This article deals with a class of variational inequalities known as absolute value variational inequalities. Some new merit functions for the absolute value variational inequalities are established. Using these merit functions, we derive the error bounds for absolute value variational inequalities. Since absolute value variational inequalities contain variational inequalities, absolute value complementarity problem and system of absolute value equations as special cases, the findings presented here recapture various known results in the related domains. The conclusions of this paper are more comprehensive and may provoke futuristic research.
Citation: Safeera Batool, Muhammad Aslam Noor, Khalida Inayat Noor. Merit functions for absolute value variational inequalities[J]. AIMS Mathematics, 2021, 6(11): 12133-12147. doi: 10.3934/math.2021704
This article deals with a class of variational inequalities known as absolute value variational inequalities. Some new merit functions for the absolute value variational inequalities are established. Using these merit functions, we derive the error bounds for absolute value variational inequalities. Since absolute value variational inequalities contain variational inequalities, absolute value complementarity problem and system of absolute value equations as special cases, the findings presented here recapture various known results in the related domains. The conclusions of this paper are more comprehensive and may provoke futuristic research.
[1] | G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, Comptes Rendus de l'Académie des Sci., 258 (1964), 4413-4416. |
[2] | M. A. Noor, On Variational inequalities, Ph. D Thesis, Brunel University, London, UK, 1975. |
[3] | M. A. Noor, K. I. Noor, From representation theorems to variational inequalities, In: Computational mathematics and variational analysis, Springer, 2020,261-277. |
[4] | J. L. Lions, G. Stampacchia, Variational inequalities, Commun. Pur. Appl. Math., 20 (1967), 493-519. |
[5] | R. Glowinski, J. L. Lions, R. Tremolieres, Numerical analysis of variational inequalities, North Holland, Amsterdam, 1981. |
[6] | D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, Philadelphia, USA: SIAM Publishing Co., 2000. |
[7] | M. A. Noor, Some developments in general variational inequalities, Appl. math. Comput., 152 (2004), 199-277. |
[8] | M. A. Noor, K. I. Noor, M. Th. Rassias, New trends in general variational inequalities, Acta Appl. Math., 170 (2020), 981-1046. doi: 10.1007/s10440-020-00366-2 |
[9] | M. Patriksson, Nonlinear programming and variational inequality problems: A unified approach, Dordrecht, Holland: Kluwer Academic Publishers, 1999. |
[10] | J. L. Lions, Optimal control of systems governed by partial differential equations, Berlin: Springer-Verlag, 1971. |
[11] | M. A. Noor, K. I. Noor, T. M. Rassias, Some aspects of variational inequalities, J. Comput. Appl. Math., 47 (1993), 285-312. doi: 10.1016/0377-0427(93)90058-J |
[12] | D. Aussel, R. Correa, M. Marechal, Gap functions for quasivariational inequalities and generalized nash equilibrium problems, J. Optim. Theory Appl., 151 (2011), 474. doi: 10.1007/s10957-011-9898-z |
[13] | D. Aussel, R. Gupta, A. Mehra, Gap functions and error bounds for inverse quasi-variational inequality problems, J. Math. Anal. Appl., 407 (2013), 270-280. doi: 10.1016/j.jmaa.2013.03.049 |
[14] | S. Batool, M. A. Noor, K. I. Noor, Absolute value variational inequalities and dynamical systems, Int. J. Anal. Appl., 18 (2020), 337-355. |
[15] | R. W. Cottle, G. B. Dantzig, Complementarity pivot theory of mathematical programming, Linear Algebra Appl., 1 (1968), 103-125. doi: 10.1016/0024-3795(68)90052-9 |
[16] | S. S. Chang, S. Salahuddin, M. Liu, X. R. Wang, J. F. Tang, Error bounds for generalized vector inverse quasi-variational inequality problems with point to set mappings, AIMS Mathematics, 6 (2020), 1800-1815. |
[17] | J. Dutta, Gap functions and error bounds for variational and generalized variational inequalities, Vietnam J. Math., 40 (2012), 231-253. |
[18] | M. Fukushima, Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems, Math. Program., 53 (1992), 99-110. doi: 10.1007/BF01585696 |
[19] | M. Fukushima, A class of gap functions for quasi-variational inequality problems, JIMO, 3 (2007), 165-171. doi: 10.3934/jimo.2007.3.165 |
[20] | R. Gupta, A. Mehra, Gap functions and error bounds for quasi variational inequalities, J. Glob. Optim., 53 (2012), 737-748. doi: 10.1007/s10898-011-9733-y |
[21] | S. L. Hu, Z. H. Huang, A note on absolute value equations, Optim. Lett., 4 (2010), 417-424. doi: 10.1007/s11590-009-0169-y |
[22] | S. Karamardian, The complementarity problem, Math. Program., 2 (1972), 107-109. |
[23] | T. Kouichi, On gap functions for quasi-variational inequalities, Abstr. Appl. Anal., 2008 (2008), 531361. |
[24] | K. Kubota, M. Fukushima, Gap function approach to the generalized nash equilibrium problem, J. Optim. Theory. Appl., 14 (2010), 511-531. |
[25] | G. Y. Li, K. F. Ng, Error bounds of generalized D-gap functions for nonsmooth and nonmonotone variational inequality problems, SIAM J. Optim., 20 (2009), 667-690. doi: 10.1137/070696283 |
[26] | O. L. Mangasarian, The linear complementarity problem as a separable bilinear program, J. Glob. Optim., 6 (1995), 153-161. doi: 10.1007/BF01096765 |
[27] | J. Rohn, A theorem of the alternatives for the equation $Ax+B|x| = b$, Linear Multilinear. A., 52 (2004), 421-426. doi: 10.1080/0308108042000220686 |
[28] | O. L. Mangasarian, R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), 359-367. |
[29] | A. Auslender, Optimisation: methodes numeriques, Masson, Paris, 1976. |
[30] | M. A. Noor, Merit functions for general variational inequalities, J. Math. Anal. Appl., 316 (2006), 736-752. doi: 10.1016/j.jmaa.2005.05.011 |
[31] | M. A. Noor, On merit functions for quasi variational inequalities, J. Math. Inequal., 1 (2007), 259-268. |
[32] | M. A. Noor, K. I. Noor, S. Batool, On generalized absolute value equations, U.P.B. Sci. Bull., Series A, 80 (2018), 63-70. |
[33] | J. M. Peng, Equivalence of variational inequality problems to unconstrained minimization, Math. Program., 78 (1997), 347-355. |
[34] | O. Prokopyev, On equivalent reformulation for absolute value equations, Comput. Optim. Appl., 44 (2009), 363. doi: 10.1007/s10589-007-9158-1 |
[35] | B. Qu, C. Y. Wang, Z. J. Hang, Convergence and error bound of a method for solving variational inequality problems via the generalized $D$-gap function, J. Optimiz. Theory App., 119 (2003), 535-552. % doi: 10.1023/B:JOTA.0000006688.13248.04 |
[36] | M. V. Solodov, P. Tseng, Some methods based on the $D$-gap function for solving monotone variational inequalities, Comput. Optim. Appl., 17 (2000), 255-277. doi: 10.1023/A:1026506516738 |
[37] | M. V. Solodov, Merit functions and error bounds for generalized variational inequalities, J. Math. Anal. Appl., 287 (2003), 405-414. doi: 10.1016/S0022-247X(02)00554-1 |
[38] | M. A. Noor, K. I. Noor, A. Hamdi, E. H. Al-Shemas, On difference of monotone operators, Optim. Lett., 3 (2009), 329. doi: 10.1007/s11590-008-0112-7 |
[39] | N. Yamashita, M. Fukushima, Equivalent unconstrained minimization and global error bounds for variational inequality problems, SIAM J. Control Optim., 35 (1997), 273-284. doi: 10.1137/S0363012994277645 |
[40] | L. Q. Yong, Particle Swarm Optimization for absolute value equations, J. Comput. Inform. Syst., 6 (2010), 2359-2366. |
[41] | C. J. Zhang, B. Q. Liu, J. Wei, Gap functions and algorithms for variational inequality problems, J. Appl. Math., 2013 (2013), 965640. |