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1. Introduction

In real-world occurrences, a wide range of physical processes exhibit fractional-order behavior that
can alter through time and space. The operations of differentiation and integration of fractional order
are authorized by fractional calculus. The fractional order can be used on both imaginary and real
integers [1–3]. Due to vast variety of fractional calculus of applications in disciplines such as physics,
chemistry, biology, electronics, thermal systems, electrical engineering, mechanics, signal processing,
weapon systems, electro hydraulics, population modeling, robotics, and control, and many others, the
theory of fuzzy sets continues to attract researchers’ attention [4–10]. As a result, over the last few
years, it has caught the interest of scholars. In the investigation of population dynamics, the basis of
many models used nowadays is formed by the predator-prey model. For mathematical ecology, it is
one of the most popular systems.

In 1920, the predator-prey model was presented by Volterra and Lokta for the study of population
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dynamics. Extensions and variations in this model are beginning to be done for many years. The study
of this model in relation to oscillatory and stabilities behavior is very famous nowadays. The essential
aspects of predator-prey models, which have a strong biological foundation, have been highlighted.

In the PP model, the study on population was expanded by integrating harvesting and time delay.
The rate of population change is not entirely determined by the current population. However, when
considering time delay, it is also dependent on the previous population. When using the harvesting
model, some research establishes a link between population and economic difficulties. There is a lot
of work on the subject of delayed Predator-prey system [11]. Modeling dynamical systems in a state
of flux with fuzzy differential equations is a natural choice. These systems will give a more accurate
description of modern-world problems.

The amount of work being done in this area is fast increasing these days. The notion of fuzzy
derivative was first introduced by Chang and Zadeh [12]. In 1982, Dubois et al. [13] followed up,
using the extension idea in their method. The concept of the fuzzy differential equation was introduced
to the analysis of fuzzy dynamical concerns by Kandel and Byatt. Many researchers worked on fuzzy
differential equation theory and its application to real-world problems [14–16].

The existence and uniqueness theorems are the most essential and fundamental theorems in classical
differential equation theory. Theorems on fuzzy-set functions have been studied in several publications.
Some of these are cited as [17–19], and [20]. Ge et al. [17] developed the concept of uncertain
delay differential equations. Using Banach’s fixed point theorem, he proved the existence-uniqueness
theorem for the equation under linear growth and Lipschitz conditions. For fuzzy differential equations,
Chen et al. [18] designed a new existence-uniqueness theorem. To distinguish the theorem from
preceding tasks, they apply the Liu procedure [18]. Fuzzy delay differential equations with the nonlocal
condition were as shown by Balachandran and Prakash [19] existence of solutions. Park et al. [20]
established the existence-uniqueness theorem for fuzzy differential equations by applying successive
approximations on Em. The existence theorem was applied to a particular type of fuzzy differential
equation. Abbas et al. [21, 22] worked on a partial differential equation. Niazi et al. [23], Iqbal et
al. [24], Shafqat et al. [25], Abuasbeh et al. [26] and Alnahdi et al. [27] existence-uniqueness of the
FFEE were investigated.

In 2014, Barzinji et al. demonstrated the existence of a solution for FDPP with fuzzy initial
conditions on (En,D) in [28]. The DPP system is

Ẋ(ω) = X(1 − X) − cyX
ẏ(ω) = cbe−d jτY(ω − τ)X(ω − τ) − dY
X(0) = X0,

Y(0) = Y0, − τ 6 ω 6 0,

and the FDPPS in a vector form is{
u̇(ω) = f (ω, x(ω), xω) ω ∈ J = [0, a],
x(0) = x0 − τ 6 ω 6 0.

Ladde et al. [29] and reference [30] recently discovered the oscillation theory of delay differential
equations. As a result, only a few results on the oscillatory property of distinct fuzzy differential
systems have been published [31].
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The existence of a solution for Caputo FDPP with fuzzy initial condition on (Em,D) where β ∈ [1, 2]
is motivated by the previously mentioned papers. The predator-prey system is

c
0Dβ

ωu(ω) = u(1 − u) − guv
c
0Dβ

ωv(ω) = ghe−diσv(ω − σ)u(ω − σ) − dv
u(0) = u0

u′(0) = u1

v(0) = v0 − σ 6 ω 6 0,

(1.1)

where x represents prey population, y represents predator population, d represents predator death rate, c
represents constant predator response, σ represents the constant time required to change prey biomass
into predator biomass, and x0, y0 represent the initial conditions.

The FDPP system in a vector form:
c
0Dβ

ωu(ω) = f (ω, u(h(ω)), uω) ω ∈ J = [0, a],
u(0) = u0,

u′(0) = u1, − σ 6 ω 6 0.
(1.2)

To deal with a fuzzy process, the goal of this work is to investigate the existence and uniqueness
of results to FDPP systems by using Caputo derivative. Some researchers discovered FDE results in
the literature, though the vast majority of them were first-order differential equations. In our research,
we discovered results for Caputo derivatives of order (1,2). We employ FDPPS. The theory of fuzzy
sets continues to attract the interest of academics due to its wide range of applications in fields such
as engineering, robotics, mechanics, control, thermal systems, electrical, and signal processing. The
important points of the FDDE with the nature of the solution of a fundamental existence theorem.
The oscillatory behavior of such an equation has vast importance. We will examine oscillation for the
Caputo FDPP system in this work, and we will discover the sufficient and necessary criteria for all
solutions to be oscillatory.

This paper is organized as follows. In Section 2, some notations, concepts and terminologies are
given. In Section 3, the formulation of the fuzzy delay differential predator-prey system are presented.
In Section 4, we prove the existence theorem for fuzzy delay predator-prey system. In Section 5,
we discuss the oscillation solution of the fuzzy delay predator-prey system. Some examples are
presented in Section 6. Finally, Section 7 provides applications in real life and Section 8 provides
a brief conclusion.

2. Preliminaries

2.1. Fuzzy sets and numbers

Assume Mk(Rm) be family of all nonempty compact convex subsets of Rm, addition and scalar
multiplication are usually also defined asMk(Rm). Consider two nonempty bounded subsets of Rm,A
and B. Hausdroff metric is used to define the distance betweenA and B as,

d(A,B) = max{sup
a∈A

inf
b∈B
||a − b||, sup

b∈B
inf
a∈A
||a − b||},

where (||x||) indicate usual Euclidean norm in Rm.
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We can have addition and scalar multiplication in fuzzy number space Em using Zadeh’s extension
principle, as shown in:

[x ⊕ y]β = [x]β ⊕ [y]β, [kx]β = k[y]β

where x, y ∈ Em, k ∈ Rm and 1 6 β 6 2.
Define D : Em × Em → Rm+ by equation

D(x, y) = sup
16β62

max{[u]β, [v]β}

where d is the Hausdorff metric for a non-empty compact sets in Rm.
It is now quite easy to see, D is a metric in Em. Making use of the result,

(i) (Em,D) is a complete metric space.
(ii) D(x ⊕ z, y ⊕ z) = D(x, y) for all x, y, z ∈ Em.

(iii) D(kx, ky) = |k|D(x, y) ∀x, y ∈ Em and k ∈ Rm.
(iv) D(x ⊕ y, z ⊕ e) 6 D(x, z) ⊕ D(y, e) for all x, y, z, e ∈ Em.

Remark 2.1. On Em, we can define subtraction 	, called the H-difference as follows u 	 v has sense
if there exist ω ∈ Em such that x = y + z.

Clearly, x−y @ ∀ x, y ∈ Em. In what follows, we consider Cb = C([0, b],Em), space of all continuous
fuzzy functions define on [0, b] ⊂ Rm into Em, where b > 0. For x, y ∈ Cb, we define the metric

H(x, y) = sup
ω∈[0,b]

D(x(ω), y(ω)).

Then (Cb,H) is complete metric space.
Consider the compact interval T = [c, d] ⊂ Rm. For the set-valued fuzzy mappings, we recall the

properties of measurability and integrability [32].

Definition 2.2. [32] A mapping F : I ∈ Em is a strongly measurable if for all β ∈ [1, 2] the set-
valued function Gβ : I →Mk(Rm) define by Gβ(ω) = [F (ω)]β is Lebesgue measurable whenMk(Rm)
is endowed with topology generated by the Hausdorff metric d.

A mapping G : I ∈ Em is called an integrably bounded if there exists an integrable function
k : I → Rm

+ such that D(G0(ω),C0) 6 k(ω) for all ω ∈ T.

Definition 2.3. [32] Let G : I ∈ Em. Then integral of G over I denoted by
∫
I
G(ω)dω, is defined

by equation [
∫
I
G(ω)dω]β =

∫
I
Gβ(ω)dω = {

∫
I
G(ω)dω/g : I → Rm is a measurable selection for

Gβ}∀β ∈ [1, 2].
Also, strongly measurable and an integrably bounded mapping G : I → Em is said to be integrable

over I if
∫
I
G(ω)dω ∈ Em.

Proposition 2.4. If G : I ∈ Em is a strongly measurable and integrably bounded then F is integrable.

The definitions and theorems listed here can be found in [20].

Proposition 2.5. Assume G,H : I ∈ Em be integrable and c ∈ I, λ ∈ Rm. Now FDPP system

(i)
∫
I
(G(ω) ⊕H(ω))dω =

∫
I
G(ω)dω ⊕

∫
I
H(ω)dω,

(ii)
∫ ω0+a

ω0
G(ω)dω =

∫ c

ω0
G(ω)dω +

∫ ω0+a

c
G(ω)dω,
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(iii) D(F ,G) is an integrable,
(iv) D(

∫
I
G(ω)dω,

∫
I
H(ω)dω) 6

∫
I

D(G,H)(ω)dω.

Theorem 2.6. [20] Assume G : I → Em is differentiable and let derivative G′ is integrable on I. For
all s ∈ I, we now have

G(s) = G(a) +

∫ s

a
G′(ω)dω.

Definition 2.7. [20] The mapping g : I × Em → Em is said to be level-wise continuous at a point
(ω0, u0) ∈ I × Em provided for any fixed β ∈ [1, 2] and arbitrary ε > 0, there exist ξ(ε, β) > 0 , then

d([g(ω, u)]β, [g(ω0, u0)]β) < ε

when |ω − ω0| < ξ(ε, β) and d([x]β, [x0]β) < ξ(ε, β) for all ω ∈ I, u ∈ Em.

Corollary 2.8. [32] Given that G : I × Em → Em is continuous. Then there’s the function.

H(ω) =

∫ ω

a
G(ω)ds, ω ∈ I

is differentiable and H ′(ω) = G(ω). Then, if G is continuously differentiable on I, The following is
the mean value theorem,

D(G(b),G(a)) 6 (b − a) sup{D(G′(ω), 0̃), ω ∈ I}.

As a result, have
D(H(b),H(a)) 6 (b − a) sup{D(G(ω), 0̃), ω ∈ I}.

Theorem 2.9. [20] Assume V is any metric space and U is a compact metric space. If and only if Ω

is equi-continuous on U, and Ω(u) = {ϕ(u) : ϕ ∈ Ω} is totally bounded subset of V for each u ∈ U,
the subset ω of C(U,V) of continuous mapping of U into V is totally bounded in metric of uniform
convergence.

Consider a system with a delay differential,

d
dω

[c
0Dβ

ωu(ω) +

m∑
i=1

Qiu(ω − κi)] + R0u(ω) +

n∑
j=1

R ju(ω − ψ j) = 0. (2.1)

Definition 2.10. [30] A solution of the system (2.1) u(ω) = [u1(ω), ..., un(ω)] is said to oscillate if
every component ui(ω) of solution has an arbitrarily large zeros. On the other hand, it is called a
non-oscillatory solution.

Theorem 2.11. [30] Suppose the coefficients Qi and Rm
i of Eq (2.1) are real n×n matrices and delays

κi and ϕi are positive numbers. Assume u(ω) be a solution of Eq (1.1) on [0,∞). Then there exist a
positive constantM and ζ such that ||u(ω)|| 6Meζω for ω > 0.

Theorem 2.12. [30] Assume u ∈ C{[0,∞),Rm} and suppose that there exist positive constants ζ and
ψ such that |u(ω)| 6Meζω for ω > 0. Then abscissa of convergence ψ0 of Laplace transform U(s) of
u(ω) satisfies ψ0 6 ψ. In addition,U(s) exists and is an analytic function of s for Res < ψ0.
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Lemma 2.13. [30] Consider the nonlinear delay differential system:

c
0Dβ

ωu(ω) + g(u(ω − ζ)) = 0. (2.2)

As ω→ 0, every non-oscillatory solution of the Eq (2.2) tends to zero.

Definition 2.14. [30] A solution for the system (2.2) u(ω) = [u1(ω), ..., un(ω)]T is said to oscillate
if every component ui(ω) of solution has arbitrarily large zeros. On the other hand, it is called a
non-oscillatory solution.

Theorem 2.15. [30] Consider a differential delay system:

c
0Dβ

ωu(ω) + qu(ω − ζ) = 0, ω > 0. (2.3)

Here are several statements that are equivalent:

(i) The delay differential system (2.3) has a positive solution.
(ii) The delay differential inequality:

c
0Dβ

ωv(ω) + qv(ω − ζ) 6 0, ω > 0 (2.4)

has a positive solution.

In this situation, the existence and uniqueness of theorems for delay differential equations will be
shown.

Theorem 2.16. [33] (Existence) Assume

c
0Dβ

ωu(ω) = f (ω, u(ω), u(ω − τ))u(θ) = ψ, ω > 0. (2.5)

Suppose Ω is an open subset in Rm × B and g is a continuous on ω. If (ψ, µ) ∈ ω, then there is a
solution of (2.3) passing through (ψ, µ).

g(ω, µ) is Lipschitz in µ in compact set M of Rm × B if there is a constant k > 0 that is for
(ω, µi) ∈ M, for i = 1, 2|g(ω, µ1) − g(ω, µ2)| ≤ k|µ1 − µ2|.

Theorem 2.17. [33] (Uniqueness) Assume Ω is an open set in Rm × B, g : Ω → Rm is continuous,
and G(ω, ψ) is Lipschitz in ψ in each set in Ω. If (θ, ψ) ∈ Ω, there is a unique solution of (2.5) through
(κ, ϕ).

3. Fuzzy delay predator-prey system

In this part, we define a basic system called the FDPP system. Consider a PP system with a time
delay: 

c
0Dα

ωu(ω) = u(1 − u) − guv,
c
0Dα

ωv(ω) = ghe−diσv(ω − σ)u(ω − σ) − dv,
u(0) = u0,

u′(0) = u1,

v(0) = v0, − σ 6 ω 6 0.

(3.1)
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where x represents prey population, y represents predator population, d represents predator death rate, c
represents constant predator response, σ represents the constant time required to change prey biomass
into predator biomass, and x0, y0 represent the initial conditions.

The linear component and x(ω), y(ω) of system (3.1) are then fuzzified using fuzzy symmetric
triangular number and parametric from representation of β-cut and x(ω), y(ω) are non negative fuzzy
functions:

1̃ = (1 − (1 − β)κ1, 1 + (1 − β)κ1)
d̃ = (1 − (1 − β)κ2, d + (1 − β)κ2)

where 1 6 β 6 2.
The FDPP system can be written as a vector:

c
0Dβ

ωu(ω) = f (ω, u(h(ω)), uω) ω ∈ J = [0, a],
u(0) = u0,

u′(0) = u1, − σ 6 ω 6 0
(3.2)

where
f (ω, u(ω), uω) = Au(ω) + B(ω, u(ω), uω)

u̇(ω) =

[
u̇(ω)
v̇(ω)

]
, A =

[
1 0
0 −d

]
, u(ω) =

[
u(ω)
u(ω)

]
B(ω, u(ω), uω) =

[
−u2 − guv

ghe−diσv(ω − σ)x(ω − σ)

]
u0 =

[
u0

v0

]
−σ 6 ω 6 0.

Where f is fuzzy mapping from Em → Em, u(ω) and uω = u(ω−σ) are nonnegative fuzzy functions
of ω in Em. MatrixA has members that are called fuzzy numbers. c

0Dβ
ωu(ω) is fuzzy Caputo derivative

of u(ω) where u0 and u1 are fuzzy number.

4. Existence of the solution

Definition 4.1. Solution to problem (3.2) refers to the mapping u(ω) : G → Em. if it is continuous at
all levels and obeys the integral equation:

u(ω) = Cq(ω)u0 +Kq(ω)u1ω +

∫ ω

0
f (s, u(h(s)), us)ds

u(ω) = Cq(ω)u0 +Kq(ω)u1ω +

∫ ω

0
(Au(s) + B(s, u(h(s)), us)ds ∀ω ∈ G. (4.1)

Now let L = ζ ∈ Em : H(ζ, u0) 6 b be a space of a continuous function with

H(ζ, ϕ) = sup
06ω6δ

D(ζ(ω), ϕ(ω))

and b positive number. The following is how we present the existence and uniqueness theorem for the
FDPP system (3.2).
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Theorem 4.2. AssumeA and B are level-wise continuous on G implies that mapping g : G×L → Em

is level-wise continuous on G and there exists constant J0 that is

D
(
g(ω, u(h(ω)), uω), g(ω, v(ω, v(h(ω)), vω)

)
6 D( f (u, v)) 6 J0D(u, v)

for all u, v ∈ Em and ω ∈ G.
Then there’s an another solution u(ω) of (3.2) defined on interval [0, δ] where

δ =

{
a,

b
P
,

1
J0

}
and

P = max D
(
g(ω, u(h(ω)), uω), 0̃

)
, 0̃ ∈ Em.

Proof. Consider the definition of the operator ψ : L→ L as

ψu(ω) = Cq(ω)u0 + Kq(ω)u1 +

∫ ω

0
f (s, u(h(s)), us)ds

= Cq(ω)u0 +Kq(ω)u1 +

∫ ω

0
(Au(s) + B(s, u(h(s)), us)ds. (4.2)

First, we demonstrate that ψ : L → L is continuous when ζ ∈ L andH(ψζ, u0) 6 b.

P = max D
(
g(ω, u(h(ω)), uω), 0̃

)
,

D(ψζ(ω + h), ψζ(ω)) = D
(
Cq(ω)u0 + Kq(ω)u1 +

∫ ω+h

0
g(s, ζ(h(s)), ξs),Cq(ω)u0 + Kq(ω)u1

+

∫ ω

0
g(s, ζ(h(s)), ξs)

)
6 D

( ∫ ω+h

0
g(s, ζ(h(s)), ξs),

∫ ω

0
g(s, ζ(h(s)), ξs)

)
6

∫ ω+h

0
D(g(s, ζ(h(s)), ξs), 0̃)ds

= lP → 0 as l→ 0.

As a result, the mapping ψ is continuous. Now

D(ψζ(ω),Cq(ω)u0,Kq(ω)u1) = D
( ∫ ω

0
g(s, ζ(h(s)), ξs),Cq(ω)u0,Kq(ω)u1

)
6

∫ ω

0
D(g(s, ζ(h(s)), ξs), 0̃)ds

= Pω

and so

H(ψζ,Cq(ω)u0,Kq(ω)u1) = sup
06ω6δ

D(ψζ(ω),Cq(ω)u0,Kq(ω)u1)

AIMS Mathematics Volume 7, Issue 11, 20383–20400.
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6 Pδ

6 b.

After that, ψ maps L to L. Because C([0, δ],Em) is complete metric space with metricH , we can now
prove that L is closed subset of C([0, δ],Em), implying that L is complete metric space. Assume φn is
sequence in L that is φn → φ ∈ C([0, δ],Em) as n→ ∞. Then

D(φ(ω),Cq(ω)u0,Kq(ω)u1) 6 D(φ(ω), φn(ω)) + D(φn(ω),Cq(ω)u0,Kq(ω)u1),

and also,

H(φ,Cq(ω)u0,Kq(ω)u1) = sup
06ω6δ

D(ψ(ω),Cq(ω)u0,Kq(ω)u1)

6 H(φ, φn) +H(φ,Cq(ω)u0) +H(φ,Kq(ω)u1)
6 ε + b + b

6 ε + 2b

for sufficiently large n and an arbitrary ε > 0. Hence, φ ∈ L. This demonstrates that L is a closed
subset of C([0, δ],Em). As a result, L is the complete metric space.
We’ll show that ψ represents contraction mapping, using Proposition 2.5 and the assumption of the
theorem. For ζ, φ ∈ L,

D(ψζ(ω), ψφ(ω)) = D
(
Cq(ω)u0 +Kq(ω)u1 +

∫ ω

0
g(s, ζ(h(s)), ζs)ds,Cq(ω)u0 +Kq(ω)u1

+

∫ ω

0
g(s, φ(h(s)), φs)ds

)
6

∫ ω

0
D
(
g(s, ζ(h(s)), ζs), g(s, φ(h(s)), φs)

)
ds

6

∫ ω

0
M0D(ζ(s), φ(s))ds.

We conclude

H(ψζ(ω), ψφ(ω)) 6 sup
ω∈δ

{ ∫ ω

0
M0D(ζ(s), φ(s))ds

}
6 δM0D(ζ(ω), φ(ω))
6 δM0H(ζ, φ).

Since δM0 < 2, ψ is contraction mapping. Now, ψ has unique fixed point u ∈ C([0, δ],Em) that is
ψu = u, and

u(ω) = Cq(ω)u0 +Kq(ω)u1 +

∫ ω

0
f (s, u(h(s)), us)ds

= Cq(ω)u0 +Kq(ω)u1 +

∫ ω

0
(Au(s) + B(s, u(h(s)), us)ds. (4.3)

�
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Theorem 4.3. Consider that g and u0 as in Theorem 4.2. And let u(ω, u0), v(ω, v0) be solutions of
system (3.2) corresponding to u0, v0, respectively. Then there’s a constant r > 1 that implies

H(u(ω, u0), v(ω, v0)) 6 rD(u0, v0)

for any u0, v0 ∈ Em and r = 1
(1−rM0) .

Proof. Assume that u(ω, u0), v(ω, v0) are solutions of the Eq (3.2) corresponding to u0, v0, respectively.
Then

D
(
u(ω, u0), v(ω, v0)

)
= D

(
Cq(ω)u0 +Kq(ω)u1 +

∫ ω

0
g(s, u(h(s)), us)ds,Cq(ω)v0 +Kq(ω)v1

+

∫ ω

0
g(s, u(h(s))ds

)
D
(
u(ω, u0), v(ω, v0)

)
6 D(Cq(ω)u0,Kq(ω)v0) + D(u1, v1) +

∫ ω

0
D
(
g(s, u(h(s)), us), g(s, v(h(s)), vs)

)
D
(
u(ω, u0), v(ω, v0)

)
6 D(u0, v0) + D(u1, v1) +

∫ ω

0
M0D(u(h(s)), v(h(s))).

Therefore,

H(x(ω, u0, u1), v(ω, v0, u1)) 6 D(u0, v0) + D(u1, v1) + δM0H(u(ω, u0), v(ω, v0)),

and
H(x(ω, u0, u1), v(ω, v0, u1)) 6

1
(1 − δM0)

D(u0, v0).

As a result, the theorem’s proof is complete. For the FDPP system with starting value (3.2), we present
a generalization of Theorem 4.3. �

Theorem 4.4. If g : G × Em → Em is level-wise continuous and bounded, then initial value
problem (3.2) has at least one solution on the interval G.

Proof. When g is both continuous and bounded, there is a q 6 1 that is

D(g(ω, u(h(ω)), uω), 0̃) 6 q, ω ∈ G, u ∈ E2.

Assume B is bounded set in C(G,Em). The set ψB = {ψu : u ∈ B} is totally bounded if and only if it is
equi-continuous and for every ω ∈ G, set ψB = {ψu(ω) : ω ∈ G} is totally bounded subset of Em. For
ω0, ω1 ∈ G with ω0 6 ω1, and u ∈ B we get that

D(ψu(ω0), ψu(ω1)) = D
(
Cq(ω)u0 +Kq(ω)u1 +

∫ ω0

0
g(s, u(h(s)), us)ds,Cq(ω)u0 + Kq(ω)u1

+

∫ ω1

0
g(s, u(h(s)), us)ds

)
6 D

( ∫ ω0

0
g(s, u(h(s)), us)ds,

∫ ω1

0
g(s, u(h(s)), us)ds

)
6 D(g(s, u(h(s)), us), 0̃)ds
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6 |ω0 − ω1| ∗ sup{D(g(s, u(h(s)), us), 0̃) ω ∈ G}
6 |ω0 − ω1| ∗ q.

This shows that ψB is equi-continuous. Now, for fixed ω ∈ G. Now

D(ψu(ω), ψu(ω′)) 6 |ω0 − ω1| ∗ q, f or every ω′ ∈ G, u ∈ B.

We have come to the conclusion that the set {ψu(ω) : u ∈ B} is totally bounded in Em, and so ψB

is relatively compact subset of C(G,Em). Since, ψ is compact, ψ bounded sets are transformed into
relatively compact sets. We notice, u is the operator’s fixed point ψ defined by Eq (3.2) if and only if
u ∈ C(G,Em) is solution of (3.2).
Then, in metric space, we consider ball (C(G,Em),H),

B = {ζ ∈ C(G,Em),H(ζ, 0̃ 6 p)}, p = a ∗ q.

Now, ψB ⊂ B. For u ∈ C(G,Em),

D(ψu(ω), ψ(u(0)) = D
(
Cq(ω)u0 +

∫ ω

0
g(s, u(h(s)), us)ds, u0

)
6

∫ ω

0
D(g(s, u(h(s)), us), 0̃)

6 |ω| ∗ q

6 a ∗ q

D(ψu(ω), ψ(u′(0)) = D
(
Kq(ω)u1 +

∫ ω

0
g(s, u(h(s)), us)ds, u1

)
6

∫ ω

0
D(g(s, u(h(s)), us), 0̃)

6 |ω| ∗ q

6 a ∗ q

Therefore, we define 0̃ : G → Em, 0̃(ω) = 0̃, ω ∈ G so, we have

H(ψu, ψ0) = sup{D(ψu(ω), ψ0(ω)) : ω ∈ G}

H(ψu, ψ′0) = sup{D(ψu(ω), ψ′0(ω)) : ω ∈ G}.

As a result, ψ is compact and consequently it has fixed point u ∈ B. The initial value problem (3.2) is
solved with this fixed point. �

5. Oscillation of fuzzy delay predator-prey system

The oscillation of all FDPPS solutions is discussed in this section. Suppose the following
system (3.2). We also present the following f hypotheses, which will only be accepted if they are
stated explicitly:

lim inf
u→0

f (u)
u
> 2, (5.1)
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lim
u→0

f (u)
u

= 2. (5.2)

When condition (5.1) or (5.2) is satisfied, the following linear equation is satisfied:

c
0Dβ

ωu(ω) − Cu(ω) −Du(ω − σ) = 0 (5.3)

will be referred to as the system’s linearized equation (3.2). C and D are fuzzy matrices with
characteristic equations,

det($I − C −De−$τ) = 0. (5.4)

To establish our oscillation theorem, we must first suppose that the non-linear FDPPS theorem has
the same oscillating behavior as the equivalent linear system.

Theorem 5.1. Assume that each linearized equation (5.3) solution is oscillatory. Then every (3.2)
solution oscillates as well.

Proof. Suppose that Eq (3.2) has a non-oscillatory solution u(ω) for the sake of contradiction. We
suppose that u(ω) will be positive at some point. The case where u(ω) becomes negative in the end is
identical and will be ignored. We know that lim

ω→∞
u(ω) = 0 owing to Lemma 2.13. As a result of (5.1),

lim inf
ω→∞

f (u(ω − τ))
u(ω − τ)

> 2.

Let ε ∈ (1, 2). Then there exists Tε such that ω > Tε and

f (u(ω − τ)) > (1 − ε)2u(ω − τ).

As a result of Eq (3.2),
c
0Dβ

ωu(ω) + (1 − ε)2u(ω − τ) 6 1, ω > Tε .

Equation (5.3) has a positive solution, according to Theorem 2.15. This contradicts the claim that all
solutions to Eq (5.3) are oscillatory and that proof is complete.
The solution of a linearized system’s oscillation theorem is given. �

Theorem 5.2. The following propositions are identical if you consider the linearized system (5.3).
Componentwise, every solution of Eq (5.3) oscillates. There are no real roots in the characteristic
equation (5.4).

Proof. For (a)→ (b), the proof is easy. There exists non-zero vector v that is ($0I−C−De−$0τv) = 0
if $0 is real root of characteristic equation (5.4). Now, u(ω) = e$0ωv is clearly non-oscillatory solution
of Eq (5.3).
For (b) → (a). Assume (b) holds that Eq (5.3) has non-oscillatory solution u(ω) = [u(ω), v(ω)]T for
sake of contradiction. For ω > τ, we suppose that the components of u(ω) are positive. We know, that
u(ω) is of an exponential order because of the Theorem 2.15, and hence there exists η ∈ Rm that is
Laplace transformations of both sides of the Eq (5.3) yield.

F (s)U(s) = φ(s), Res > η (5.5)
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where
F (s) = sI − C −De−sτ (5.6)

and

φ(s) = Cq(ω)u(0) +Kq(ω)u′(0) − C − De−sτ
∫ 0

−τ

e−sωu(ω)dω. (5.7)

According to the hypothesis, for any s ∈ Rm, det[F (s)] , 0. In addition,

lim
s→∞

(det[F (s)]) = ∞ (5.8)

and
det[F (s)] > 0 ∀ s ∈ Rm. (5.9)

Suppose u(s) represents the Laplace transform of the solution’s first component u(ω). Then, according
to the Cramer rule,

U(s) =
det[M(s)]
det[F (s)]

,Res > η (5.10)

where

A =

[
φ1(s) F12(s)
φ2(s) F22(s)

]
φ1 is ith component of vector φ(s) and Fi j(s) is (i, j)ωh component of matrix F (s). Obviously, for all
i, j = 1, 2 functions φ1(s) and Fi j(s) are entire and thus det[M(s)] and det[F (s)] are also complete
functions. Assume σ0 be abscissa of convergence of u(s), now,

φ0 = inf{σ ∈ Rm : U(σ) exists}.

According to Theorem 2.12, we find σ0 = −∞ and (5.8) becomes

U(s) =
det[M(s)]
det[F (s)]

∀s ∈ Rm. (5.11)

As u(ω) > 1 then U(s) > 1∀s ∈ Rm and by (5.7) and (5.9), det[M(s)] > 1 for s ∈ Rm. There are
positive constants K , γ, and s0, as defined by M(s) and (5.6) and (5.7), respectively.

det[M(s)] 6 Ke−γs f or s 6 −s0. (5.12)

Also, given (5.8), (5.9) and fact that det[F (s)] is variable s and e−sτ, positive number m exists that is

det[F (s)] > m f or s ∈ Rm. (5.13)

It may be concluded from (5.11)–(5.13) that

U(s) =

∫ ∞

0
e−sωdω >

∫ ∞

T
e−sωu(s)dω > e−sT

∫ ∞

T
e−sωu(s)dω > 1

and so
1 <

∫ ∞

T
e−sωu(s)dω 6

K

m
es(T−γ) → 1 as→ −∞.

For ω > T , this means that u(ω) = 1, which is contraction. The proof is done. �
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6. Example

Example 6.1. Consider a delay predator-prey system where G = [0, 3] is the initial value.
c
0Dα

ωu(ω) = u(1 − u) − uv,
c
0Dα

ωv(ω) = v + e−3v(ω − 2)u(ω − 2) − dv,
u(0) = u0,

v(0) = v0, − σ 6 ω 6 0.

(6.1)

The following is a vector representation of the system (5.12):{
c
0Dβ

ωu(ω) = f (ω, u(ω), uω) ω ∈ J = [0, a],
u(0) = u0, − σ 6 ω 6 0

(6.2)

where
f (ω, u(ω), uω) = Au(ω) + B(ω, u(ω), uω).

According to Lemma 2.13 and Eq (5.1), lim
ω→∞

u(ω) = 0,

lim inf
ω→∞

f (u(ω − τ))
u(ω − τ)

> 2.

As a result, f is fuzzy mapping f : G × Em → Em, uω = u(ω − 1) are a positive fuzzy functions of ω
in Em, and x0 is fuzzy number becauseA is fuzzy matrix. The mapping f is a level-wise continuous and
bounded in Em becauseA andB are a level-wise continuous and bounded onG. f satisfies condition of
Theorem 4.4, and so initial value issue (6.1) has a solution on J , according to Theorem 4.4. Consider
the following linearized system of (6.2):

c
0Dβ

ωu(ω) −Cu(ω) − Du(ω − τ) = 0. (6.3)

The fuzzy matrices C and D have the following characteristic equation:

$4 +A$3 + B$2 + C$ +D + e−(1+$)(E$3 + F$2 + G$) + e−2(1+$)(H$2 + I$ +J) = 0 (6.4)

where
A = −2a1 + 4, B = a2

1 − 4a1 + 4(1 − (1 − β)2θ2
1), C = a2

2,

D = 2a2
2(1 + (1 − β)θ1) − a2

2a1, E = −2,F = 4a1 − 8,
G = −2a2

1 + 8a1 − 8(1 − (1 − β)2θ2
1), H = (1 − (1 − β)2θ2

1),
I = −2a1(1 − (1 − β)2θ2

1) + 4(1 − (1 − β)2θ2
1),

J = a2
1(1 − (1 − β)2θ2

1) − 4a1(1 − (1 − β)2θ2
1) + 4(1 − (1 − β)2θ2

1)2.

(6.5)

There are no real roots in the characteristic equation (6.4). The linearized system oscillates as a
result of Theorem 5.2. The system (6.2) oscillates as well, according to the Theorem 5.1.

Example 6.2. Consider FDPPS with G = [0, 3] as the initial value.
c
0Dα

ωu(ω) = u(1 − u) − uv,
c
0Dα

ωv(ω) = v + 4e−2v(ω − 4)u(ω − 4) − dv,
u(0) = u0,

v(0) = v0, − σ 6 t 6 0.

(6.6)
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The following is a vector representation of the system (6.6):{
c
0Dβ

ωu(ω) = f (ω, u(ω), uω) ω ∈ J = [0, a],
u(0) = u0, − σ 6 ω 6 0

(6.7)

where
f (ω, u(ω), uω) = Au(ω) + B(ω, u(ω), uω).

According to Lemma 2.13 and Eq (5.1), lim
ω→∞

u(ω) = 0,

lim inf
ω→∞

f (u(ω − τ))
u(ω − τ)

> 2.

As a result, f is fuzzy mapping f : G×Em → Em, uω = u(ω− 1) are positive fuzzy functions of ω in
Em, and x0 is fuzzy number becauseA is a fuzzy matrix. The mapping f is a level-wise continuous and
bounded in Em becauseA and B are a level-wise continuous and bounded on G. f satisfies condition
of Theorem 4.4, so initial value problem (6.7) has solution on J , according to Theorem 4.4. Consider
(6.7) as a linearized system:

c
0Dβ

ωu(ω) − Cu(ω) − Du(ω − τ) = 0. (6.8)

The fuzzy matrices C and D have the following characteristic equation:

$4 +A$3 + B$2 + C$ +D + e−2(2+$)(E$3 + F$2 + G$) + e−4(4+$)(H$2 + I$ +J) = 0 (6.9)

where
A = −2a1 + 4, B = a2

1 − 4a1 + 4(1 − (1 − β)2θ2
1), C = a2

2,

D = 2a2
2(1 + (1 − β)θ1) − a2

2a1, E = −2,F = 8a1 − 16,
G = −4a2

1 + 16a1 − 16(1 − (1 − β)2θ2
1), H = 4(1 − (1 − β)2θ2

1),
I = −8a1(1 − (1 − β)2θ2

1) + 16(1 − (1 − β)2θ2
1),

J = 4a2
1(1 − (1 − β)2θ2

1) − 16a1(1 − (1 − β)2θ2
1) + 16(1 − (1 − β)2θ2

1)2.

(6.10)

There are no real roots in the characteristic equation (6.9). The linearized system oscillates as a
result of Theorem 5.2. The system (6.7) oscillates as well, according to the Theorem 5.1. The solution
curve of the oscillatory property of the system 6.6 is as shown in Figure 1:

Figure 1. Curve of the oscillatory property of the system 6.6 for order (1,2).
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7. Applications in real life

Predator-prey models play a crucial role in studying population dynamics and the management of
renewable resources. Very rich and interesting dynamical behaviors, such as Hopf bifurcation, limit
cycles, and homoclinic loops, have been observed. Time delay can be incorporated into a predator-prey
model in four different ways. It can induce oscillations via Hopf bifurcation in all four types of models.
May-type and Wangersky-Cunningham-type models exhibit switch of stability when the time delay
takes a sequence of critical values. Constant-rate harvesting could induce more complex dynamics in
delayed predator-prey systems, depending on which species is harvested. When the prey is selectively
harvested, the dynamics are similar to that of the models without harvesting. Hopf bifurcation usually
occurs and over-harvesting can always drive both species to extinction. The results of a study on the
collapse of Atlantic cod stocks in the Canadian Grand Banks may be useful in designing fishing policies
for the fishery industry, according to researchers at the University of British Columbia and the Canadian
Department of Fisheries and Oceans. In general the functional response p(x) is a monotone function,
but there are experiments that indicate that nonmonotonic responses occur at the microbial level. This
is often seen when micro-organisms are used for waste decomposition or for water purification. A
system of delayed differential equations has been proposed to explain why there is a time delay between
changes in substrate concentration and corresponding changes in the growth rate of microorganism.

8. Conclusions

We introduced an FDPPS for the Caputo derivative in this research. On the interval [1, 2], we
successfully demonstrated the existence-uniqueness of the FDPPS. On J , we additionally generalized
Theorem for the existence theorem of the solution of an FDPPS with a fuzzy initial condition. We
also covered the oscillation theorem for FDPPS solutions. The examples provided demonstrate how
the results can be applied. Future work could also include expanding on the concept introduced in this
paper and introducing observability and generalizing previous efforts. This is a productive field with a
wide range of research initiatives that can result in a wide range of applications and theories.
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