl., 302 (2021), 107801. https://doi.org/10.1016/j.topol.2021.107801 doi: 10.1016/j.topol.2021.107801
    [33] A. Zaslavski, Symmetric optimization problems, In: Turnpike phenomenon and symmetric optimization problems, Springer, 2022. https://doi.org/10.1007/978-3-030-96973-8_2
    [34] S. D. Zeng, S. Migórski, A. A. Khan, Nonlinear quasi-hemivariational inequalities: existence and optimal control, SIAM J. Control Optim., 59 (2021), 1246-1274. https://doi.org/10.1137/19M1282210 doi: 10.1137/19M1282210
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1246) PDF downloads(102) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog