Processing math: 92%
Research article

Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions

  • Received: 08 December 2020 Accepted: 08 June 2021 Published: 29 June 2021
  • MSC : 35D35, 35L20

  • This paper studies the existence and uniqueness of solutions of a non local initial boundary value problem of a singular two dimensional nonlinear fractional order partial differential equation involving the Caputo fractional derivative by employing the functional analysis. We first establish for the associated linear problem a priori estimate and prove that the range of the operator generated by the considered problem is dense. The technique of obtaining the a priori bound relies on the construction of a suitable multiplicator. From the resulted a priori estimate, we can establish the solvability of the associated linear problem. Then, by applying an iterative process based on the obtained results for the associated linear problem, we establish the existence, uniqueness and continuous dependence of the weak solution of the considered nonlinear problem.

    Citation: Said Mesloub, Faten Aldosari. Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions[J]. AIMS Mathematics, 2021, 6(9): 9786-9812. doi: 10.3934/math.2021569

    Related Papers:

    [1] Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304
    [2] Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015
    [3] Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793
    [4] Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi . On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146
    [5] Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037
    [6] Limin Guo, Lishan Liu, Ying Wang . Maximal and minimal iterative positive solutions for p-Laplacian Hadamard fractional differential equations with the derivative term contained in the nonlinear term. AIMS Mathematics, 2021, 6(11): 12583-12598. doi: 10.3934/math.2021725
    [7] Mukhamed Aleroev, Hedi Aleroeva, Temirkhan Aleroev . Proof of the completeness of the system of eigenfunctions for one boundary-value problem for the fractional differential equation. AIMS Mathematics, 2019, 4(3): 714-720. doi: 10.3934/math.2019.3.714
    [8] Yanyan Cui, Chaojun Wang . Dirichlet and Neumann boundary value problems for bi-polyanalytic functions on the bicylinder. AIMS Mathematics, 2025, 10(3): 4792-4818. doi: 10.3934/math.2025220
    [9] Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599
    [10] Apassara Suechoei, Parinya Sa Ngiamsunthorn . Extremal solutions of φCaputo fractional evolution equations involving integral kernels. AIMS Mathematics, 2021, 6(5): 4734-4757. doi: 10.3934/math.2021278
  • This paper studies the existence and uniqueness of solutions of a non local initial boundary value problem of a singular two dimensional nonlinear fractional order partial differential equation involving the Caputo fractional derivative by employing the functional analysis. We first establish for the associated linear problem a priori estimate and prove that the range of the operator generated by the considered problem is dense. The technique of obtaining the a priori bound relies on the construction of a suitable multiplicator. From the resulted a priori estimate, we can establish the solvability of the associated linear problem. Then, by applying an iterative process based on the obtained results for the associated linear problem, we establish the existence, uniqueness and continuous dependence of the weak solution of the considered nonlinear problem.



    Initial boundary value problems with non local and non-classical boundary conditions for integer and fractional order linear and nonlinear evolution partial differential equations, have gained great attention during the last three decades. Especially problems with boundary conditions of integral type (the so called energy specification) which are important from the point of view of their practical application to modelling and investigating various physical phenomena in the context of chemical engineering, thermoelasticity, population dynamics, polymer rheology, aerodynamics, heat conduction processes, plasma physics, underground-water flow, transmission theory, chemical engineering, control theory, fluid flow and many physical and biological processes and systems and so forth, see [19,20,21,22,23,24,25,26,27,28,29,30,31]. We should mention that most local phenomena can be examined and modeled in terms of integer order differential equations, while fractional order differential equations model non local phenomena. Accordingly, fractional order partial differential equations describe real world phenomena that cannot be described by classical mathematics literature. This is due to the fact that many models depend on the present and historical states. For integer order case (see for example [1,2,3,4,5,6,7,8,9,10,11] and references therein. For the fractional order case see for example [15,16,17,18,35,36,37] and references therein. However, the investigation of initial boundary value problems for nonlinear fractional order partial differential equations still needs too much exploration and investigation.

    For the proof of the existence and the uniqueness of the solution of the posed problem, we use the energy inequality method based mainly on some a priori estimates and on the density of the range of the operator generated by the considered problem. In the literature, there are few articles using the method of energy inequalities for the proof of existence and uniqueness of fractional initial-boundary value problems in the fractional case (see [12,13,14,32,33,34]). This work, can be considered as a continuation, improvement and generalization of previous works. Many difficulties are encountered while applying the functional analysis method for the posed problem. These difficulties are mainly due to the fact that the considered equation is nonlinear, singular, with fractional order in a two-dimensional space setting, and supplemented with nonlocal conditions.

    The outline of this paper is as follows. In section 2, we set the problem and give some preliminaries. In section 3, we pose the associated linear problem and introduce some function spaces used in the sequel. Section 4 is devoted to the uniqueness results for the associated linear problem. The existence of solution of the associated linear problem is considered in section 5. The main results of this paper are given in section 6, it is consecrated to the proof of the existence, uniqueness and continuous dependence of the solution on the data of the nonlinear problem.

    In the bounded domain QT=Ω×(0,T), where Ω=(0,a)×(0,b)R2, we consider the two dimensional singular nonlinear fractional partial differential equation in Caputo sense with Bessel operator

    L(θ)=δtθ1xydiv(xyθ)=H(x,y,t,θ,θx,θy), (2.1)

    where δt denotes the time fractional Caputo derivative operator of order δ(1,2], the symbols div and , denote respectively the divergence and the gradient operators. θx stands for the xderivative of the function θ. Equation (2.1), is supplemented by the initial conditions

    1θ=θ(x,y,0)=F(x,y) , 2θ=θt(x,y,0)=G(x,y), (2.2)

    Neumann boundary conditions

    θx(a,y,t)=0 , θy(x,b,t)=0, (2.3)

    and the non local weighted boundary integral conditions

    a0xθ(x,y,t)dx=0 , b0yθ(x,y,t)dx=0, (2.4)

    where the functions F, and G are given functions which will be specified later on. We shall assume that the function H is a Lipshitzian function, that is there exists a positive constant λ such that for all (x,y,t)QT

    H(x,y,t,θ1,v1,w1)H(x,y,t,θ2,v2,w2)λ(|θ1θ2|+|v1v2|+|w1w2|). (2.5)

    In equation (2.1), the fractional derivative δtE of order δ=β+1, where 0<β<1 (see [17]) for a function E is defined by

    CδtE(x,t)=1Γ(1δ)t0Ess(x,s)(ts)δds,t[0,T], (2.6)

    where Γ(.) is the Gamma function.

    We begin by giving some important lemmas needed throughout the sequel.

    Lemma 2.1 [38]. Let R(s) be nonnegative and absolutely continuous on [0,T], and suppose that for almost all s[0,T], R satisfies the inequality

    dRdsA1(s)R(t)+B1(s), (2.7)

    where the functions A1(s) and B1(s) are summable and nonnegative on [0,T]. Then

    R(s)es0A1(t)dt(R(0)+s0B1(t)dt). (2.8)

    Lemma 2.2. [14] Let be M(t) a nonnegative absolutely continuous function, such that

    CλtM(t)b1M(t)+b2(t),   0<λ<1, (2.9)

    for almost all t[0,T], where b1 is a positive constant and b2(t) is an integrable nonnegative function on [0,T]. Then

    M(t)M(0)Eλ(b1tλ)+Γ(λ)Eλ,λ(b1tλ)Dλtb2(t), (2.10)

    where

    Eλ(x)=n=0xnΓ(λn+1)andEλ,μ(x)=n=0xnΓ(λn+μ),

    are the MIttag-Leffler functions, and Dλtv(t)=1Γ(λ)t0v(τ)(tτ)1λdτ is the Riemann-Liouville integral of order 0<λ<1.

    Lemma 2.3. [14] For any absolutely continuous function J(t) on the interval [0,T], the following inequality holds

    J(t)CβtJ(t)12CβtJ2(t),     0<β<1 (2.11)

    In this section, we set the associated linear problem and introduce different function spaces needed to investigate this problem. We consider the differential equation

    L(θ)=δtθ1xydiv(xyθ)=H(x,y,t), (3.1)

    supplemented by conditions (2.2)–(2.4). The used method is essentially based on the construction of suitable multipliers for each specific given problem, which provides the a priori estimate from which it is possible to establish the solvability of the posed problem. More precisely, the proofs of uniqueness of the solution is based on an energy inequality and on the density of the range of the operator generated by the abstract formulation of the stated problem.

    To investigate the posed problem, we introduce the needed function spaces. We denote by L2ρ(Ω) the Hilbert space of weighted square integrable functions where ρ=xy and with inner product

    (U,v)L2ρ(Ω)=(xyU,v)L2(Ω)=ΩxyUvdxdy,

    and with associated norm

    UL2ρ(Ω)=(ΩxyU2dxdy)12.

    Let X be Banach space with norm UX, and let U:(0,T)X be an abstract function. By U(.,.,t)X we denote the norm of U(.,.,t)X for fixed t. Let L2(0,T;X) be the set of all measurable abstract functions U:(0,T)X such that

    U2L2(0,T;X)=T0U(.,.,t)2Xdt<.

    If X is a Hilbert space, then L2(0,T;X) is also a Hilbert space. Let C(0,T;X) be the set of all continuous functions U:(0,T)X such that

    UC(0,T;X)=maxt[0,T]U(.,.,t)X<,

    and denote by H1ρ(Ω) the weighted Sobolev space with norm

    U2H1ρ(Ω)=U2L2ρ(Ω)+Ux2L2ρ(Ω)+Uy2L2ρ(Ω).

    The given problem (3.1), (2.2)–(2.4) can be viewed as the problem of solving the operator equation Aθ=W=(H,F,G), where Aθ=(Lθ,1θ,2θ), θD(A) where A is the operator given by A=(L,1,2) and D(A) is the set of all functions θL2ρ(QT):δtθ,θx,θxx,θy,θyy,θtL2ρ(QT) and θ satisfies conditions (2.2)–(2.4). The operator A acts from B into Y, where B is the Banach space obtained by enclosing D(A) with respect to the finite norm

    θ2B=sup0tTθ(x,y,τ)2H1ρ(Ω)=θ(x,y,τ)2C(0,T.,H1ρ(Ω)). (3.2)

    Functions θB are continuous on [0,T] with values in L2ρ(Ω). Hence the mappings

    1θBθ=θ(x,y,0)L2ρ(Ω),
    2θBθ=θt(x,y,0)L2ρ(Ω),

    are defined and continuous on B. And Y is the Hilbert space L2(0,T,L2ρ(Ω))×H1ρ(Ω)×L2ρ(Ω) consisting of vector valued functions W=(H,F,G) for which the norm

    W2Y=H2L2(0,T;L2ρ(Ω))+F2H1ρ(Ω)+G2L2ρ(Ω),

    is finite. Let ¯A be the closure of the operator A with domain of definition D(¯A).

    Definition 3. We call a strong solution of problem (3.1), (2.2)-2.4), the solution of the operator equation

    ¯Aθ=W,   θD(¯A).

    We will establish an a priori estimate for the operator A from which we deduce the uniqueness and continuous dependence of the solution upon the initial conditions (2.2).

    Theorem 4.1 For any function θD(A) we have the a priori estimate

    θ(x,y,τ)2C(0,T.,H1ρ(Ω))C(H2L2(0,T;L2ρ(Ω))+F2H1ρ(Ω)+G2L2ρ(Ω)), (4.1)

    where C is a positive constant independent of the function θ given by

    C=(C3eC3TT+1),

    with

    C3=C22Γ(β)Eβ,β(C2Tβ)(TββΓ(β))+C2,C2=max{C1,1,T1β(1β)Γ(1β)(1+a3b316)},C1=max{2,(a2b22+a22+b22)}.

    Proof.

    Let β+1=δ, where 0<β1, then (3.1) takes the form

    β+1tθ1x(xθx)x1y(yθy)y=H(x,y,t). (4.2)

    Taking the scalar product in L2ρ(Ω) of the partial differential equation (4.2) and the integro-differential operator Mθ=θt+2xy(ξηθt), where

    2xy(ξηθt)=x0y0ξηθt(ξ,η)dηdξ,

    then we have

    (βtθt,xyθt)L2(Ω)(θx,yθt)L2(Ω)(θxx,xyθt)L2(Ω) (θy,xθt)L2(Ω)(θyy,xyθt)L2(Ω)+(βtθt,xy2xy(ξηθt))L2(Ω) (θx,y2xy(ξηθt))L2(Ω)(θxx,xy2xy(ξηθt))L2(Ω) (θy,x2xy(ξηθt))L2(Ω)(θyy,xy2xy(ξηθt))L2(Ω) =(H,xyθt)L2(Ω)+(H,xy2xy(ξηθt))L2(Ω). (4.3)

    The standard integration by parts of each term in equation (4.3) leads to

    (βtθt,xyθt)L2(Ω)=(βtθt,θt)L2ρ(Ω), (4.4)
    (βtθt,xy2xy(ξηθt))L2(Ω)=(βt(xy(ξηθt),xy(ξηθt))L2ρ(Ω), (4.5)
    (θx,yθt)L2(Ω)=a0b0yθxθtdxdy, (4.6)
    (θy,xθt)L2(Ω)=a0b0xθyθtdxdy, (4.7)
    (θxx,xyθt)L2(Ω)=a0b0yθxθtdxdy+2tθx2L2ρ(Ω), (4.8)
    (θyy,xyθt)L2(Ω)=a0b0xθyθtdxdy+2tθy2L2ρ(Ω), (4.9)
    (θx,y2xy(ξηθt))L2(Ω)=a0b0yθx2xy(ξηθt)dxdy, (4.10)
    (θy,x2xy(ξηθt))L2(Ω)=a0b0xθy2xy(ξηθt)dxdy, (4.11)
    (θxx,xy2xy(ξηθt))L2(Ω)=a0b0θxy2xy(ξηθt)dxdy+(θx,x2y(ξηθt))L2ρ(Ω), (4.12)
    (θyy,xy2xy(ξηθt))L2(Ω)=a0b0θyx2xy(ξηθt)dxdy+(θy,y2x(ξηθt))L2ρ(Ω), (4.13)

    Substitution of equation (4.4)–(4.13) into equation (4.3) yields

     (βtθt,θt)L2ρ(Ω)+(βt(xy(ξηθt),xy(ξηθt))L2ρ(Ω) +2tθx2L2ρ(Ω)+2tθy2L2ρ(Ω) =ΩxyθtHdxdy+ΩxyH2xy(ξηθt)dxdy (θx,x2y(ξηθt))L2ρ(Ω)(θy,y2x(ξηθt))L2ρ(Ω). (4.14)

    Using Cauchy ϵ- inequality (ABε2A2+12εB2), Poincare' type inequalities (Ix(ξυ)2L2(0,1)12υ2L2(0,1), I2x(ξυ)2L2(0,1)12Ix(ξυ)2L2(0,1)) [7] and Lemma 2.3, we transform (4.14) to

    βtθt2L2ρ(Ω)+βtxy(ξηθt)2L2ρ(Ω) +/tθx2L2ρ(Ω)+/tθy2L2ρ(Ω) ϵ1θt2L2ρ(Ω)+(1ϵ1+ϵ2)H2L2ρ(Ω) +ϵ3θx2L2ρ(Ω)+ϵ4θy2L2ρ(Ω) +(a2b22ϵ2+a22ϵ4+b22ϵ3)xy(ξηθt)2L2ρ(Ω). (4.15)

    Let ϵi=1,  i=1,2,3,4, in (4.15), then it follows that

    βtθt2L2ρ(Ω)+βtxy(ξηθt)2L2(Ω) +tθy2L2ρ(Ω)+tθx2L2ρ(Ω) C1(θt2L2ρ(Ω)+H2L2ρ(Ω) +θx2L2ρ(Ω)+θy2L2ρ(Ω)+xy(ξηθt)2L2ρ(Ω)), (4.16)

    where

    C1=max{2,(a2b22+a22+b22)}.

    We infer from (4.16) that

    Dβ1tθt2L2ρ(Ω)+Dβ1txy(ξηθτ)2L2(Ω)+θy2L2ρ(Ω)+θx2L2ρ(Ω)C1(t0θτ2L2ρ(Ω)dτ+t0H2L2ρ(Ω)dτ+t0xy(ξηθτ)2L2ρ(Ω)dτt0θx2L2ρ(Ω)dτ+t0θy2L2ρ(Ω)dτ)+Fx2L2ρ(Ω)+Fy2L2ρ(Ω)+T1β(1β)Γ(1β)[xyξηG(ξ,η)2L2(Ω)+G2L2ρ(Ω)]. (4.17)

    By using a poincare type inequality, (4.17) becomes

    Dβ1tθt2L2ρ(Ω)+Dβ1txy(ξηθτ)2L2(Ω)+θy2L2ρ(Ω)+θx2L2ρ(Ω) C2(t0θτ2L2ρ(Ω)dτ+t0xy(ξηθτ)2L2ρ(Ω)dτ +t0θx2L2ρ(Ω)dτ+t0θy2L2ρ(Ω)dτ +t0H2L2ρ(Ω)dτ+F2H1ρ(Ω)+G2L2ρ(Ω)), (4.18)

    where

    C2=max{C1,1,T1β(1β)Γ(1β)(1+a3b316)}.

    By dropping the last two terms from left side of (4.18), and applying Lemma 2.2 by taking

    h(t)=t0θτ2L2ρ(Ω)dτ+t0xy(ξηθτ)2L2ρ(Ω)dτ,
    βth(t)=Dβ1tθt2L2ρ(Ω)+Dβt1xy(ξηθτ)2L2(Ω),

    and h(0)=0, we have

     h(t)C2Γ(β)Eβ,β(C1Tβ)Dβt(t0θx2L2ρ(Ω)dτ +t0θy2L2ρ(Ω)dτ+t0H2L2ρ(Ω)dτ +F2H1ρ(Ω)+G2L2ρ(Ω)), (4.19)

    Since

    Dβtt0J(x,y,τ)2L2ρ(Ω)dτTββΓ(β)t0J(x,y,τ)2L2ρ(Ω)dτ,

    then

    h(t)C2Γ(β)Eβ,β(C2Tβ)(TββΓ(β))(t0θx2L2ρ(Ω)dτ +t0θy2L2ρ(Ω)dτ+t0H2L2ρ(Ω)dτ +F2H1ρ(Ω)+G2L2ρ(Ω)), (4.20)

    Hence (4.18) becomes

    Dβ1tθt2L2ρ(Ω)+Dβ1txy(ξηθτ)2L2(Ω)+θy2L2ρ(Ω)+θx2L2ρ(Ω) C3(t0θx2L2ρ(Ω)dτ+t0θy2L2ρ(Ω)dτ+t0H2L2ρ(Ω)dτ +F2H2ρ(Ω)+G2L2ρ(Ω)), (4.21)

    where

    C3=C22Γ(β)Eβ,β(C2Tβ)(TββΓ(β))+C2.

    Now discard the first two terms from left hand side in (4.21) and use lemma 2.1 with

    S(t)=t0θy2L2ρ(Ω)dτ+t0θx2L2ρ(Ω)dτ,
    dS(t)/dt=θy2L2ρ(Ω)+θx2L2ρ(Ω),
    S(0)=0,

    we see that

    Dβ1tθt2L2ρ(Ω)+Dβ1txy(ξηθτ)2L2(Ω) +θy2L2ρ(Ω)+θx2L2ρ(Ω) C(T0H2L2ρ(Ω)dτ+F2H2ρ(Ω)+G2L2ρ(Ω)), (4.22)

    where

    C=(C3eC3TT+1).

    Now if we omit the first two terms from the left-hand side of (4.22) and use the fact that (see Lemma 6.3)

    θ2L2ρ(Ω)θ2H1ρ(Ω),

    then we get after passing to the supremum over (0,T)

    sup0tT{θ2H1ρ(Ω)} C(H2L2(0,T;L2ρ(Ω)+F2H1ρ(Ω)+G2L2ρ(Ω)). (4.23)

    Since the only information we have about the range of the operator A, is that R(A)Y, we must extend A so that the estimate (4.23) holds for the extension and its range is the hole space Y. To this end, we establish the following proposition.

    Proposition 4.2 The operator A:BY admits a closure.

    Proof. The proof can be done as in [7]

    Let ¯A be the closure of the operator A, and D(¯A) be its domain. The inequality (4.1) can be extended to strong solutions after passing to limit, that is we have

    θBC¯AθY,   θD(¯A),

    from which we deduce that R(¯A) is closed in Y and that R(¯A)=¯R(A).

    Definition 4.3. A solution of the equation

    ¯Aθ=(Lθ,1θ,2θ)=(H,F,G)

    is called a strong solution of problem (3.1), (2.2)-2.4).

    Theorem 5.1. Problem (3.1), (2.2)-2.4), has a unique strong solution θ=L1(H,F,G)=¯L1(H,F,G), that depends continuously on the data, for all HL2(0,T;L2ρ(Ω)), GL2ρ(Ω) and FH1ρ(Ω).

    Proof. To prove that problem (3.1), (2.2)-2.4) has unique strong solution for all W=(H,F,G)Y, it suffices to prove that the range R(A) of the operator A is dense in Y. For this we need to prove the following proposition.

    Proposition 5.2. If for some function g(x,y,t)L2ρ(QT) and for all k(x,y,t)D(A) satisfies homogeneous initial conditions we have

    (Lk,g)L2ρ(QT)=0, (5.1)

    then g0 a.e in QT.

    Proof. Equation (5.1) implies

    (δtk1xkxkxx1ykykyy,g)L2ρ(QT)=0, (5.2)

    Let P(x,y,t) be a function satisfying conditions (2.2)-2.4) and such that P, Px, Py,t2xyP, tPx, tPy, β+1tP are all in L2ρ(QT), then we set

    k(x,y,t)=2tP=t0s0P(x,y,z)dzds,

    and let

    g(x,y,t)=tP+2xy(ξηtP),

    then equation (5.2) becomes

    (β+1t(2tP)1x(2tPx)(2tPxx)1y(2tPy)(2tPyy),tP+2xy(ξηtP))L2ρ(QT)=0,

    that is

    (β+1t(2tP),tP)L2ρ(Ω)+(β+1t(2tP),2xy(ξηtP))L2ρ(Ω) (1x(2tPx),tP)L2ρ(Ω)(1x(2tPx),2xy(ξηtP))L2ρ(Ω) ((2tPxx),tP)L2ρ(Ω)((2tPxx),2xy(ξηtP))L2ρ(Ω) (1y(2tPy),tP)L2ρ(Ω)(1y(2tPy),2xy(ξηtP))L2ρ(Ω) ((2tPyy),tP)L2ρ(Ω)((2tPyy),2xy(ξηtP))L2ρ(Ω) =0. (5.3)

    Put in mind that the function P verifies the given boundary and initial conditions (2.2)–(2.4), then all terms in (5.3) can be computed as

    (β+1t(2tP),tP)L2ρ(Ω)=(βt(tP),tP)L2ρ(Ω), (5.4)
    (β+1t(2tP),2xy(ξηtP))L2ρ(Ω)=(βt(tP),2xy(ξηtP))L2ρ(Ω) =(βt(xyξηtP))xy(ξηtP))L2(Ω), (5.5)
    (1x(2tPx),tP)L2ρ(Ω)=(y2tPx,tP)L2(Ω), (5.6)
    (1y(2tPy),tP)L2ρ(Ω)=(x2tPy,tP)L2ρ(Ω), (5.7)
    (2tPxx,tP)L2ρ(Ω)=Ωxy(2tPxx)(tP)dxdy =(y2tPx,tP)L2(Ω)+12t2tPxL2ρ(Ω), (5.8)
    (2tPyy,tP)L2ρ(Ω)=Ωxy(2tPyy)(tP)dxdy =(x2tPy,tP)L2(Ω)+12t2tPyL2ρ(Ω), (5.9)
    (1x(2tPx),2xy(ξηtP))L2ρ(Ω)=(y2tPx,2xy(ξηtP))L2(Ω), (5.10)
    (1y(2tPy),2xy(ξηtP))L2ρ(Ω)=(x2tPy,2xy(ξηtP))L2(Ω), (5.11)
    (2tPxx,2xy(ξηtP))L2ρ(Ω)=Ωxy(2tPxx)2xy(ξηtP)dxdy =(y2tPx,2xy(ξηtP))L2(Ω)+(2tPx,x2y(ξηtPx))L2ρ(Ω), (5.12)
    (2tPyy,2xy(ξηtP))L2ρ(Ω)=Ωxy2tPyy2xy(ξηtP)dxdy +(x2tPy,2xy(ξηtP))L2(Ω)+(2tPy,y2x(ξηtPy))L2ρ(Ω). (5.13)

    Insertion of equations (5.4)–(5.13) into (5.3), yields

    2(βt(tP),tP)L2ρ(Ω)+2(βt(xyξηtP))xy(ξηtP))L2(Ω)+t2tPxL2ρ(Ω)+t2tPyL2ρ(Ω)=2(2tPx,x2y(ξηtPx))L2ρ(Ω)2(2tPy,y2x(ξηtPy))L2ρ(Ω). (5.14)

    Applying Lemma 2.3 and Poincare' type inequality to (5.14), we obtain

    βttP2L2ρ(Ω)+βtxy(ξηtP)2L2(Ω)+t2tPxL2ρ(Ω)+t2tPyL2ρ(Ω)2tPxL2ρ(Ω)+2tPyL2ρ(Ω)+(ab3+a3b)4xy(ξηtP)2L2(Ω). (5.15)

    We infer from (5.15) that

    Dβ1ttP2L2ρ(Ω)+Dβ1txy(ξηtP)2L2(Ω)  +2tPx2L2ρ(Ω)+2tPy2L2ρ(Ω) C(t0xyξητP2L2(Ω)dτ+t02τPx2L2ρ(Ω)dτ+t02τPy2L2ρ(Ω)dτ),        (5.16)

    where

    C=max{1,ab3+a3b4}.

    By omitting the first two terms from the left-hand side of (5.16) and applying Lemma 2.1 by letting

    S(t)=t02τPx2L2ρ(Ω)dτ+t02τPy2L2ρ(Ω)dτ,
    dS(t)dt=2tPx2L2ρ(Ω)+2tPy2L2ρ(Ω)
    S(0)=0,

    then

    S(t)=t02τPx2L2ρ(Ω)dτ+t02τPy2L2ρ(Ω)dτ TeCTt0xy(ξηP)2L2(Ω). (5.17)

    By inserting (5.17) into (5.16), we obtain

    Dβ1txy(ξηtP)2L2(Ω)+Dβ1ttP2L2ρ(Ω)  +2tPx2L2ρ(Ω)+2tPy2L2ρ(Ω) C(1+TeCT)t0xyξητP2L2(QT)dτ, (5.18)

    if we drop the last three terms on the left hand side of (5.18) and apply Lemma 2.2 by taking

    z(t)=t0xyξητP2L2(QT)dτ,
    βtz(t)=Dβ1txy(ξηtP)2L2(Ω),
    z(0)=0,

    it follows that

    t0xyξητP2L2(QT)dτ0. (5.19)

    Consequently, inequality (5.19) implies that g is zero a.e in QT.

    To complete the proof of Theorem 5.1, we suppose that for some element W=(H,F,G)R(A), we have

    (Lθ,H)L2(0,T;L2ρ(Ω))+(1θ,F)H1ρ(Ω)+(2θ,G)L2ρ(Ω)=0. (5.20)

    We must prove that W=0. If we put θD(A) satisfying homogeneous conditions into (5.20), we have

    (Lθ,H)L2(0,T;L2ρ(Ω))=0. (5.21)

    Applying Proposition 5.2 to (5.21), it follows from that H=0.

    Thus (5.20) takes the form

    (1θ,F)H1ρ(Ω)+(2θ,G)L2ρ(Ω)=0. (5.22)

    But since the range of the operators 1,2 are dense in the spaces H1ρ(Ω), L2ρ(Ω) respectively then relation (5.22) implies G=F=0. Consequently W=0 and Theorem 5.1 follows.

    This section is consecrated to the proof of the existence, uniqueness and continuous dependence of the solution on the data of the problem (2.1)–(2.4). Let us consider the following auxiliary problem with homogeneous equation

    L(U)=β+1tU1xydiv(xyU)=0, (6.1)
    1U=U(x,y,0)=F(x,y) , 2U=Ut(x,y,0)=G(x,y) , (6.2)
    Ux(a,y,t)=0 , Uy(x,b,t)=0 , (6.3)
    a0xU(x,y,t)dx=0 , b0yU(x,y,t)dx=0, (6.4)

    If θ is a solution of problem (2.1)-(2.4) and U is a solution of problem (6.1)-(6.4), then w=θU satisfies

    β+1tw1xydiv(xyw)=˜H(x,y,t,w,wx,wy), (6.5)
    w(x,y,0)=0 , wt(x,y,0)=0 , (6.6)
    wx(a,y,t)=0 , wy(x,b,t)=0 , (6.7)
    a0xw(x,y,t)dx=0 , b0yw(x,y,t)dx=0, (6.8)

    where

    ˜H(x,y,t,w,wx,wy)=H(x,y,t,θU,(θU)x,(θU)y).

    The function ˜H satisfies the Lipshitz condition

    ˜H(x,y,t,w1,w2,w3)˜H(x,y,t,v1,v2,v3)λ(|w1v1|+|w2v2|+|w3v3|), (6.9)

    for all (x,y,t)QT=(0,a)×(0,b)×(0,T). According to Theorem (5.1) problem (6.1)–(6.4) has a unique solution depending continuously on FH1ρ(Ω) and GL2ρ(Ω). It remains to solve problem (6.5)–(6.8). We shall prove that problem (6.5)-(6.8) has a unique weak solution. Suppose that v and w belong to C1(QT) such that v(x,T)=0, w(x,y,0)=0, wt(x,y,0)=0, a0xwdx=0 b0ywdx=0, a0xvdx=0 b0yvdx=0. For vC1(QT), we have

    (Lw,xy(ξηv))L2(0,T;L2ρ(Ω))=(βtwt,xy(ξηv))L2(0,T;L2ρ(Ω))(1xwx,xy(ξηv))L2(0,T;L2ρ(Ω))(wxx,xy(ξηv))L2(0,T;L2ρ(Ω)) (1ywy,xy(ξηv))L2(0,T;L2ρ(Ω))(wyy,xy(ξηv))L2(0,T;L2ρ(Ω)) =(˜H,xy(ξηv))L2(0,T;L2ρ(Ω)).    (6.10)

    By using conditions on w and v, a quick computation of each term on the right and left-hand side of (6.10), gives

    (βtwt,xy(ξηv))L2(0,T;L2ρ(Ω))=(v,βt(xy(ξηwt)))L2(0,T;L2ρ(Ω)),         (6.11)
    (1xwx,xy(ξηv))L2(0,T;L2ρ(Ω))=(w,y(ηv))L2(0,T;L2ρ(Ω)),     (6.12)
    (wxx,xy(ξηv))L2(0,T;L2ρ(Ω))=(w,y(ηv))L2(0,T;L2ρ(Ω)) +(xwx,y(ηv))L2(0,T;L2ρ(Ω)),     (6.13)
    (wyy,2xy(ξηv))L2(0,T;L2ρ(Ω))=(ywy,x(ξv))L2(0,T;L2ρ(Ω)) (w,x(ξv))L2(0,T;L2ρ(Ω)),     (6.14)
    (1ywy,xy(ξηv))L2(0,T;L2ρ(Ω))=(w,x(ξv))L2(0,T;L2ρ(Ω)),   (6.15)
    (˜H,xy(ξηv))L2(0,T;L2ρ(Ω))=(xy(ξη˜H),v)L2(0,T;L2ρ(Ω)),     (6.16)

    Insertion of (5.11)-(5.16)into (5.10) yields

    M(w,v)=(xy(ξη˜H),v)L2(0,T;L2ρ(Ω)), (6.17)

    where

    M(w,v)=(v,βt(xy(ξηwt)))L2(0,T;L2ρ(Ω))+(xwx,y(ηv))L2(0,T;L2ρ(Ω))+(ywy,x(ξv))L2(0,T;L2ρ(Ω)). (6.18)

    Definition 6.1. A function wL2(0,T;H1ρ(Ω)) is called weak solution of problem (6.5)-(6.8) if (6.7) and (6.17) hold.

    Our main purpose is to construct an iteration sequence (wn)nN which converges to a certain function w L2(0,T;H1ρ(Ω)) which solves problem (6.5)–(6.8). Starting with w(0)=0, the sequence (wn)nN is defined as follows: given the element w(n1), then for n=1,2, we solve the iterated problems:

    βtw(n)t1xw(n)xw(n)xx1yw(n)yw(n)yy=˜H(x,y,t,w(n),w(n)x,w(n)y), (6.19)
    w(n)(x,y,0)=0 , w(n)t(x,y,0)=0 , (6.20)
    w(n)x(a,y,t)=0 , w(n)y(x,b,t)=0 , (6.21)
    a0xw(n)(x,y,t)dx=0 , b0yw(n)(x,y,t)dx=0, (6.22)

    Theorem (5.1) asserts that for fixed n, each problem (6.19)-(6.22) has unique solution w(n)(x,y,t). If we set Z(n)(x,y,t)=w(n+1)(x,y,t)w(n)(x,y,t), then we have the new problem

    βtZ(n)t1xZ(n)xZ(n)xx1yZ(n)yZ(n)yy=σ(n1)(x,y,t), (6.23)
    Z(n)(x,y,0)=0 , Z(n)t(x,y,0)=0 , (6.24)
    Z(n)x(a,y,t)=0 , Z(n)y(x,b,t)=0 , (6.25)
    a0xZ(n)(x,y,t)dx=0 , b0yZ(n)(x,y,t)dx=0, (6.26)

    where

    σ(n1)(x,y,t)=˜H(x,y,t,w(n),w(n)x,w(n)y)˜H(x,y,t,w(n1),w(n1)x,w(n1)y).

    Theorem 6.2. Assume that condition (6.9) holds, then for the linearized problem (6.23)–(6.26), we have the a priori estimate

    Z(n)L2(0,T;H1ρ(Ω))KZ(n1)L2(0,T;H1ρ(Ω)), (6.27)

    where K is positive constant given by

    K=TC4(a2+b28+1).

    Proof.Taking the inner product in L2(0,τ;L2ρ(Ω)), with 0τT of equation (6.23) and integro-differential operator

    MZ=Z(n)t2xy(ξηZ(n)t)

    we have

    (βtZ(n)t,Z(n)t)L2(0,τ;L2ρ(Ω))(1xZ(n)x,Z(n)t)L2(0,τ;L2ρ(Ω)) (Z(n)xx,Z(n)t)L2(0,τ;L2ρ(Ω))(1yZ(n)y,Z(n)t)L2(0,τ;L2ρ(Ω)) (Z(n)yy,Z(n)t)L2(0,τ;L2ρ(Ω))(βtZ(n)t,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)) +(1xZ(n)x,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))+(Z(n)xx,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)) +(1yZ(n)y,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))+(Z(n)yy,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)) =(σ(n1),Z(n)t)L2(0,τ;L2ρ(Ω))(σ(n1),2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)). (6.28)

    In the light of conditions (6.25) and (6.26), Cauchy ϵ inequality, Lemma 2.2, Lemma 2.3 and successive integrations by parts of each term of (6.28) leads to

    (βtZ(n)t,Z(n)t)L2(0,τ;L2ρ(Ω))12τ0βtZ(n)t2L2ρ(Ω)dt, =12Dβ1τZ(n)t(x,y,t)2L2ρ(Ω), (6.29)
    (1xZ(n)x,Z(n)t)L2(0,τ;L2ρ(Ω))=(yZ(n)x,Z(n)t)L2(0,τ;L2(Ω)), (6.30)
    (1yZ(n)y,Z(n)t)L2(0,τ;L2ρ(Ω))=(xZ(n)y,Z(n)t)L2(0,τ;L2(Ω)), (6.31)
    (Z(n)xx,Z(n)t)L2(0,τ;L2ρ(Ω))=(yZ(n)x,Z(n)t)L2(0,τ;L2(Ω)) +12Z(n)x(x,y,τ)2L2ρ(Ω), (6.32)
    (Z(n)yy,Z(n)t)L2(0,τ;L2ρ(Ω))=(xZ(n)y,Z(n)t)L2(0,τ;L2(Ω)) +12Z(n)y(x,y,τ)2L2ρ(Ω), (6.33)
    (βtZ(n)t,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)) 12τ0βtxy(ξηZ(n)t)2L2ρ(Ω)dt=12Dβ1τxyξηZ(n)t(x,y,t)2L2ρ(Ω), (6.34)
    (1xZ(n)x,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))=(yZ(n)x,2xy(ξηZ(n)t))L2(0,τ;L2(Ω)), (6.35)
    (1yZ(n)y,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))=(xZ(n)y,2xy(ξηZ(n)t))L2(0,τ;L2(Ω)), (6.36)
    (Z(n)xx,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))=(yZ(n)x,2xy(ξηZ(n)t))L2(0,τ;L2(Ω))(Z(n)x,x2y(ξηZ(n)t))L2(0,τ;L2ρ(Ω)), (6.37)
    (Z(n)yy,2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))=(xZ(n)y,2xy(ξηZ(n)t))L2(0,τ;L2(Ω))(Z(n)y,y2x(ξηZ(n)t))L2(0,τ;L2ρ(Ω)), (6.38)

    Combination of (6.28)–(6.38) yields

    Dβ1τZ(n)t(x,y,t)2L2ρ(Ω)+Dβ1τxy(ξηZ(n)t)(x,y,t)2L2ρ(Ω)+Z(n)x(x,y,τ)2L2ρ(Ω)+Z(n)y(x,y,τ)2L2ρ(Ω)=2(Z(n)x,x2y(ξηZ(n)t))L2(0,τ;L2ρ(Ω))+2(Z(n)y,y2x(ξηZ(n)t))L2(0,τ;L2ρ(Ω))+2(σ(n1),Z(n)t)L2(0,τ;L2ρ(Ω))+2(σ(n1),2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)). (6.39)

    Estimation of the right-hand side of (6.39) gives

    2(σ(n1),Z(n)t)L2(0,τ;L2ρ(Ω))Z(n)t2L2(0,τ;L2ρ(Ω))+σ(n1)2L2(0,τ;L2ρ(Ω))Z(n)t2L2(0,τ;L2ρ(Ω))+32λ2(Z(n1)2L2(0,τ;L2ρ(Ω))+Z(n1)x2L2(0,τ;L2ρ(Ω))+Z(n1)y2L2(0,τ;L2ρ(Ω))), (6.40)
    2(σ(n1),2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))a2b24xy(ξηZ(n)t)2L2(0,τ;L2ρ(Ω))+32λ2(Z(n1)2L2(0,τ;L2ρ(Ω))+Z(n1)x2L2(0,τ;L2ρ(Ω))+Z(n1)y2L2(0,τ;L2ρ(Ω))), (6.41)
    2(Z(n)x,x2y(ξηZ(n)t))L2(0,τ;L2ρ(Ω))Z(n)x2L2(0,τ;L2ρ(Ω))+b2xy(ξηZ(n)t)2L2(0,τ;L2ρ(Ω)), (6.42)
    2(Z(n)y,y2x(ξηZ(n)t))L2(0,τ;L2ρ(Ω))Z(n)y2L2(0,τ;L2ρ(Ω))+a2xy(ξηZ(n)t)2L2(0,τ;L2ρ(Ω)). (6.43)

    Upon substitution of (6.40)–(6.43) into (6.39), we obtain

    Dβ1τZ(n)t(x,y,t)2L2ρ(Ω)+Dβ1τxy(ξηZ(n)t)(x,y,t)2L2ρ(Ω) +Z(n)x(x,y,τ)2L2ρ(Ω)+Z(n)y(x,y,τ)2L2ρ(Ω) C1(Z(n)t2L2(0,τ;L2ρ(Ω))+Z(n1)2L2(0,τ;L2ρ(Ω)) +Z(n1)x2L2(0,τ;L2ρ(Ω))+Z(n1)y2L2(0,τ;L2ρ(Ω)) +Z(n)x2L2(0,τ;L2ρ(Ω))+Z(n)y2L2(0,τ;L2ρ(Ω)) +xy(ξηZ(n)t)2L2(0,τ;L2ρ(Ω))), (6.44)

    where

    C1=max{1,32λ2,a2b24,a2,b2}.

    Now by discarding the first two terms from left hand side of (6.44) and using Lemma 2.1 with

    P(τ)=Z(n)x2L2(0,τ;L2ρ(Ω))+Z(n)y2L2(0,τ;L2ρ(Ω)),P(0)=0,

    we obtain

    Z(n)x2L2(0,τ;L2ρ(Ω))+Z(n)y2L2(0,τ;L2ρ(Ω)) C2(Z(n1)2L2(0,τ;L2ρ(Ω))+Z(n1)x2L2(0,τ;L2ρ(Ω)) +Z(n1)y2L2(0,τ;L2ρ(Ω))+Z(n)t2L2(0,τ;L2ρ(Ω))+xy(ξηZ(n)t)2L2(0,τ;L2ρ(Ω))), (6.45)

    where C2=C1TeC1T. Hence, inequality (6.44) becomes

    Dβ1τZ(n)t(x,y,t)2L2ρ(Ω)+Dβ1τxy(ξηZ(n)t)(x,y,t)2L2(Ω)+Z(n)x(x,y,τ)2L2ρ(Ω)+Z(n)y(x,y,τ)2L2ρ(Ω)C3(Z(n1)2L2(0,τ;L2ρ(Ω))+Z(n1)x2L2(0,τ;L2ρ(Ω))+Z(n1)y2L2(0,τ;L2ρ(Ω))+Z(n)t2L2(0,τ;L2ρ(Ω))+xy(ξηZ(n)t)2L2(0,τ;L2ρ(Ω))), (6.46)

    where C3=C1(1+C2).

    We now need to eliminate the last two terms on the right-hand side of (6.46) by using Lemma 2.2 and setting

    K(τ)=Z(n)t2L2(0,τ;L2ρ(Ω))+xy(ξηZ(n)t)2L2(0,τ;L2ρ(Ω)),βτK(t)=Dβ1τZ(n)t(x,y,t)2L2ρ(Ω)+Dβ1τxy(ξηZ(n)t)(x,y,t)2L2(Ω)K(0)=0,

    then we have

    Z(n)t2L2(0,τ;L2ρ(Ω))+xy(ξηZ(n)t)2L2(0,τ;L2ρ(Ω))K(0)Eβ(C3τβ)+Γ(β)Eβ,β(C3τβ)Dβ1τ(Z(n1)2L2(0,τ;L2ρ(Ω))+Z(n1)x2L2(0,τ;L2ρ(Ω))+Z(n1)y2L2(0,τ;L2ρ(Ω))). (6.47)

    Inequality (6.47) implies

    Z(n)t2L2(0,τ;L2ρ(Ω))+xy(ξηZ(n)t)2L2(0,τ;L2ρ(Ω))Γ(β)Eβ,β(C3τβ)(Dβ1τZ(n1)2L2ρ(Ω)+Dβ1τZ(n1)x2L2(0,τ;L2ρ(Ω))+Dβ1τZ(n1)y2L2(0,τ;L2ρ(Ω))). (6.48)

    It is obvious that

    Dβ1τZ(n1)2L2ρ(Ω)TβΓ(β+1)τ0Z(n1)2L2ρ(Ω)dτ, (6.49)

    If we discard the first two terms on the left-hand side of (6.46) and combine with (6.48) and (6.49), we obtain

    Z(n)(x,y,τ)2L2ρ(Ω)C4Z(n1)2L2(0,T;H1ρ(Ω)), (6.50)

    where

    C4=C3(1+Γ(β)Eβ,β(C3Tβ)TβΓ(β+1)). (6.51)

    Lemma 6.3For θH1ρ(Ω) satisfying a0xθdx=0 b0yθdy=0, we have

    θ2L2ρ(Ω)a2+b28θ2L2ρ(Ω). (6.52)

    Now by using the above lemma and equivalence of norms

    θL2ρ(Ω)θH1ρ(Ω), (6.53)

    which comes from

    θ2L2ρ(Ω)θ2H1ρ(Ω)(a2+b28+1)θ2L2ρ(Ω),

    we infer from (6.50) and (6.53) that

    Z(n)2L2(0,T;H1ρ(Ω))KZ(n1)2L2(0,T;H1ρ(Ω)), (6.54)

    where

    K=TC4(a2+b28+1). (6.55)

    From the criteria of convergence of series, we see from (6.54) that the series n=0Z(n) convergence if K<1. Since Z(n)(x,y,t)=w(n+1)(x,y,t)w(n)(x,y,t), then it follows that the sequence (w(n))nN defined by

    w(n)(x,y,t)=n1k=0(w(n+1)(x,y,t)w(k)(x,y,t))+w(0)(x,y,t), =n1k=0Z(k)+w(0)(x,y,t),   n=1,2,3,...... (6.56)

    converges to wL2(0,T;H1ρ(Ω)). Now to prove that this limit function w is a solution of problem under consideration (6.5)–(6.8), we should show that w satisfies (6.7) and (6.17) as mentioned in Definition 6.1. For problem (6.19)–(6.22), we have

    M(w(n),v)=(v,xy(ξη˜H(x,y,t,w(n1),w(n1)ξ,w(n1)η))L2(0,T;L2ρ(Ω)). (6.57)

    From (6.57), we have

    M(w(n)w,v)+M(w,v) =(v,xyξη˜H(ξ,η,t,w(n1),w(n1)ξ,w(n1)η) xyξη˜H(ξ,η,t,w,wξ,wη))L2(0,T;L2ρ(Ω)) +(v,xyξη˜H(ξ,η,t,w,wξ,wη)L2(0,T;L2ρ(Ω)), (6.58)

    From the partial differential equation (6.19), we have

    (v,β+1txyξη(w(n)w))L2(0,T;L2ρ(Ω)) (v,xyη(w(n)ξwξ))L2(0,T;L2ρ(Ω)) (v,xyξ(w(n)ηwη))L2(0,T;L2ρ(Ω)) (v,xyξη(w(n)ξξwξξ))L2(0,T;L2ρ(Ω)) (v,xyξη(w(n)ηηwηη))L2(0,T;L2ρ(Ω)) =M(w(n)w,v). (6.59)

    Inner products in (6.59) can be evaluated by using conditions on functions v and w, and this leads to

    (xy(ξηβ+1Tv),(w(n)w))L2(0,T;L2ρ(Ω)) +(yηv,x(w(n)ξwξ)L2(0,T;L2ρ(Ω)) +(xξv,y(w(n)ηwη)L2(0,T;L2ρ(Ω)) +(yηv,x(w(n)xwx))L2(0,T;L2ρ(Ω)) (yηv,(w(n)w))L2(0,T;L2ρ(Ω)) +(xξv,y(w(n)ywy))L2(0,T;L2ρ(Ω)) (xξv,(w(n)w))L2(0,T;L2ρ(Ω)) =M(w(n)w,v), (6.60)

    We now estimate terms on the left-hand side of (6.60) to see that

    (xy(ξηβ+1Tv),(w(n)w))L2(0,T;L2ρ(Ω)) w(n)wL2(0,T;L2ρ(Ω))×xy(ξηβ+1Tv)L2(0,T;L2ρ(Ω)) a2b24w(n)wL2(0,T;L2ρ(Ω))×β+1TvL2(0,T;L2ρ(Ω)), (6.61)
    (yηv,x(w(n)ξwξ))L2(0,T;L2ρ(Ω))x(w(n)ξwξ)L2(0,T;L2ρ(Ω))×yηv)L2(0,T;L2ρ(Ω)) a2b24vL2(0,T;L2ρ(Ω))×w(n)wL2(0,T;H1ρ(Ω)), (6.62)
    (xξv,y(w(n)ηwη)L2(0,T;L2ρ(Ω))y(w(n)ηwη)L2(0,T;L2ρ(Ω))×xξv)L2(0,T;L2ρ(Ω)) a2b24vL2(0,T;L2ρ(Ω))×w(n)wL2(0,T;H1ρ(Ω)), (6.63)
    (y(ηv),x(w(n)xwx))L2(0,T;L2ρ(Ω)) ay(ηv)L2(0,T;L2ρ(Ω))×w(n)xwxL2(0,T;L2ρ(Ω)) ab22vL2(0,T;L2ρ(Ω))×w(n)wL2(0,T;H1ρ(Ω)), (6.64)
    (yηv,(w(n)w))L2(0,T;L2ρ(Ω)) y(ηv)L2(0,T;L2ρ(Ω))×w(n)wL2(0,T;L2ρ(Ω))b22vL2(0,T;L2ρ(Ω))×w(n)wL2(0,T;H1ρ(Ω)), (6.65)
    (xξv,y(w(n)ywy))L2(0,T;L2ρ(Ω))bx(ξv)L2(0,T;L2ρ(Ω))×w(n)ywyL2(0,T;L2ρ(Ω))a2b2vL2(0,T;L2ρ(Ω))×w(n)wL2(0,T;H1ρ(Ω)), (6.66)
    \begin{eqnarray} &&-\left( \Im _{x}\xi v, (w^{(n)}-w)\right) _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))} \\ &\leq &\Vert \Im _{x}(\xi v)\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\times \Vert w^{(n)}-w\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))} \\ &\leq &\frac{a^{2}}{2}\Vert v\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\times \Vert w^{(n)}-w\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))}. \end{eqnarray} (6.67)

    If we combine equality (6.60) and inequalities (6.61)–(6.67), we obtain

    \begin{eqnarray} &&M(w^{(n)}-w, v) \\ &\leq &C_{5}\Vert v\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\Big(\Vert w^{(n)}-w\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))} \\ \ &&+\left\Vert \partial _{T}^{\beta +1}v\right\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\Vert w^{(n)}-w\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))} \Big) \end{eqnarray} (6.68)

    where

    \begin{equation*} C_{5} = \max \Big\{\frac{a^{2}b^{2}}{4}, \frac{a^{2}b}{2}, \frac{ab^{2}}{2}, \frac{a^{2}}{2}, \frac{b^{2}}{2}\Big\} \end{equation*}

    On the other side we have

    \begin{eqnarray} &&\left( v, \Im _{xy}\xi \eta \tilde{H}(\xi , \eta , t, w^{(n-1)}, \frac{\partial w^{(n-1)}}{\partial \xi }, \frac{\partial w^{(n-1)}}{\partial \eta })\right. \\ &&\left. -\Im _{xy}\xi \eta \tilde{H}(\xi , \eta , t, w, \frac{\partial w}{ \partial \xi }, \frac{\partial w}{\partial \eta }))\right) _{L^{2}(0, T;L^{2}(\Omega ))} \\ &\leq &\frac{(ab)^{\frac{3}{2}}\lambda }{8}\Vert v\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\times \Vert w^{(n-1)}-w\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))}. \end{eqnarray} (6.69)

    Taking into account (6.68) and (6.69) and passing to the limit in (6.58) as n\rightarrow \infty to obtain

    \begin{equation} M(w, v) = \left( v, \Im _{xy}\xi \eta \tilde{H}(\xi , \eta , t, w, \frac{\partial w}{ \partial \xi }, \frac{\partial w}{\partial \eta })\right) _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}. \end{equation} (6.70)

    Hence (6.17) holds. Now to conclude that problem (6.5)-(6.8) has weak solution, we show that (6.7) holds. Since w\in L^{2}(0, T; H_{\rho }^{1}(\Omega)) , then \int\limits_{0}^{t}\frac{\partial w }{\partial x}(x, y, s)ds\, \ \ \int\limits_{0}^{t}\frac{\partial w}{\partial y} (x, y, s)ds\in C(Q^{T}) and we conclude that \frac{\partial w}{\partial x} (a, y, t) = 0, \frac{\partial w}{\partial y}(x, b, t) = 0\, \ a.e

    Thus we have proved the following

    Theorem 6.4. Suppose that condition (6.9) holds and that K < 1 , then problem (6.5)–(6.8) has a weak solution belonging to {L^{2}(0, T; H_{\rho }^{1}(\Omega))} .

    It remains to prove that problem (6.5)-(6.8) admits a unique solution.

    Theorem 6.5 Assume that condition (6.9) holds, then problem (6.5)-(6.8) admits a unique solution.

    Proof. Suppose that w_{1}, w_{2}\in {L^{2}(0, T; H_{\rho }^{1}(\Omega))} are two solutions of (6.5)-(6.8), then V = w_{1}-w_{2}\in {L^{2}(0, T; H_{\rho }^{1}(\Omega))} and satisfies

    \begin{equation} \partial _{t}^{\beta }V_{t}-\frac{1}{x}V_{x}-V_{xx}-\frac{1}{y} V_{y}-V_{yy} = \sigma (x, y, t), \end{equation} (6.71)
    \begin{equation} V(x, y, 0) = 0\ , \ V_{t}(x, y, 0) = 0\ , \end{equation} (6.72)
    \begin{equation} V_{x}(a, y, t) = 0\ , \ V_{y}(x, b, t) = 0\ , \end{equation} (6.73)
    \begin{equation} \int\limits_{0}^{a}xV(x, y, t)dx = 0\ , \ \int\limits_{0}^{b}yV(x, y, t)dx = 0, \end{equation} (6.74)

    where

    \begin{equation} \sigma (x, y, t) = \tilde{H}\left( x, y, t, w_{1}, \frac{\partial w_{1}}{\partial x}, \frac{\partial w_{1}}{\partial y}\right) -\tilde{H}\left( x, y, t, w_{2}, \frac{ \partial w_{2}}{\partial x}, \frac{\partial w_{2}}{\partial y}\right) . \end{equation} (6.75)

    Taking the inner product in {L^{2}(0, T; L_{\rho }^{2}(\Omega))} of (6.71) and the integro-differential operator

    \begin{equation} MV = V_{t}-\Im _{xy}^{2}\xi \eta V_{t} \end{equation} (6.76)

    and following the same procedure done in establishing the proof of Theorem 6.2, we have

    \begin{equation} \Vert V\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))}\leq K\Vert V\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))}, \end{equation} (6.77)

    where

    \begin{equation} K = TC_{4}\left( \frac{a^{2}+b^{2}}{8}+1\right) . \end{equation} (6.78)

    Since K < 1 , it follows from (6.77) that

    \begin{equation} (1-K)\Vert V\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))} = 0. \end{equation} (6.79)

    Consequently (6.79) implies that V = w_{1}-w_{2} = 0 and hence w_{1} = w_{2}\in {L^{2}(0, T; H_{\rho }^{1}(\Omega))} .

    Here we studied a non local mixed problem for a two dimensional singular nonlinear fractional order equation in the Caputo sense. We prove the existence, uniqueness and continuous dependence of a strong solution of the posed problem. We first establish for the associated linear problem a priori estimate and prove that the range of the operator generated by the considered problem is dense. The technique of deriving the a priori estimate is based on constructing a suitable multiplier. From the resulted energy estimate, it is possible to establish the solvability of the linear problem. Then, by applying an iterative process based on the obtained results for the linear problem, we establish the existence, uniqueness and continuous dependence of the weak solution of the nonlinear problem. The main contribution is that we applied and developed the a priori estimate method for a two dimensional singular nonlinear fractional order partial differential equation with Bessel operator that have never been treated in the literature of integer and fractional differential equations.

    The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this Research group No. (RG-117).

    The authors declare no conflict of interest.



    [1] J. R. Cannon, J. Van der Hoek, The existence and the continuous dependence for the solution of the heat equation subject to the specification of energy, Boll. Uni. Math. Ital. Suppl., 1 (1981), 253–282.
    [2] J. R. Cannon, The solution of heat equation subject to the specification of energy, Quart. Appl. Math., 21 (1963), 155–160. doi: 10.1090/qam/160437
    [3] J. R. Canon, S. P. Esteva, J. Van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM Numer. Anal., 24 (1987), 499–515. doi: 10.1137/0724036
    [4] V. I. Korzyuk, V. Dainyak, A weak solution of a Dirichlet type problem for a third order nonclassical linear differential equation, Differentsial'nye Uravneniya, 28 (1992), 1056–1066.
    [5] S. Mesloub, A. Bouziani, Mixed problem with integral conditions for a certain class of hyperbolic equations, J. Appl. Math., 1 (2001), 107–116. doi: 10.1155/S1110757X01000365
    [6] S. Mesloub, N. Lekrine, On a nonlocal hyperbolic mixed problem, Acta Sci. Math., 70 (2004), 65–75.
    [7] S. Mesloub, A nonlinear nonlocal mixed problem for a second order parabolic equation, J. Math. Anal. Appl., 316 (2006), 189–209. doi: 10.1016/j.jmaa.2005.04.072
    [8] S. Mesloub, On a singular two dimensional nonlinear evolution equation with non local conditions, Nonlinear Anal., 68 (2008), 2594–2607. doi: 10.1016/j.na.2007.02.006
    [9] L. S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electron. J. Diff. Eqns., 45 (1999), 1–6.
    [10] L. S. Pulkina, On solvability in L2 of nonlocal problem with integral conditions for a hyperbolic equation, Differents. Uravn., 2 (2000).
    [11] P. Shi, Weak solution to an evolution problem with a nonlocal constraint, Siam. J. Math. Anal., 24 (1993), 46–58. doi: 10.1137/0524004
    [12] S. Mesloub, F. Aldosari, Even higher order fractional initial boundary value problem with nonlocal constraints of purely integral type, Symmetry, 11 (2019), 305. doi: 10.3390/sym11030305
    [13] S. Mesloub, Existence and uniqueness results for a fractional two-times evolution problem with constraints of purely integral type, Math. Methods Appl. Sci., 39 (2016), 1558–1567. doi: 10.1002/mma.3589
    [14] A. A. A. Alikhanov, Priori estimates for solutions of boundary value problems for fractional order equations, Partial Differential Equations, 46 (2010), 660–666.
    [15] A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [16] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wavephenomena, Chaos Solitons Fractals, 7 (1996), 1461–1477. doi: 10.1016/0960-0779(95)00125-5
    [17] I. Podlubny, Fractional DifferentialEquations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol.198. Elsevier, Amsterdam, 1998.
    [18] A. Giusti, F. Mainardi, A dynamic viscoelastic analogy for fluid filled elastic tubes, Meccanica, 51 (2016), 2321–2330. doi: 10.1007/s11012-016-0376-4
    [19] S. Ladaci, J. J. Loiseau, A. Charef, Fractional order adaptive high-gain controllers for a class of linear systems, Commun. Nonlinear Sci., 13 (2008), 707–714. doi: 10.1016/j.cnsns.2006.06.009
    [20] B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Boundary Value Probl., 2009 (2009), 11.
    [21] V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reactiondiffusion systems, J. Comput. Appl. Math., 220 (2008), 215–225. doi: 10.1016/j.cam.2007.08.011
    [22] J. Allison, N. Kosmatov, Multi-point boundary value problems of fractional order, Commun. Appl. Anal., 12 (2008), 451–458.
    [23] R. W. Ibrahim, M. Darus, Subordination and superordination for univalent solutions for fractional differential equations, J. Math. Anal. Appl., 345 (2008), 871–879. doi: 10.1016/j.jmaa.2008.05.017
    [24] K. V. Chukbar, The stochastic transfer and fractional derivatives, Zh. Eksp. Teor. Fiz., 108 (1995), 1875–1884.
    [25] V. M. Goloviznin, V. P. Kisilev, I. A. Korotkin, Yu. I. Yurkov, Direct problems of nonclassical radionuclide transfer in geological formations, Izv. Ross. Akad. Nauk, Energ., 4 (2004), 121–130.
    [26] S. Mesloub, On a mixed nonlinear one point boundary value problem for an integrodifferential equation, Boundary Value Probl., 2008 (2008), 8, Article ID 814947.
    [27] L. Magin Richard, Fractional calculus in bioengineering, Begell House Redding, 2006.
    [28] A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal-Theor., 70 (2009), 364–371. doi: 10.1016/j.na.2007.12.007
    [29] Y. K. Chang, J. J. Nieto, W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, to appear in Journal of Optimization Theory and Applications, 142 (2009), 267–273.
    [30] A. Bachir, J. J. Nieto, Existence Results for Nonlinear Boundary Value Problems of Fractional Integrodifferential Equations with Integral Boundary Conditions, Boundary Value Problems volume 2009, Article number: 708576 (2009).
    [31] A. Bachir, A. Alsaedi, B. S. Alghamdi, Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal.: Real World Appl., 9 (2008), 1727–1740. doi: 10.1016/j.nonrwa.2007.05.005
    [32] L. Kasmi, A. Guerfi, S. Mesloub, Existence of solution for 2-D time-fractional differential equations with a boundary integral condition, Adv. Differ. Equ., 2019 (2019), 511. doi: 10.1186/s13662-019-2444-2
    [33] A. Akilandeeswari, K. Balachandran, N. Annapoorani, Solvability of hyperbolic fractional partial differential equations, J. Appl. Anal. Comput., 7 (2017), 1570–1585.
    [34] S. Mesloub, I. Bachar, On a nonlocal 1-d initial value problem for a singular fractional-order parabolic equation with Bessel operator, Adv. Differ. Equ., 2019 (2019), 254. doi: 10.1186/s13662-019-2196-z
    [35] X. Liu, L. Liu, Y. Wu, Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives, Boundary Value Probl., 2018 (2018), 24. doi: 10.1186/s13661-018-0943-9
    [36] H. Li, L. Liu, Y. Wu, Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions, Boundary Value Probl., 2015 (2015), 232. doi: 10.1186/s13661-015-0493-3
    [37] A. Bashir, M. M. Matar, R. P. Agarwal, Existence results for fractional differential equations of arbitrary order with nonlocal integral boundary conditions, Boundary Value Probl., 2015 (2015), 220. doi: 10.1186/s13661-015-0484-4
    [38] O. L. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer-Verlag, New York, 1985.
  • This article has been cited by:

    1. Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez, Generalized conformable operators: Application to the design of nonlinear observers, 2021, 6, 2473-6988, 12952, 10.3934/math.2021749
    2. Said Mesloub, Eman Alhazzani, Hassan Eltayeb Gadain, On One Point Singular Nonlinear Initial Boundary Value Problem for a Fractional Integro-Differential Equation via Fixed Point Theory, 2024, 8, 2504-3110, 526, 10.3390/fractalfract8090526
    3. Said Mesloub, Eman Alhazzani, Hassan Eltayeb Gadain, A Two-Dimensional Nonlocal Fractional Parabolic Initial Boundary Value Problem, 2024, 13, 2075-1680, 646, 10.3390/axioms13090646
    4. Said Mesloub, Eman Alhazzani, Gadain Eltayeb, A Non-Local Non-Homogeneous Fractional Timoshenko System with Frictional and Viscoelastic Damping Terms, 2023, 12, 2075-1680, 689, 10.3390/axioms12070689
    5. Eman Alhazzani, Said Mesloub, Hassan Eltayeb Gadain, On the Solvability of a Singular Time Fractional Parabolic Equation with Non Classical Boundary Conditions, 2024, 8, 2504-3110, 189, 10.3390/fractalfract8040189
    6. Said Mesloub, Reem K. Alhefthi, On a Singular Non local Fractional System Describing a Generalized Timoshenko System with Two Frictional Damping Terms, 2023, 7, 2504-3110, 514, 10.3390/fractalfract7070514
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2521) PDF downloads(117) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog