In this article, a new two-parameter discrete power-Ailamujia (DsPA) distribution is derived using the survival discretization technique. Some key distributional properties and reliability measures are explored in closed forms, such as probability generating function, first four moments and mean residual life. The DsPA parameters are estimated using the maximum likelihood approach. The performance of this estimation method is assessed via a simulation study. The flexibility of the DsPA distribution is shown using three count datasets. The DsPA distribution provides a better fit than some recent discrete models such as the discrete Burr-Ⅻ, uniform Poisson–Ailamujia, Poisson, discrete-Pareto, discrete-Rayleigh, discrete inverse-Rayleigh, and discrete Burr–Hutke distributions.
Citation: Abdulaziz S. Alghamdi, Muhammad Ahsan-ul-Haq, Ayesha Babar, Hassan M. Aljohani, Ahmed Z. Afify. The discrete power-Ailamujia distribution: properties, inference, and applications[J]. AIMS Mathematics, 2022, 7(5): 8344-8360. doi: 10.3934/math.2022465
In this article, a new two-parameter discrete power-Ailamujia (DsPA) distribution is derived using the survival discretization technique. Some key distributional properties and reliability measures are explored in closed forms, such as probability generating function, first four moments and mean residual life. The DsPA parameters are estimated using the maximum likelihood approach. The performance of this estimation method is assessed via a simulation study. The flexibility of the DsPA distribution is shown using three count datasets. The DsPA distribution provides a better fit than some recent discrete models such as the discrete Burr-Ⅻ, uniform Poisson–Ailamujia, Poisson, discrete-Pareto, discrete-Rayleigh, discrete inverse-Rayleigh, and discrete Burr–Hutke distributions.
[1] | D. Roy, The discrete normal distribution, Commun. Stat-Theor M., 32 (2003), 1871‒1883. https://doi.org/10.1081/STA-120023256 doi: 10.1081/STA-120023256 |
[2] | D. Roy, Discrete Rayleigh Distribution, IEEF Transactions on Reliability, 53 (2004), 255‒260. https://doi.org/10.1109/TR.2004.829161 doi: 10.1109/TR.2004.829161 |
[3] | A. Kemp, The discrete half normal distribution, Advances in mathematical and statistical modeling, (2008), 353‒360. https://doi.org/10.1007/978-0-8176-4626-4_27 doi: 10.1007/978-0-8176-4626-4_27 |
[4] | H. Karishna, P. S. Pundir, Discrete burr and discrete Pareto distributions, Stat. Methodol., 6 (2009), 177‒188. https://doi.org/10.1016/j.stamet.2008.07.001 doi: 10.1016/j.stamet.2008.07.001 |
[5] | M. A. Jazi, C. Lai, M. H. Alamastsaz, A Discrete inverse Weibull distribution and estimation of its parameters, Stat Methodol., 7 (2010), 121‒132. https://doi.org/10.1016/j.stamet.2009.11.001 doi: 10.1016/j.stamet.2009.11.001 |
[6] | E. Gomez-Deniz, Another generalization of the geometric distribution, Test, 19 (2010), 399‒415. https://doi.org/10.1007/s11749-009-0169-3 doi: 10.1007/s11749-009-0169-3 |
[7] | E. Gomez-Deniz, E. Calderin-Ojeda, The discrete Lindley distribution: properties and application, J. Stat. Comput. Sim., 81 (2011), 1405‒1416. https://doi.org/10.1080/00949655.2010.487825 doi: 10.1080/00949655.2010.487825 |
[8] | V. Nekoukhou, M. H. Alamatsaz, H. Bidram, Discrete generalized exponential distribution of a second type, Statistics, 47 (2013), 876‒887. https://doi.org/10.1080/02331888.2011.633707 doi: 10.1080/02331888.2011.633707 |
[9] | T. Hussain, M. Ahmad, Discrete inverse Rayleigh distribution, Pak. J. Stat., 30 (2014), 203‒222. |
[10] | T. Hussain, M. Aslam, M. Ahmad, A two parameter discrete Lindley distribution, Rev. Colomb. Estad., 39 (2016), 45‒61. https://doi.org/10.15446/rce.v39n1.55138 doi: 10.15446/rce.v39n1.55138 |
[11] | B. A. Para, T. R. Jan, Discrete version of Log-Logistic distribution and its application in genetics, International Journal of Modern Mathematical Sciences, 14 (2016), 407‒422. |
[12] | J. M. Jia, Z. Z. Yan, X. Y. Peng, A new discrete extended Weibull distribution, IEEE ACCESS, 7 (2019), 175474‒175486. https://doi.org/10.1109/ACCESS.2019.2957788 doi: 10.1109/ACCESS.2019.2957788 |
[13] | M. El-Morshedy, M. S. Eliwa, H. Nagy, A new two parameter exponentiated discrete Lindley distribution: properties, estimation and application, J. Appl. Stat., 47 (2020), 354‒375. https://doi.org/10.1080/02664763.2019.1638893 doi: 10.1080/02664763.2019.1638893 |
[14] | M. El-Morshedy, M. S. Eliwa, E. Altun, Discrete Burr-Hatke distribution with properties, estimation methods and regression model, IEEE Access, 8 (2020), 74359‒74370. https://doi.org/10.1109/ACCESS.2020.2988431 doi: 10.1109/ACCESS.2020.2988431 |
[15] | F. C. Opone, E. K. Izekor, I. U. Akata, F. E. U. Osagiede, A Discrete Analogue of the Continuous Marshall-Olkin Weibull Distribution with application to Count Data, Earthline Journal of Mathematical Sciences, 5 (2021), 415‒428. https://doi.org/10.34198/ejms.5221.415428 doi: 10.34198/ejms.5221.415428 |
[16] | A. A. Al-Babtain, A. H. N. Ahmad, A. Z. Afify, A new discrete analog of the continuous Lindley distribution, with reliability applications, Entropy, 22 (2020), 603. https://doi.org/10.3390/e22060603 doi: 10.3390/e22060603 |
[17] | E. Altun, M. El-Morshedy, M. S. Eliwa, A Study on discrete Bilal distribution with properties and applications on integer-valued autoregressive process, Revstat. Stat. J., 18 (2020), 70‒99. |
[18] | A. S. Eldeeb, M. Ahsan-Ul-Haq, A. Babar, A discrete analog of inverted Topp-Leone distribution: properties, estimation and applications, Int. J. Anal. Appl., 19 (2021), 695‒708. |
[19] | H. M. Aljohani, Y. Akdoğan, G. M. Cordeiro, A. Z. Afify, The uniform Poisson–Ailamujia distribution: actuarial measures and applications in biological science, Symmetry, 13 (2021), 1258. https://doi.org/10.3390/sym13071258 doi: 10.3390/sym13071258 |
[20] | M. El-Morshedy, M. S. Eliwa, H. Nagy, A new two-parameter exponentiated discrete Lindley distribution: properties, estimation and applications, J. Appl. Stat., 47 (2020), 354‒375. https://doi.org/10.1080/02664763.2019.1638893 doi: 10.1080/02664763.2019.1638893 |
[21] | M. El-Morshedy, H. M. Aljohani, M. S. Eliwa, M. Nassar, M. K. Shakhatreh, A. Z. Afify, The exponentiated Burr–Hatke distribution and its discrete version: reliability properties with CSALT model, inference and applications, Mathematics, 9 (2021), 2277. https://doi.org/10.3390/math9182277 doi: 10.3390/math9182277 |
[22] | A. Z. Afify, M. Elmorshedy, M. S. Eliwa, A new skewed discrete model: properties, inference, and applications, Pak. J. Stat. Oper. Res., 17 (2021), 799‒816. https://doi.org/10.18187/pjsor.v17i4.3781 doi: 10.18187/pjsor.v17i4.3781 |
[23] | A. S. Eldeeb, M. Ahsan-ul-Haq, M. S. Eliwa, A discrete Ramos-Louzada distribution for asymmetric and over-dispersed data with leptokurtic-shaped: properties and various estimation techniques with inference, AIMS Mathematics, 7 (2022), 1726‒1741. https://doi.org/10.3934/math.2022099 doi: 10.3934/math.2022099 |
[24] | M. Ahsan-ul-Haq, A. Babar, S. Hashmi, A. S. Alghamdi, A. Z. Afify, The discrete type-Ⅱ half-logistic exponential distribution with applications to COVID-19 data, Pak. J. Stat. Oper. Res., 17 (2021), 921‒932. https://doi.org/10.18187/pjsor.v17i4.3772 doi: 10.18187/pjsor.v17i4.3772 |
[25] | F. Jamal, C. Chesneau, K. Aidi, A. Ali, Theory and application of the power Ailamujia distribution, Journal of Mathematical Modeling, 9 (2021), 391‒413. |
[26] | R Core Team, R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2020. Available from: https://www.R-project.org/. |
[27] | J. F. Lawless, Statistical Models and Methods for Lfetime Data, Vol. 362, John Wiley & Sons, 2011. |
[28] | D. Karlis, E. Xekalaki, E. A. Lipitakis, On some discrete valued time series models based on mixtures and thinning. In Proceedings of the Fifth Hellenic-European Conference on Computer Mathematics and Its Applications, (2001), 872‒877. |
[29] | H. S. Bakouch, M. A. Jazi, S. Nadarajah, A new discrete distribution, Statistics, 48 (2014), 200‒240. https://doi.org/10.1080/02331888.2012.716677 doi: 10.1080/02331888.2012.716677 |