Research article Special Issues

On the generalized Ramanujan-Nagell equation $ x^2+(2k-1)^y = k^z $ with $ k\equiv 3 $ (mod 4)

  • Received: 01 March 2021 Accepted: 19 July 2021 Published: 22 July 2021
  • MSC : 11D61

  • Let $ k $ be a fixed positive integer with $ k > 1 $. In 2014, N. Terai [6] conjectured that the equation $ x^2+(2k-1)^y = k^z $ has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. This is still an unsolved problem as yet. For any positive integer $ n $, let $ Q(n) $ denote the squarefree part of $ n $. In this paper, using some elementary methods, we prove that if $ k\equiv 3 $ (mod 4) and $ Q(k-1)\ge 2.11 $ log $ k $, then the equation has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. It can thus be seen that Terai's conjecture is true for almost all positive integers $ k $ with $ k\equiv 3 $(mod 4).

    Citation: Yahui Yu, Jiayuan Hu. On the generalized Ramanujan-Nagell equation $ x^2+(2k-1)^y = k^z $ with $ k\equiv 3 $ (mod 4)[J]. AIMS Mathematics, 2021, 6(10): 10596-10601. doi: 10.3934/math.2021615

    Related Papers:

  • Let $ k $ be a fixed positive integer with $ k > 1 $. In 2014, N. Terai [6] conjectured that the equation $ x^2+(2k-1)^y = k^z $ has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. This is still an unsolved problem as yet. For any positive integer $ n $, let $ Q(n) $ denote the squarefree part of $ n $. In this paper, using some elementary methods, we prove that if $ k\equiv 3 $ (mod 4) and $ Q(k-1)\ge 2.11 $ log $ k $, then the equation has only the positive integer solution $ (x, y, z) = (k-1, 1, 2) $. It can thus be seen that Terai's conjecture is true for almost all positive integers $ k $ with $ k\equiv 3 $(mod 4).



    加载中


    [1] M. A. Bennett, N. Billerey, Sums of two S-units via Frey-Hellegouarch curves, Math. Comput., 86 (2017), 1375–1401.
    [2] M. J. Deng, A note on the diophantine equation $x^2+q^m = c^2n$, Proc. Japan Acad. Ser. A Math. Sci., 91 (2015), 15–18.
    [3] M. J. Deng, J. Guo, A. J. Xu, A note on the diophantine equation $x^2+(2c-1)^m = c^n$, B. Aust. Math. Soc., 98 (2018), 188–195. doi: 10.1017/S0004972718000369
    [4] R. Q. Fu, H. Yang, On the solvability of the generalized Ramanujan-Nagell equation $x^2+(2k-1)^m = k^n$, J. Xiamen Univ. Nat. Sci., 56 (2017), 102–105.
    [5] K. M$\ddot{o}$ller, Untere Schranke f$\ddot{u}$r die Anzahl der Primzahlen, aus denen $x, y, z$ der Fermatschen Geichung $x^n+y^n = z^n$ bestehen muss, Math. Nachr., 14 (1955), 25–28. doi: 10.1002/mana.19550140105
    [6] N. Terai, A note on the diophantine equation $x^2+q^m = c^n$, B. Aust. Math. Soc., 90 (2014), 20–27. doi: 10.1017/S0004972713000981
    [7] X. Zhang, On Terai's conjecture, Kodai Math. J., 41 (2018), 413–420.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2199) PDF downloads(113) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog