The goal of this study is to see if there is a solution for the fuzzy delay predator-prey system (FDPPS) with Caputo derivative. To begin, we use Schaefer's fixed point theorem to obtain results for the existence theorem of at least one solution in a Caputo FDPPS where the initial condition is also represented by a fuzzy number on fuzzy number space. We also determine the necessary and sufficient conditions of solutions for the system. Several examples are also presented to explain the oscillatory property and the existence of a solution.
Citation: Kinda Abuasbeh, Ramsha Shafqat, Azmat Ullah Khan Niazi, Muath Awadalla. Oscillatory behavior of solution for fractional order fuzzy neutral predator-prey system[J]. AIMS Mathematics, 2022, 7(11): 20383-20400. doi: 10.3934/math.20221117
The goal of this study is to see if there is a solution for the fuzzy delay predator-prey system (FDPPS) with Caputo derivative. To begin, we use Schaefer's fixed point theorem to obtain results for the existence theorem of at least one solution in a Caputo FDPPS where the initial condition is also represented by a fuzzy number on fuzzy number space. We also determine the necessary and sufficient conditions of solutions for the system. Several examples are also presented to explain the oscillatory property and the existence of a solution.
[1] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley-Interscience, 1993. |
[2] | K. B. Oldham, J. Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order, Elsevier, 1974. |
[3] | S. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
[4] | B. Ahmad, J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58 (2009), 1838–1843. https://doi.org/10.1016/j.camwa.2009.07.091 doi: 10.1016/j.camwa.2009.07.091 |
[5] | B. Ahmad, S. K. Ntouyas, R. P. Agarwal, A. Alsaedi, On fractional differential equations and inclusions with nonlocal and average-valued (integral) boundary conditions, Adv. Differ. Equ., 2016 (2016), 80. https://doi.org/10.1186/s13662-016-0807-5 doi: 10.1186/s13662-016-0807-5 |
[6] | A. Khan, R. Shafqat, A. U. K. Niazi, Existence results of fuzzy delay impulsive fractional differential equation by fixed point theory approach, J. Funct. Spaces, 2022 (2022), 4123949. https://doi.org/10.1155/2022/4123949 doi: 10.1155/2022/4123949 |
[7] | K. Abuasbeh, R. Shafqat, A. U. K. Niazi, M. Awadalla, Local and global existence and uniqueness of solution for class of fuzzy fractional functional evolution equation, J. Funct. Spaces, 2022 (2022), 7512754. https://doi.org/10.1155/2022/7512754 doi: 10.1155/2022/7512754 |
[8] | V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal-Theor., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042 |
[9] | K. Abuasbeh, R. Shafqat, A. U. K. Niazi, M. Awadalla, Nonlocal fuzzy fractional stochastic evolution equations with fractional Brownian motion of order (1, 2), AIMS Mathematics, 7 (2022), 19344–19358. https://doi.org/10.3934/math.20221062 doi: 10.3934/math.20221062 |
[10] | S. S. Mansouri, M. Gachpazan, O. S. Fard, Existence, uniqueness and stability of fuzzy fractional differential equations with local Lipschitz and linear growth conditions, Adv. Differ. Equ., 2017 (2017), 240. https://doi.org/10.1186/s13662-017-1293-0 doi: 10.1186/s13662-017-1293-0 |
[11] | S. Ruan, On nonlinear dynamics of predator-prey models with discrete delay, Math. Model. Nat. Phenom., 4 (2009), 140–188. https://doi.org/10.1051/mmnp/20094207 doi: 10.1051/mmnp/20094207 |
[12] | S. S. Chang, L. A. Zadeh, On fuzzy mapping and control, In: Fuzzy sets, fuzzy logic, and fuzzy systems: Selected papers by Lotfi A Zadeh, 1996,180–184. |
[13] | D. Dubois, H. Prade, Towards fuzzy differential calculus part 3: Differentiation, Fuzzy set. syst., 8 (1982), 225–233. https://doi.org/10.1016/S0165-0114(82)80001-8 doi: 10.1016/S0165-0114(82)80001-8 |
[14] | B. Bede, I. J. Rudas, A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inform. Sci., 177 (2007), 1648–1662. https://doi.org/10.1016/j.ins.2006.08.021 doi: 10.1016/j.ins.2006.08.021 |
[15] | J. P. Xu, Z. G. Liao, Z. N. Hu, A class of linear differential dynamical systems with fuzzy initial condition, Fuzzy Set. Syst., 158 (2007), 2339–2358. https://doi.org/10.1016/j.fss.2007.04.016 doi: 10.1016/j.fss.2007.04.016 |
[16] | A. Khastan, J. J. Nieto, R. Rodriguez-Lopez, , Variation of constant formula for first order fuzzy differential equations, Fuzzy Set. Syst., 177 (2011), 20–33. https://doi.org/10.1016/j.fss.2011.02.020 doi: 10.1016/j.fss.2011.02.020 |
[17] | X. T. Ge, Y. Z. Zhu, Existence and uniqueness theorem for uncertain delay differential equations, J. Comput. Inform. Syst., 8 (2012), 8341–8347. https://doi.org/10.1186/s40467-015-0028-6 doi: 10.1186/s40467-015-0028-6 |
[18] | X. W. Chen, Z. F. Qin, A new existence and uniqueness theorem for fuzzy differential equations, Int. J. Fuzzy Syst., 13 (2011), 148–151. |
[19] | K. Balachandran, P. Prakash, Existence of solutions of fuzzy delay differential equations with nonlocal condition, J. KSIAM, 6 (2002), 81–89. |
[20] | J. Y. Park, H. K. Han, Fuzzy differential equations, Fuzzy Set. Syst., 110 (2000), 69–77. https://doi.org/10.1016/S0165-0114(98)00150-X doi: 10.1016/S0165-0114(98)00150-X |
[21] | A. Abbas, R. Shafqat, M. B. Jeelani, N. H. Alharthi, Significance of chemical reaction and Lorentz force on third-grade fluid flow and heat transfer with Darcy-Forchheimer law over an inclined exponentially stretching sheet embedded in a porous medium, Symmetry, 14 (2022), 779. https://doi.org/10.3390/sym14040779 doi: 10.3390/sym14040779 |
[22] | A. Abbas, R. Shafqat, M. B. Jeelani, N. H. Alharthi, Convective heat and mass transfer in third-grade fluid with Darcy-Forchheimer relation in the presence of thermal-diffusion and diffusion-thermo effects over an exponentially inclined stretching sheet surrounded by a porous medium: A CFD study, Processes, 10 (2022), 776. https://doi.org/10.3390/pr10040776 doi: 10.3390/pr10040776 |
[23] | A. U. K. Niazi, J. W. He, R. Shafqat, B. Ahmed, Existence, uniqueness, and $E_{q}$-Ulam-type stability of fuzzy fractional differential equation, Fractal Fract., 5 (2021), 66. https://doi.org/10.3390/fractalfract5030066 doi: 10.3390/fractalfract5030066 |
[24] | N. Iqbal, A. U. K. Niazi, R. Shafqat, S. Zaland, Existence and uniqueness of mild solution for fractional-order controlled fuzzy evolution equation, J. Funct. Spaces, 2021 (2021), 5795065. https://doi.org/10.1155/2021/5795065 doi: 10.1155/2021/5795065 |
[25] | R. Shafqat, A. U. K. Niazi, M. B. Jeelani, N. H. Alharthi, Existence and uniqueness of mild solution where $\alpha \in (1, 2)$ for fuzzy fractional evolution equations with uncertainty, Fractal Fract., 6 (2022), 65. https://doi.org/10.3390/fractalfract6020065 doi: 10.3390/fractalfract6020065 |
[26] | K. Abuasbeh, R. Shafqat, A. U. K. Niazi, M. Awadalla, Local and global existence and uniqueness of solution for time-fractional fuzzy Navier-Stokes equations, Fractal Fract., 6 (2022), 330. https://doi.org/10.3390/fractalfract6060330 doi: 10.3390/fractalfract6060330 |
[27] | A. S. Alnahdi, R. Shafqat, A. U. K. Niazi, M. B. Jeelani, Pattern formation induced by fuzzy fractional-order model of COVID-19, Axioms, 11 (2022), 313. https://doi.org/10.3390/axioms11070313 doi: 10.3390/axioms11070313 |
[28] | K. Barzinji, N. Maan, N. Aris, Fuzzy delay predator–prey system: Existence theorem and oscillation property of solution, Int. J. Math. Anal., 8 (2014), 829–847. http://doi.org/10.12988/ijma.2014.4373 doi: 10.12988/ijma.2014.4373 |
[29] | I. Gyori, G. Ladas, Oscillation theory of delay differential equations: With applications, Clarendon Press, 1992. |
[30] | G. S. Ladde, V. Lakshmikantham, B. G. Zhang, Oscillation theory of differential equations with deviating arguments, New York: M. Dekker, 1987. |
[31] | O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7 |
[32] | Y. Kuang, Delay differential equations with applications in population dynamics, 1993. |
[33] | R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1–12. https://doi.org/10.1016/0022-247X(65)90049-1 doi: 10.1016/0022-247X(65)90049-1 |