This paper studies the existence and uniqueness of solutions of a non local initial boundary value problem of a singular two dimensional nonlinear fractional order partial differential equation involving the Caputo fractional derivative by employing the functional analysis. We first establish for the associated linear problem a priori estimate and prove that the range of the operator generated by the considered problem is dense. The technique of obtaining the a priori bound relies on the construction of a suitable multiplicator. From the resulted a priori estimate, we can establish the solvability of the associated linear problem. Then, by applying an iterative process based on the obtained results for the associated linear problem, we establish the existence, uniqueness and continuous dependence of the weak solution of the considered nonlinear problem.
Citation: Said Mesloub, Faten Aldosari. Well posedness for a singular two dimensional fractional initial boundary value problem with Bessel operator involving boundary integral conditions[J]. AIMS Mathematics, 2021, 6(9): 9786-9812. doi: 10.3934/math.2021569
[1] | Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304 |
[2] | Cuiying Li, Rui Wu, Ranzhuo Ma . Existence of solutions for Caputo fractional iterative equations under several boundary value conditions. AIMS Mathematics, 2023, 8(1): 317-339. doi: 10.3934/math.2023015 |
[3] | Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793 |
[4] | Said Mesloub, Hassan Altayeb Gadain, Lotfi Kasmi . On the well posedness of a mathematical model for a singular nonlinear fractional pseudo-hyperbolic system with nonlocal boundary conditions and frictional damping terms. AIMS Mathematics, 2024, 9(2): 2964-2992. doi: 10.3934/math.2024146 |
[5] | Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037 |
[6] | Limin Guo, Lishan Liu, Ying Wang . Maximal and minimal iterative positive solutions for p-Laplacian Hadamard fractional differential equations with the derivative term contained in the nonlinear term. AIMS Mathematics, 2021, 6(11): 12583-12598. doi: 10.3934/math.2021725 |
[7] | Mukhamed Aleroev, Hedi Aleroeva, Temirkhan Aleroev . Proof of the completeness of the system of eigenfunctions for one boundary-value problem for the fractional differential equation. AIMS Mathematics, 2019, 4(3): 714-720. doi: 10.3934/math.2019.3.714 |
[8] | Yanyan Cui, Chaojun Wang . Dirichlet and Neumann boundary value problems for bi-polyanalytic functions on the bicylinder. AIMS Mathematics, 2025, 10(3): 4792-4818. doi: 10.3934/math.2025220 |
[9] | Pinghua Yang, Caixia Yang . The new general solution for a class of fractional-order impulsive differential equations involving the Riemann-Liouville type Hadamard fractional derivative. AIMS Mathematics, 2023, 8(5): 11837-11850. doi: 10.3934/math.2023599 |
[10] | Apassara Suechoei, Parinya Sa Ngiamsunthorn . Extremal solutions of φ−Caputo fractional evolution equations involving integral kernels. AIMS Mathematics, 2021, 6(5): 4734-4757. doi: 10.3934/math.2021278 |
This paper studies the existence and uniqueness of solutions of a non local initial boundary value problem of a singular two dimensional nonlinear fractional order partial differential equation involving the Caputo fractional derivative by employing the functional analysis. We first establish for the associated linear problem a priori estimate and prove that the range of the operator generated by the considered problem is dense. The technique of obtaining the a priori bound relies on the construction of a suitable multiplicator. From the resulted a priori estimate, we can establish the solvability of the associated linear problem. Then, by applying an iterative process based on the obtained results for the associated linear problem, we establish the existence, uniqueness and continuous dependence of the weak solution of the considered nonlinear problem.
Initial boundary value problems with non local and non-classical boundary conditions for integer and fractional order linear and nonlinear evolution partial differential equations, have gained great attention during the last three decades. Especially problems with boundary conditions of integral type (the so called energy specification) which are important from the point of view of their practical application to modelling and investigating various physical phenomena in the context of chemical engineering, thermoelasticity, population dynamics, polymer rheology, aerodynamics, heat conduction processes, plasma physics, underground-water flow, transmission theory, chemical engineering, control theory, fluid flow and many physical and biological processes and systems and so forth, see [19,20,21,22,23,24,25,26,27,28,29,30,31]. We should mention that most local phenomena can be examined and modeled in terms of integer order differential equations, while fractional order differential equations model non local phenomena. Accordingly, fractional order partial differential equations describe real world phenomena that cannot be described by classical mathematics literature. This is due to the fact that many models depend on the present and historical states. For integer order case (see for example [1,2,3,4,5,6,7,8,9,10,11] and references therein. For the fractional order case see for example [15,16,17,18,35,36,37] and references therein. However, the investigation of initial boundary value problems for nonlinear fractional order partial differential equations still needs too much exploration and investigation.
For the proof of the existence and the uniqueness of the solution of the posed problem, we use the energy inequality method based mainly on some a priori estimates and on the density of the range of the operator generated by the considered problem. In the literature, there are few articles using the method of energy inequalities for the proof of existence and uniqueness of fractional initial-boundary value problems in the fractional case (see [12,13,14,32,33,34]). This work, can be considered as a continuation, improvement and generalization of previous works. Many difficulties are encountered while applying the functional analysis method for the posed problem. These difficulties are mainly due to the fact that the considered equation is nonlinear, singular, with fractional order in a two-dimensional space setting, and supplemented with nonlocal conditions.
The outline of this paper is as follows. In section 2, we set the problem and give some preliminaries. In section 3, we pose the associated linear problem and introduce some function spaces used in the sequel. Section 4 is devoted to the uniqueness results for the associated linear problem. The existence of solution of the associated linear problem is considered in section 5. The main results of this paper are given in section 6, it is consecrated to the proof of the existence, uniqueness and continuous dependence of the solution on the data of the nonlinear problem.
In the bounded domain QT=Ω×(0,T), where Ω=(0,a)×(0,b)⊂R2, we consider the two dimensional singular nonlinear fractional partial differential equation in Caputo sense with Bessel operator
L(θ)=∂δtθ−1xydiv(xy∇θ)=H(x,y,t,θ,θx,θy), | (2.1) |
where ∂δt denotes the time fractional Caputo derivative operator of order δ∈(1,2], the symbols div and ∇, denote respectively the divergence and the gradient operators. θx stands for the x−derivative of the function θ. Equation (2.1), is supplemented by the initial conditions
ℓ1θ=θ(x,y,0)=F(x,y) , ℓ2θ=θt(x,y,0)=G(x,y), | (2.2) |
Neumann boundary conditions
θx(a,y,t)=0 , θy(x,b,t)=0, | (2.3) |
and the non local weighted boundary integral conditions
a∫0xθ(x,y,t)dx=0 , b∫0yθ(x,y,t)dx=0, | (2.4) |
where the functions F, and G are given functions which will be specified later on. We shall assume that the function H is a Lipshitzian function, that is there exists a positive constant λ such that for all (x,y,t)∈QT
H(x,y,t,θ1,v1,w1)−H(x,y,t,θ2,v2,w2)≤λ(|θ1−θ2|+|v1−v2|+|w1−w2|). | (2.5) |
In equation (2.1), the fractional derivative ∂δtE of order δ=β+1, where 0<β<1 (see [17]) for a function E is defined by
C∂δtE(x,t)=1Γ(1−δ)∫t0Ess(x,s)(t−s)δds,∀t∈[0,T], | (2.6) |
where Γ(.) is the Gamma function.
We begin by giving some important lemmas needed throughout the sequel.
Lemma 2.1 [38]. Let R(s) be nonnegative and absolutely continuous on [0,T], and suppose that for almost all s∈[0,T], R satisfies the inequality
dRds≤A1(s)R(t)+B1(s), | (2.7) |
where the functions A1(s) and B1(s) are summable and nonnegative on [0,T]. Then
R(s)≤es∫0A1(t)dt(R(0)+s∫0B1(t)dt). | (2.8) |
Lemma 2.2. [14] Let be M(t) a nonnegative absolutely continuous function, such that
C∂λtM(t)≤b1M(t)+b2(t), 0<λ<1, | (2.9) |
for almost all t∈[0,T], where b1 is a positive constant and b2(t) is an integrable nonnegative function on [0,T]. Then
M(t)≤M(0)Eλ(b1tλ)+Γ(λ)Eλ,λ(b1tλ)D−λtb2(t), | (2.10) |
where
Eλ(x)=∞∑n=0xnΓ(λn+1)andEλ,μ(x)=∞∑n=0xnΓ(λn+μ), |
are the MIttag-Leffler functions, and D−λtv(t)=1Γ(λ)t∫0v(τ)(t−τ)1−λdτ is the Riemann-Liouville integral of order 0<λ<1.
Lemma 2.3. [14] For any absolutely continuous function J(t) on the interval [0,T], the following inequality holds
J(t)C∂βtJ(t)≥12C∂βtJ2(t), 0<β<1 | (2.11) |
In this section, we set the associated linear problem and introduce different function spaces needed to investigate this problem. We consider the differential equation
L(θ)=∂δtθ−1xydiv(xy∇θ)=H(x,y,t), | (3.1) |
supplemented by conditions (2.2)–(2.4). The used method is essentially based on the construction of suitable multipliers for each specific given problem, which provides the a priori estimate from which it is possible to establish the solvability of the posed problem. More precisely, the proofs of uniqueness of the solution is based on an energy inequality and on the density of the range of the operator generated by the abstract formulation of the stated problem.
To investigate the posed problem, we introduce the needed function spaces. We denote by L2ρ(Ω) the Hilbert space of weighted square integrable functions where ρ=xy and with inner product
(U,v)L2ρ(Ω)=(xyU,v)L2(Ω)=∫ΩxyUvdxdy, |
and with associated norm
‖U‖L2ρ(Ω)=(∫ΩxyU2dxdy)12. |
Let X be Banach space with norm ‖U‖X, and let U:(0,T)→X be an abstract function. By U(.,.,t)‖X we denote the norm of U(.,.,t)∈X for fixed t. Let L2(0,T;X) be the set of all measurable abstract functions U:(0,T)→X such that
‖U‖2L2(0,T;X)=T∫0‖U(.,.,t)‖2Xdt<∞. |
If X is a Hilbert space, then L2(0,T;X) is also a Hilbert space. Let C(0,T;X) be the set of all continuous functions U:(0,T)→X such that
‖U‖C(0,T;X)=maxt∈[0,T]‖U(.,.,t)‖X<∞, |
and denote by H1ρ(Ω) the weighted Sobolev space with norm
‖U‖2H1ρ(Ω)=‖U‖2L2ρ(Ω)+‖Ux‖2L2ρ(Ω)+‖Uy‖2L2ρ(Ω). |
The given problem (3.1), (2.2)–(2.4) can be viewed as the problem of solving the operator equation Aθ=W=(H,F,G), where Aθ=(Lθ,ℓ1θ,ℓ2θ), ∀θ∈D(A) where A is the operator given by A=(L,ℓ1,ℓ2) and D(A) is the set of all functions θ∈L2ρ(QT):∂δtθ,θx,θxx,θy,θyy,θt∈L2ρ(QT) and θ satisfies conditions (2.2)–(2.4). The operator A acts from B into Y, where B is the Banach space obtained by enclosing D(A) with respect to the finite norm
‖θ‖2B=sup0≤t≤T‖θ(x,y,τ)‖2H1ρ(Ω)=‖θ(x,y,τ)‖2C(0,T.,H1ρ(Ω)). | (3.2) |
Functions θ∈B are continuous on [0,T] with values in L2ρ(Ω). Hence the mappings
ℓ1θ∈B→ℓθ=θ(x,y,0)∈L2ρ(Ω), |
ℓ2θ∈B→ℓθ=θt(x,y,0)∈L2ρ(Ω), |
are defined and continuous on B. And Y is the Hilbert space L2(0,T,L2ρ(Ω))×H1ρ(Ω)×L2ρ(Ω) consisting of vector valued functions W=(H,F,G) for which the norm
‖W‖2Y=‖H‖2L2(0,T;L2ρ(Ω))+‖F‖2H1ρ(Ω)+‖G‖2L2ρ(Ω), |
is finite. Let ¯A be the closure of the operator A with domain of definition D(¯A).
Definition 3. We call a strong solution of problem (3.1), (2.2)-2.4), the solution of the operator equation
¯Aθ=W, ∀θ∈D(¯A). |
We will establish an a priori estimate for the operator A from which we deduce the uniqueness and continuous dependence of the solution upon the initial conditions (2.2).
Theorem 4.1 For any function θ∈D(A) we have the a priori estimate
‖θ(x,y,τ)‖2C(0,T.,H1ρ(Ω))≤C(‖H‖2L2(0,T;L2ρ(Ω))+‖F‖2H1ρ(Ω)+‖G‖2L2ρ(Ω)), | (4.1) |
where C is a positive constant independent of the function θ given by
C=(C3eC3TT+1), |
with
C3=C22Γ(β)Eβ,β(C2Tβ)(TββΓ(β))+C2,C2=max{C1,1,T1−β(1−β)Γ(1−β)(1+a3b316)},C1=max{2,(a2b22+a22+b22)}. |
Proof.
Let β+1=δ, where 0<β≤1, then (3.1) takes the form
∂β+1tθ−1x(xθx)x−1y(yθy)y=H(x,y,t). | (4.2) |
Taking the scalar product in L2ρ(Ω) of the partial differential equation (4.2) and the integro-differential operator Mθ=θt+ℑ2xy(ξηθt), where
ℑ2xy(ξηθt)=x∫0y∫0ξηθt(ξ,η)dηdξ, |
then we have
(∂βtθt,xyθt)L2(Ω)−(θx,yθt)L2(Ω)−(θxx,xyθt)L2(Ω) −(θy,xθt)L2(Ω)−(θyy,xyθt)L2(Ω)+(∂βtθt,xyℑ2xy(ξηθt))L2(Ω) −(θx,yℑ2xy(ξηθt))L2(Ω)−(θxx,xyℑ2xy(ξηθt))L2(Ω) −(θy,xℑ2xy(ξηθt))L2(Ω)−(θyy,xyℑ2xy(ξηθt))L2(Ω) =(H,xyθt)L2(Ω)+(H,xyℑ2xy(ξηθt))L2(Ω). | (4.3) |
The standard integration by parts of each term in equation (4.3) leads to
(∂βtθt,xyθt)L2(Ω)=(∂βtθt,θt)L2ρ(Ω), | (4.4) |
(∂βtθt,xyℑ2xy(ξηθt))L2(Ω)=(∂βt(ℑxy(ξηθt),ℑxy(ξηθt))L2ρ(Ω), | (4.5) |
−(θx,yθt)L2(Ω)=−a∫0b∫0yθxθtdxdy, | (4.6) |
−(θy,xθt)L2(Ω)=−a∫0b∫0xθyθtdxdy, | (4.7) |
−(θxx,xyθt)L2(Ω)=a∫0b∫0yθxθtdxdy+∂2∂t‖θx‖2L2ρ(Ω), | (4.8) |
−(θyy,xyθt)L2(Ω)=a∫0b∫0xθyθtdxdy+∂2∂t‖θy‖2L2ρ(Ω), | (4.9) |
−(θx,yℑ2xy(ξηθt))L2(Ω)=−a∫0b∫0yθxℑ2xy(ξηθt)dxdy, | (4.10) |
−(θy,xℑ2xy(ξηθt))L2(Ω)=−a∫0b∫0xθyℑ2xy(ξηθt)dxdy, | (4.11) |
−(θxx,xyℑ2xy(ξηθt))L2(Ω)=a∫0b∫0θxyℑ2xy(ξηθt)dxdy+(θx,ℑxℑ2y(ξηθt))L2ρ(Ω), | (4.12) |
−(θyy,xyℑ2xy(ξηθt))L2(Ω)=a∫0b∫0θyxℑ2xy(ξηθt)dxdy+(θy,ℑyℑ2x(ξηθt))L2ρ(Ω), | (4.13) |
Substitution of equation (4.4)–(4.13) into equation (4.3) yields
(∂βtθt,θt)L2ρ(Ω)+(∂βt(ℑxy(ξηθt),ℑxy(ξηθt))L2ρ(Ω) +∂2∂t‖θx‖2L2ρ(Ω)+∂2∂t‖θy‖2L2ρ(Ω) =∫ΩxyθtHdxdy+∫ΩxyHℑ2xy(ξηθt)dxdy −(θx,ℑxℑ2y(ξηθt))L2ρ(Ω)−(θy,ℑyℑ2x(ξηθt))L2ρ(Ω). | (4.14) |
Using Cauchy ϵ- inequality (AB≤ε2A2+12εB2), Poincare' type inequalities (‖Ix(ξυ)‖2L2(0,1)≤12‖υ‖2L2(0,1), ‖I2x(ξυ)‖2L2(0,1)≤12‖Ix(ξυ)‖2L2(0,1)) [7] and Lemma 2.3, we transform (4.14) to
∂βt‖θt‖2L2ρ(Ω)+∂βt‖ℑxy(ξηθt)‖2L2ρ(Ω) +∂/∂t‖θx‖2L2ρ(Ω)+∂/∂t‖θy‖2L2ρ(Ω) ≤ϵ1‖θt‖2L2ρ(Ω)+(1ϵ1+ϵ2)‖H‖2L2ρ(Ω) +ϵ3‖θx‖2L2ρ(Ω)+ϵ4‖θy‖2L2ρ(Ω) +(a2b22ϵ2+a22ϵ4+b22ϵ3)‖ℑxy(ξηθt)‖2L2ρ(Ω). | (4.15) |
Let ϵi=1, i=1,2,3,4, in (4.15), then it follows that
∂βt‖θt‖2L2ρ(Ω)+∂βt‖ℑxy(ξηθt)‖2L2(Ω) +∂∂t‖θy‖2L2ρ(Ω)+∂∂t‖θx‖2L2ρ(Ω) ≤C1(‖θt‖2L2ρ(Ω)+‖H‖2L2ρ(Ω) +‖θx‖2L2ρ(Ω)+‖θy‖2L2ρ(Ω)+‖ℑxy(ξηθt)‖2L2ρ(Ω)), | (4.16) |
where
C1=max{2,(a2b22+a22+b22)}. |
We infer from (4.16) that
Dβ−1t‖θt‖2L2ρ(Ω)+Dβ−1t‖ℑxy(ξηθτ)‖2L2(Ω)+‖θy‖2L2ρ(Ω)+‖θx‖2L2ρ(Ω)≤C1(t∫0‖θτ‖2L2ρ(Ω)dτ+t∫0‖H‖2L2ρ(Ω)dτ+t∫0‖ℑxy(ξηθτ)‖2L2ρ(Ω)dτt∫0‖θx‖2L2ρ(Ω)dτ+t∫0‖θy‖2L2ρ(Ω)dτ)+‖Fx‖2L2ρ(Ω)+‖Fy‖2L2ρ(Ω)+T1−β(1−β)Γ(1−β)[‖ℑxyξηG(ξ,η)‖2L2(Ω)+‖G‖2L2ρ(Ω)]. | (4.17) |
By using a poincare type inequality, (4.17) becomes
Dβ−1t‖θt‖2L2ρ(Ω)+Dβ−1t‖ℑxy(ξηθτ)‖2L2(Ω)+‖θy‖2L2ρ(Ω)+‖θx‖2L2ρ(Ω) ≤C2(t∫0‖θτ‖2L2ρ(Ω)dτ+t∫0‖ℑxy(ξηθτ)‖2L2ρ(Ω)dτ +t∫0‖θx‖2L2ρ(Ω)dτ+t∫0‖θy‖2L2ρ(Ω)dτ +t∫0‖H‖2L2ρ(Ω)dτ+‖F‖2H1ρ(Ω)+‖G‖2L2ρ(Ω)), | (4.18) |
where
C2=max{C1,1,T1−β(1−β)Γ(1−β)(1+a3b316)}. |
By dropping the last two terms from left side of (4.18), and applying Lemma 2.2 by taking
h(t)=t∫0‖θτ‖2L2ρ(Ω)dτ+t∫0‖ℑxy(ξηθτ)‖2L2ρ(Ω)dτ, |
∂βth(t)=Dβ−1t‖θt‖2L2ρ(Ω)+Dβt−1‖ℑxy(ξηθτ)‖2L2(Ω), |
and h(0)=0, we have
h(t)≤C2Γ(β)Eβ,β(C1Tβ)D−βt(t∫0‖θx‖2L2ρ(Ω)dτ +t∫0‖θy‖2L2ρ(Ω)dτ+t∫0‖H‖2L2ρ(Ω)dτ +‖F‖2H1ρ(Ω)+‖G‖2L2ρ(Ω)), | (4.19) |
Since
D−βtt∫0‖J(x,y,τ)‖2L2ρ(Ω)dτ≤TββΓ(β)t∫0‖J(x,y,τ)‖2L2ρ(Ω)dτ, |
then
h(t)≤C2Γ(β)Eβ,β(C2Tβ)(TββΓ(β))(t∫0‖θx‖2L2ρ(Ω)dτ +t∫0‖θy‖2L2ρ(Ω)dτ+t∫0‖H‖2L2ρ(Ω)dτ +‖F‖2H1ρ(Ω)+‖G‖2L2ρ(Ω)), | (4.20) |
Hence (4.18) becomes
Dβ−1t‖θt‖2L2ρ(Ω)+Dβ−1t‖ℑxy(ξηθτ)‖2L2(Ω)+‖θy‖2L2ρ(Ω)+‖θx‖2L2ρ(Ω) ≤C3(t∫0‖θx‖2L2ρ(Ω)dτ+t∫0‖θy‖2L2ρ(Ω)dτ+t∫0‖H‖2L2ρ(Ω)dτ +‖F‖2H2ρ(Ω)+‖G‖2L2ρ(Ω)), | (4.21) |
where
C3=C22Γ(β)Eβ,β(C2Tβ)(TββΓ(β))+C2. |
Now discard the first two terms from left hand side in (4.21) and use lemma 2.1 with
S(t)=t∫0‖θy‖2L2ρ(Ω)dτ+t∫0‖θx‖2L2ρ(Ω)dτ, |
dS(t)/dt=‖θy‖2L2ρ(Ω)+‖θx‖2L2ρ(Ω), |
S(0)=0, |
we see that
Dβ−1t‖θt‖2L2ρ(Ω)+Dβ−1t‖ℑxy(ξηθτ)‖2L2(Ω) +‖θy‖2L2ρ(Ω)+‖θx‖2L2ρ(Ω) ≤C(T∫0‖H‖2L2ρ(Ω)dτ+‖F‖2H2ρ(Ω)+‖G‖2L2ρ(Ω)), | (4.22) |
where
C=(C3eC3TT+1). |
Now if we omit the first two terms from the left-hand side of (4.22) and use the fact that (see Lemma 6.3)
‖∇θ‖2L2ρ(Ω)∼‖θ‖2H1ρ(Ω), |
then we get after passing to the supremum over (0,T)
sup0≤t≤T{‖θ‖2H1ρ(Ω)} ≤C(‖H‖2L2(0,T;L2ρ(Ω)+‖F‖2H1ρ(Ω)+‖G‖2L2ρ(Ω)). | (4.23) |
Since the only information we have about the range of the operator A, is that R(A)⊂Y, we must extend A so that the estimate (4.23) holds for the extension and its range is the hole space Y. To this end, we establish the following proposition.
Proposition 4.2 The operator A:B→Y admits a closure.
Proof. The proof can be done as in [7]
Let ¯A be the closure of the operator A, and D(¯A) be its domain. The inequality (4.1) can be extended to strong solutions after passing to limit, that is we have
‖θ‖B≤C‖¯Aθ‖Y, ∀θ∈D(¯A), |
from which we deduce that R(¯A) is closed in Y and that R(¯A)=¯R(A).
Definition 4.3. A solution of the equation
¯Aθ=(Lθ,ℓ1θ,ℓ2θ)=(H,F,G) |
is called a strong solution of problem (3.1), (2.2)-2.4).
Theorem 5.1. Problem (3.1), (2.2)-2.4), has a unique strong solution θ=L−1(H,F,G)=¯L−1(H,F,G), that depends continuously on the data, for all H∈L2(0,T;L2ρ(Ω)), G∈L2ρ(Ω) and F∈H1ρ(Ω).
Proof. To prove that problem (3.1), (2.2)-2.4) has unique strong solution for all W=(H,F,G)∈Y, it suffices to prove that the range R(A) of the operator A is dense in Y. For this we need to prove the following proposition.
Proposition 5.2. If for some function g(x,y,t)∈L2ρ(QT) and for all k(x,y,t)∈D(A) satisfies homogeneous initial conditions we have
(Lk,g)L2ρ(QT)=0, | (5.1) |
then g≡0 a.e in QT.
Proof. Equation (5.1) implies
(∂δtk−1xkx−kxx−1yky−kyy,g)L2ρ(QT)=0, | (5.2) |
Let P(x,y,t) be a function satisfying conditions (2.2)-2.4) and such that P, Px, Py,ℑtℑ2xyP, ℑtPx, ℑtPy, ∂β+1tP are all in L2ρ(QT), then we set
k(x,y,t)=ℑ2tP=t∫0s∫0P(x,y,z)dzds, |
and let
g(x,y,t)=ℑtP+ℑ2xy(ξηℑtP), |
then equation (5.2) becomes
(∂β+1t(ℑ2tP)−1x(ℑ2tPx)−(ℑ2tPxx)−1y(ℑ2tPy)−(ℑ2tPyy),ℑtP+ℑ2xy(ξηℑtP))L2ρ(QT)=0, |
that is
(∂β+1t(ℑ2tP),ℑtP)L2ρ(Ω)+(∂β+1t(ℑ2tP),ℑ2xy(ξηℑtP))L2ρ(Ω) −(1x(ℑ2tPx),ℑtP)L2ρ(Ω)−(1x(ℑ2tPx),ℑ2xy(ξηℑtP))L2ρ(Ω) −((ℑ2tPxx),ℑtP)L2ρ(Ω)−((ℑ2tPxx),ℑ2xy(ξηℑtP))L2ρ(Ω) −(1y(ℑ2tPy),ℑtP)L2ρ(Ω)−(1y(ℑ2tPy),ℑ2xy(ξηℑtP))L2ρ(Ω) −((ℑ2tPyy),ℑtP)L2ρ(Ω)−((ℑ2tPyy),ℑ2xy(ξηℑtP))L2ρ(Ω) =0. | (5.3) |
Put in mind that the function P verifies the given boundary and initial conditions (2.2)–(2.4), then all terms in (5.3) can be computed as
(∂β+1t(ℑ2tP),ℑtP)L2ρ(Ω)=(∂βt(ℑtP),ℑtP)L2ρ(Ω), | (5.4) |
(∂β+1t(ℑ2tP),ℑ2xy(ξηℑtP))L2ρ(Ω)=(∂βt(ℑtP),ℑ2xy(ξηℑtP))L2ρ(Ω) =(∂βt(ℑxyξηℑtP))ℑxy(ξηℑtP))L2(Ω), | (5.5) |
−(1x(ℑ2tPx),ℑtP)L2ρ(Ω)=−(yℑ2tPx,ℑtP)L2(Ω), | (5.6) |
−(1y(ℑ2tPy),ℑtP)L2ρ(Ω)=−(xℑ2tPy,ℑtP)L2ρ(Ω), | (5.7) |
−(ℑ2tPxx,ℑtP)L2ρ(Ω)=−∫Ωxy(ℑ2tPxx)(ℑtP)dxdy =(yℑ2tPx,ℑtP)L2(Ω)+12∂∂t‖ℑ2tPx‖L2ρ(Ω), | (5.8) |
−(ℑ2tPyy,ℑtP)L2ρ(Ω)=−∫Ωxy(ℑ2tPyy)(ℑtP)dxdy =(xℑ2tPy,ℑtP)L2(Ω)+12∂∂t‖ℑ2tPy‖L2ρ(Ω), | (5.9) |
−(1x(ℑ2tPx),ℑ2xy(ξηℑtP))L2ρ(Ω)=−(yℑ2tPx,ℑ2xy(ξηℑtP))L2(Ω), | (5.10) |
−(1y(ℑ2tPy),ℑ2xy(ξηℑtP))L2ρ(Ω)=−(xℑ2tPy,ℑ2xy(ξηℑtP))L2(Ω), | (5.11) |
−(ℑ2tPxx,ℑ2xy(ξηℑtP))L2ρ(Ω)=−∫Ωxy(ℑ2tPxx)ℑ2xy(ξηℑtP)dxdy =(yℑ2tPx,ℑ2xy(ξηℑtP))L2(Ω)+(ℑ2tPx,ℑxℑ2y(ξηℑtPx))L2ρ(Ω), | (5.12) |
−(ℑ2tPyy,ℑ2xy(ξηℑtP))L2ρ(Ω)=∫Ωxyℑ2tPyyℑ2xy(ξηℑtP)dxdy +(xℑ2tPy,ℑ2xy(ξηℑtP))L2(Ω)+(ℑ2tPy,ℑyℑ2x(ξηℑtPy))L2ρ(Ω). | (5.13) |
Insertion of equations (5.4)–(5.13) into (5.3), yields
2(∂βt(ℑtP),ℑtP)L2ρ(Ω)+2(∂βt(ℑxyξηℑtP))ℑxy(ξηℑtP))L2(Ω)+∂∂t‖ℑ2tPx‖L2ρ(Ω)+∂∂t‖ℑ2tPy‖L2ρ(Ω)=−2(ℑ2tPx,ℑxℑ2y(ξηℑtPx))L2ρ(Ω)−2(ℑ2tPy,ℑyℑ2x(ξηℑtPy))L2ρ(Ω). | (5.14) |
Applying Lemma 2.3 and Poincare' type inequality to (5.14), we obtain
∂βt‖ℑtP‖2L2ρ(Ω)+∂βt‖ℑxy(ξηℑtP)‖2L2(Ω)+∂∂t‖ℑ2tPx‖L2ρ(Ω)+∂∂t‖ℑ2tPy‖L2ρ(Ω)≤‖ℑ2tPx‖L2ρ(Ω)+‖ℑ2tPy‖L2ρ(Ω)+(ab3+a3b)4‖ℑxy(ξηℑtP)‖2L2(Ω). | (5.15) |
We infer from (5.15) that
Dβ−1t‖ℑtP‖2L2ρ(Ω)+Dβ−1t‖ℑxy(ξηℑtP)‖2L2(Ω) +‖ℑ2tPx‖2L2ρ(Ω)+‖ℑ2tPy‖2L2ρ(Ω) ≤C(t∫0‖ℑxyξηℑτP‖2L2(Ω)dτ+t∫0‖ℑ2τPx‖2L2ρ(Ω)dτ+t∫0‖ℑ2τPy‖2L2ρ(Ω)dτ), | (5.16) |
where
C=max{1,ab3+a3b4}. |
By omitting the first two terms from the left-hand side of (5.16) and applying Lemma 2.1 by letting
S(t)=t∫0‖ℑ2τPx‖2L2ρ(Ω)dτ+t∫0‖ℑ2τPy‖2L2ρ(Ω)dτ, |
dS(t)dt=‖ℑ2tPx‖2L2ρ(Ω)+‖ℑ2tPy‖2L2ρ(Ω) |
S(0)=0, |
then
S(t)=t∫0‖ℑ2τPx‖2L2ρ(Ω)dτ+t∫0‖ℑ2τPy‖2L2ρ(Ω)dτ ≤TeCTt∫0‖ℑxy(ξηP)‖2L2(Ω). | (5.17) |
By inserting (5.17) into (5.16), we obtain
Dβ−1t‖ℑxy(ξηℑtP)‖2L2(Ω)+Dβ−1t‖ℑtP‖2L2ρ(Ω) +‖ℑ2tPx‖2L2ρ(Ω)+‖ℑ2tPy‖2L2ρ(Ω) ≤C(1+TeCT)t∫0‖ℑxyξηℑτP‖2L2(QT)dτ, | (5.18) |
if we drop the last three terms on the left hand side of (5.18) and apply Lemma 2.2 by taking
z(t)=t∫0‖ℑxyξηℑτP‖2L2(QT)dτ, |
∂βtz(t)=Dβ−1t‖ℑxy(ξηℑtP)‖2L2(Ω), |
z(0)=0, |
it follows that
t∫0‖ℑxyξηℑτP‖2L2(QT)dτ≤0. | (5.19) |
Consequently, inequality (5.19) implies that g is zero a.e in QT.
To complete the proof of Theorem 5.1, we suppose that for some element W=(H,F,G)∈R(A)⊥, we have
(Lθ,H)L2(0,T;L2ρ(Ω))+(ℓ1θ,F)H1ρ(Ω)+(ℓ2θ,G)L2ρ(Ω)=0. | (5.20) |
We must prove that W=0. If we put θ∈D(A) satisfying homogeneous conditions into (5.20), we have
(Lθ,H)L2(0,T;L2ρ(Ω))=0. | (5.21) |
Applying Proposition 5.2 to (5.21), it follows from that H=0.
Thus (5.20) takes the form
(ℓ1θ,F)H1ρ(Ω)+(ℓ2θ,G)L2ρ(Ω)=0. | (5.22) |
But since the range of the operators ℓ1,ℓ2 are dense in the spaces H1ρ(Ω), L2ρ(Ω) respectively then relation (5.22) implies G=F=0. Consequently W=0 and Theorem 5.1 follows.
This section is consecrated to the proof of the existence, uniqueness and continuous dependence of the solution on the data of the problem (2.1)–(2.4). Let us consider the following auxiliary problem with homogeneous equation
L(U)=∂β+1tU−1xydiv(xy∇U)=0, | (6.1) |
ℓ1U=U(x,y,0)=F(x,y) , ℓ2U=Ut(x,y,0)=G(x,y) , | (6.2) |
Ux(a,y,t)=0 , Uy(x,b,t)=0 , | (6.3) |
a∫0xU(x,y,t)dx=0 , b∫0yU(x,y,t)dx=0, | (6.4) |
If θ is a solution of problem (2.1)-(2.4) and U is a solution of problem (6.1)-(6.4), then w=θ−U satisfies
∂β+1tw−1xydiv(xy∇w)=˜H(x,y,t,w,wx,wy), | (6.5) |
w(x,y,0)=0 , wt(x,y,0)=0 , | (6.6) |
wx(a,y,t)=0 , wy(x,b,t)=0 , | (6.7) |
a∫0xw(x,y,t)dx=0 , b∫0yw(x,y,t)dx=0, | (6.8) |
where
˜H(x,y,t,w,wx,wy)=H(x,y,t,θ−U,(θ−U)x,(θ−U)y). |
The function ˜H satisfies the Lipshitz condition
˜H(x,y,t,w1,w2,w3)−˜H(x,y,t,v1,v2,v3)⩽λ(|w1−v1|+|w2−v2|+|w3−v3|), | (6.9) |
for all (x,y,t)∈QT=(0,a)×(0,b)×(0,T). According to Theorem (5.1) problem (6.1)–(6.4) has a unique solution depending continuously on F∈H1ρ(Ω) and G∈L2ρ(Ω). It remains to solve problem (6.5)–(6.8). We shall prove that problem (6.5)-(6.8) has a unique weak solution. Suppose that v and w belong to C1(QT) such that v(x,T)=0, w(x,y,0)=0, wt(x,y,0)=0, a∫0xwdx=0 b∫0ywdx=0, a∫0xvdx=0 b∫0yvdx=0. For v∈C1(QT), we have
(Lw,ℑxy(ξηv))L2(0,T;L2ρ(Ω))=(∂βtwt,ℑxy(ξηv))L2(0,T;L2ρ(Ω))−(1xwx,ℑxy(ξηv))L2(0,T;L2ρ(Ω))−(wxx,ℑxy(ξηv))L2(0,T;L2ρ(Ω)) −(1ywy,ℑxy(ξηv))L2(0,T;L2ρ(Ω))−(wyy,ℑxy(ξηv))L2(0,T;L2ρ(Ω)) =(˜H,ℑxy(ξηv))L2(0,T;L2ρ(Ω)). | (6.10) |
By using conditions on w and v, a quick computation of each term on the right and left-hand side of (6.10), gives
(∂βtwt,ℑxy(ξηv))L2(0,T;L2ρ(Ω))=(v,∂βt(ℑxy(ξηwt)))L2(0,T;L2ρ(Ω)), | (6.11) |
−(1xwx,ℑxy(ξηv))L2(0,T;L2ρ(Ω))=(w,ℑy(ηv))L2(0,T;L2ρ(Ω)), | (6.12) |
−(wxx,ℑxy(ξηv))L2(0,T;L2ρ(Ω))=−(w,ℑy(ηv))L2(0,T;L2ρ(Ω)) +(xwx,ℑy(ηv))L2(0,T;L2ρ(Ω)), | (6.13) |
−(wyy,ℑ2xy(ξηv))L2(0,T;L2ρ(Ω))=(ywy,ℑx(ξv))L2(0,T;L2ρ(Ω)) −(w,ℑx(ξv))L2(0,T;L2ρ(Ω)), | (6.14) |
−(1ywy,ℑxy(ξηv))L2(0,T;L2ρ(Ω))=(w,ℑx(ξv))L2(0,T;L2ρ(Ω)), | (6.15) |
(˜H,ℑxy(ξηv))L2(0,T;L2ρ(Ω))=(ℑxy(ξη˜H),v)L2(0,T;L2ρ(Ω)), | (6.16) |
Insertion of (5.11)-(5.16)into (5.10) yields
M(w,v)=(ℑxy(ξη˜H),v)L2(0,T;L2ρ(Ω)), | (6.17) |
where
M(w,v)=(v,∂βt(ℑxy(ξηwt)))L2(0,T;L2ρ(Ω))+(xwx,ℑy(ηv))L2(0,T;L2ρ(Ω))+(ywy,ℑx(ξv))L2(0,T;L2ρ(Ω)). | (6.18) |
Definition 6.1. A function w∈L2(0,T;H1ρ(Ω)) is called weak solution of problem (6.5)-(6.8) if (6.7) and (6.17) hold.
Our main purpose is to construct an iteration sequence (wn)n∈N which converges to a certain function w∈ L2(0,T;H1ρ(Ω)) which solves problem (6.5)–(6.8). Starting with w(0)=0, the sequence (wn)n∈N is defined as follows: given the element w(n−1), then for n=1,2,… we solve the iterated problems:
∂βtw(n)t−1xw(n)x−w(n)xx−1yw(n)y−w(n)yy=˜H(x,y,t,w(n),w(n)x,w(n)y), | (6.19) |
w(n)(x,y,0)=0 , w(n)t(x,y,0)=0 , | (6.20) |
w(n)x(a,y,t)=0 , w(n)y(x,b,t)=0 , | (6.21) |
a∫0xw(n)(x,y,t)dx=0 , b∫0yw(n)(x,y,t)dx=0, | (6.22) |
Theorem (5.1) asserts that for fixed n, each problem (6.19)-(6.22) has unique solution w(n)(x,y,t). If we set Z(n)(x,y,t)=w(n+1)(x,y,t)−w(n)(x,y,t), then we have the new problem
∂βtZ(n)t−1xZ(n)x−Z(n)xx−1yZ(n)y−Z(n)yy=σ(n−1)(x,y,t), | (6.23) |
Z(n)(x,y,0)=0 , Z(n)t(x,y,0)=0 , | (6.24) |
Z(n)x(a,y,t)=0 , Z(n)y(x,b,t)=0 , | (6.25) |
a∫0xZ(n)(x,y,t)dx=0 , b∫0yZ(n)(x,y,t)dx=0, | (6.26) |
where
σ(n−1)(x,y,t)=˜H(x,y,t,w(n),w(n)x,w(n)y)−˜H(x,y,t,w(n−1),w(n−1)x,w(n−1)y). |
Theorem 6.2. Assume that condition (6.9) holds, then for the linearized problem (6.23)–(6.26), we have the a priori estimate
‖Z(n)‖L2(0,T;H1ρ(Ω))≤K‖Z(n−1)‖L2(0,T;H1ρ(Ω)), | (6.27) |
where K is positive constant given by
K=TC4(a2+b28+1). |
Proof.Taking the inner product in L2(0,τ;L2ρ(Ω)), with 0≤τ≤T of equation (6.23) and integro-differential operator
MZ=Z(n)t−ℑ2xy(ξηZ(n)t) |
we have
(∂βtZ(n)t,Z(n)t)L2(0,τ;L2ρ(Ω))−(1xZ(n)x,Z(n)t)L2(0,τ;L2ρ(Ω)) −(Z(n)xx,Z(n)t)L2(0,τ;L2ρ(Ω))−(1yZ(n)y,Z(n)t)L2(0,τ;L2ρ(Ω)) −(Z(n)yy,Z(n)t)L2(0,τ;L2ρ(Ω))−(∂βtZ(n)t,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)) +(1xZ(n)x,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))+(Z(n)xx,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)) +(1yZ(n)y,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))+(Z(n)yy,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)) =(σ(n−1),Z(n)t)L2(0,τ;L2ρ(Ω))−(σ(n−1),ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)). | (6.28) |
In the light of conditions (6.25) and (6.26), Cauchy ϵ inequality, Lemma 2.2, Lemma 2.3 and successive integrations by parts of each term of (6.28) leads to
(∂βtZ(n)t,Z(n)t)L2(0,τ;L2ρ(Ω))≥12τ∫0∂βt‖Z(n)t‖2L2ρ(Ω)dt, =12Dβ−1τ‖Z(n)t(x,y,t)‖2L2ρ(Ω), | (6.29) |
−(1xZ(n)x,Z(n)t)L2(0,τ;L2ρ(Ω))=−(yZ(n)x,Z(n)t)L2(0,τ;L2(Ω)), | (6.30) |
−(1yZ(n)y,Z(n)t)L2(0,τ;L2ρ(Ω))=−(xZ(n)y,Z(n)t)L2(0,τ;L2(Ω)), | (6.31) |
−(Z(n)xx,Z(n)t)L2(0,τ;L2ρ(Ω))=(yZ(n)x,Z(n)t)L2(0,τ;L2(Ω)) +12‖Z(n)x(x,y,τ)‖2L2ρ(Ω), | (6.32) |
−(Z(n)yy,Z(n)t)L2(0,τ;L2ρ(Ω))=(xZ(n)y,Z(n)t)L2(0,τ;L2(Ω)) +12‖Z(n)y(x,y,τ)‖2L2ρ(Ω), | (6.33) |
−(∂βtZ(n)t,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)) ≥12τ∫0∂βt‖ℑxy(ξηZ(n)t)‖2L2ρ(Ω)dt=12Dβ−1τ‖ℑxyξηZ(n)t(x,y,t)‖2L2ρ(Ω), | (6.34) |
(1xZ(n)x,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))=(yZ(n)x,ℑ2xy(ξηZ(n)t))L2(0,τ;L2(Ω)), | (6.35) |
(1yZ(n)y,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))=(xZ(n)y,ℑ2xy(ξηZ(n)t))L2(0,τ;L2(Ω)), | (6.36) |
(Z(n)xx,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))=−(yZ(n)x,ℑ2xy(ξηZ(n)t))L2(0,τ;L2(Ω))−(Z(n)x,ℑxℑ2y(ξηZ(n)t))L2(0,τ;L2ρ(Ω)), | (6.37) |
(Z(n)yy,ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))=−(xZ(n)y,ℑ2xy(ξηZ(n)t))L2(0,τ;L2(Ω))−(Z(n)y,ℑyℑ2x(ξηZ(n)t))L2(0,τ;L2ρ(Ω)), | (6.38) |
Combination of (6.28)–(6.38) yields
Dβ−1τ‖Z(n)t(x,y,t)‖2L2ρ(Ω)+Dβ−1τ‖ℑxy(ξηZ(n)t)(x,y,t)‖2L2ρ(Ω)+‖Z(n)x(x,y,τ)‖2L2ρ(Ω)+‖Z(n)y(x,y,τ)‖2L2ρ(Ω)=2(Z(n)x,ℑxℑ2y(ξηZ(n)t))L2(0,τ;L2ρ(Ω))+2(Z(n)y,ℑyℑ2x(ξηZ(n)t))L2(0,τ;L2ρ(Ω))+2(σ(n−1),Z(n)t)L2(0,τ;L2ρ(Ω))+2(σ(n−1),ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω)). | (6.39) |
Estimation of the right-hand side of (6.39) gives
2(σ(n−1),Z(n)t)L2(0,τ;L2ρ(Ω))≤‖Z(n)t‖2L2(0,τ;L2ρ(Ω))+‖σ(n−1)‖2L2(0,τ;L2ρ(Ω))≤‖Z(n)t‖2L2(0,τ;L2ρ(Ω))+32λ2(‖Z(n−1)‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)x‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)y‖2L2(0,τ;L2ρ(Ω))), | (6.40) |
2(σ(n−1),ℑ2xy(ξηZ(n)t))L2(0,τ;L2ρ(Ω))≤a2b24‖ℑxy(ξηZ(n)t)‖2L2(0,τ;L2ρ(Ω))+32λ2(‖Z(n−1)‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)x‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)y‖2L2(0,τ;L2ρ(Ω))), | (6.41) |
2(Z(n)x,ℑxℑ2y(ξηZ(n)t))L2(0,τ;L2ρ(Ω))≤‖Z(n)x‖2L2(0,τ;L2ρ(Ω))+b2‖ℑxy(ξηZ(n)t)‖2L2(0,τ;L2ρ(Ω)), | (6.42) |
2(Z(n)y,ℑyℑ2x(ξηZ(n)t))L2(0,τ;L2ρ(Ω))≤‖Z(n)y‖2L2(0,τ;L2ρ(Ω))+a2‖ℑxy(ξηZ(n)t)‖2L2(0,τ;L2ρ(Ω)). | (6.43) |
Upon substitution of (6.40)–(6.43) into (6.39), we obtain
Dβ−1τ‖Z(n)t(x,y,t)‖2L2ρ(Ω)+Dβ−1τ‖ℑxy(ξηZ(n)t)(x,y,t)‖2L2ρ(Ω) +‖Z(n)x(x,y,τ)‖2L2ρ(Ω)+‖Z(n)y(x,y,τ)‖2L2ρ(Ω) ≤C1(‖Z(n)t‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)‖2L2(0,τ;L2ρ(Ω)) +‖Z(n−1)x‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)y‖2L2(0,τ;L2ρ(Ω)) +‖Z(n)x‖2L2(0,τ;L2ρ(Ω))+‖Z(n)y‖2L2(0,τ;L2ρ(Ω)) +‖ℑxy(ξηZ(n)t)‖2L2(0,τ;L2ρ(Ω))), | (6.44) |
where
C1=max{1,32λ2,a2b24,a2,b2}. |
Now by discarding the first two terms from left hand side of (6.44) and using Lemma 2.1 with
P(τ)=‖Z(n)x‖2L2(0,τ;L2ρ(Ω))+‖Z(n)y‖2L2(0,τ;L2ρ(Ω)),P(0)=0, |
we obtain
‖Z(n)x‖2L2(0,τ;L2ρ(Ω))+‖Z(n)y‖2L2(0,τ;L2ρ(Ω)) ≤C2(‖Z(n−1)‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)x‖2L2(0,τ;L2ρ(Ω)) +‖Z(n−1)y‖2L2(0,τ;L2ρ(Ω))+‖Z(n)t‖2L2(0,τ;L2ρ(Ω))+‖ℑxy(ξηZ(n)t)‖2L2(0,τ;L2ρ(Ω))), | (6.45) |
where C2=C1TeC1T. Hence, inequality (6.44) becomes
Dβ−1τ‖Z(n)t(x,y,t)‖2L2ρ(Ω)+Dβ−1τ‖ℑxy(ξηZ(n)t)(x,y,t)‖2L2(Ω)+‖Z(n)x(x,y,τ)‖2L2ρ(Ω)+‖Z(n)y(x,y,τ)‖2L2ρ(Ω)≤C3(‖Z(n−1)‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)x‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)y‖2L2(0,τ;L2ρ(Ω))+‖Z(n)t‖2L2(0,τ;L2ρ(Ω))+‖ℑxy(ξηZ(n)t)‖2L2(0,τ;L2ρ(Ω))), | (6.46) |
where C3=C1(1+C2).
We now need to eliminate the last two terms on the right-hand side of (6.46) by using Lemma 2.2 and setting
K(τ)=‖Z(n)t‖2L2(0,τ;L2ρ(Ω))+‖ℑxy(ξηZ(n)t)‖2L2(0,τ;L2ρ(Ω)),∂βτK(t)=Dβ−1τ‖Z(n)t(x,y,t)‖2L2ρ(Ω)+Dβ−1τ‖ℑxy(ξηZ(n)t)(x,y,t)‖2L2(Ω)K(0)=0, |
then we have
‖Z(n)t‖2L2(0,τ;L2ρ(Ω))+‖ℑxy(ξηZ(n)t)‖2L2(0,τ;L2ρ(Ω))≤K(0)Eβ(C3τβ)+Γ(β)Eβ,β(C3τβ)D−β−1τ(‖Z(n−1)‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)x‖2L2(0,τ;L2ρ(Ω))+‖Z(n−1)y‖2L2(0,τ;L2ρ(Ω))). | (6.47) |
Inequality (6.47) implies
‖Z(n)t‖2L2(0,τ;L2ρ(Ω))+‖ℑxy(ξηZ(n)t)‖2L2(0,τ;L2ρ(Ω))≤Γ(β)Eβ,β(C3τβ)(D−β−1τ‖Z(n−1)‖2L2ρ(Ω)+D−β−1τ‖Z(n−1)x‖2L2(0,τ;L2ρ(Ω))+D−β−1τ‖Z(n−1)y‖2L2(0,τ;L2ρ(Ω))). | (6.48) |
It is obvious that
D−β−1τ‖Z(n−1)‖2L2ρ(Ω)≤TβΓ(β+1)τ∫0‖Z(n−1)‖2L2ρ(Ω)dτ, | (6.49) |
If we discard the first two terms on the left-hand side of (6.46) and combine with (6.48) and (6.49), we obtain
‖∇Z(n)(x,y,τ)‖2L2ρ(Ω)≤C4‖Z(n−1)‖2L2(0,T;H1ρ(Ω)), | (6.50) |
where
C4=C3(1+Γ(β)Eβ,β(C3Tβ)TβΓ(β+1)). | (6.51) |
Lemma 6.3For θ∈H1ρ(Ω) satisfying a∫0xθdx=0 b∫0yθdy=0, we have
‖θ‖2L2ρ(Ω)≤a2+b28‖∇θ‖2L2ρ(Ω). | (6.52) |
Now by using the above lemma and equivalence of norms
‖∇θ‖L2ρ(Ω)∼‖θ‖H1ρ(Ω), | (6.53) |
which comes from
‖∇θ‖2L2ρ(Ω)≤‖θ‖2H1ρ(Ω)≤(a2+b28+1)‖∇θ‖2L2ρ(Ω), |
we infer from (6.50) and (6.53) that
‖Z(n)‖2L2(0,T;H1ρ(Ω))≤K‖Z(n−1)‖2L2(0,T;H1ρ(Ω)), | (6.54) |
where
K=TC4(a2+b28+1). | (6.55) |
From the criteria of convergence of series, we see from (6.54) that the series ∑∞n=0Z(n) convergence if K<1. Since Z(n)(x,y,t)=w(n+1)(x,y,t)−w(n)(x,y,t), then it follows that the sequence (w(n))n∈N defined by
w(n)(x,y,t)=n−1∑k=0(w(n+1)(x,y,t)−w(k)(x,y,t))+w(0)(x,y,t), =n−1∑k=0Z(k)+w(0)(x,y,t), n=1,2,3,...... | (6.56) |
converges to w∈L2(0,T;H1ρ(Ω)). Now to prove that this limit function w is a solution of problem under consideration (6.5)–(6.8), we should show that w satisfies (6.7) and (6.17) as mentioned in Definition 6.1. For problem (6.19)–(6.22), we have
M(w(n),v)=(v,ℑxy(ξη˜H(x,y,t,w(n−1),∂w(n−1)∂ξ,∂w(n−1)∂η))L2(0,T;L2ρ(Ω)). | (6.57) |
From (6.57), we have
M(w(n)−w,v)+M(w,v) =(v,ℑxyξη˜H(ξ,η,t,w(n−1),∂w(n−1)∂ξ,∂w(n−1)∂η) −ℑxyξη˜H(ξ,η,t,w,∂w∂ξ,∂w∂η))L2(0,T;L2ρ(Ω)) +(v,ℑxyξη˜H(ξ,η,t,w,∂w∂ξ,∂w∂η)L2(0,T;L2ρ(Ω)), | (6.58) |
From the partial differential equation (6.19), we have
(v,∂β+1tℑxyξη(w(n)−w))L2(0,T;L2ρ(Ω)) −(v,ℑxyη(w(n)ξ−wξ))L2(0,T;L2ρ(Ω)) −(v,ℑxyξ(w(n)η−wη))L2(0,T;L2ρ(Ω)) −(v,ℑxyξη(w(n)ξξ−wξξ))L2(0,T;L2ρ(Ω)) −(v,ℑxyξη(w(n)ηη−wηη))L2(0,T;L2ρ(Ω)) =M(w(n)−w,v). | (6.59) |
Inner products in (6.59) can be evaluated by using conditions on functions v and w, and this leads to
(ℑxy(ξη∂β+1Tv),(w(n)−w))L2(0,T;L2ρ(Ω)) +(ℑyηv,ℑx(w(n)ξ−wξ)L2(0,T;L2ρ(Ω)) +(ℑxξv,ℑy(w(n)η−wη)L2(0,T;L2ρ(Ω)) +(ℑyηv,x(w(n)x−wx))L2(0,T;L2ρ(Ω)) −(ℑyηv,(w(n)−w))L2(0,T;L2ρ(Ω)) +(ℑxξv,y(w(n)y−wy))L2(0,T;L2ρ(Ω)) −(ℑxξv,(w(n)−w))L2(0,T;L2ρ(Ω)) =M(w(n)−w,v), | (6.60) |
We now estimate terms on the left-hand side of (6.60) to see that
(ℑxy(ξη∂β+1Tv),(w(n)−w))L2(0,T;L2ρ(Ω)) ≤‖w(n)−w‖L2(0,T;L2ρ(Ω))×‖ℑxy(ξη∂β+1Tv)‖L2(0,T;L2ρ(Ω)) ≤a2b24‖w(n)−w‖L2(0,T;L2ρ(Ω))×‖∂β+1Tv‖L2(0,T;L2ρ(Ω)), | (6.61) |
(ℑyηv,ℑx(w(n)ξ−wξ))L2(0,T;L2ρ(Ω))≤‖ℑx(w(n)ξ−wξ)‖L2(0,T;L2ρ(Ω))×‖ℑyηv)‖L2(0,T;L2ρ(Ω)) ≤a2b24‖v‖L2(0,T;L2ρ(Ω))×‖w(n)−w‖L2(0,T;H1ρ(Ω)), | (6.62) |
(ℑxξv,ℑy(w(n)η−wη)L2(0,T;L2ρ(Ω))≤‖ℑy(w(n)η−wη)‖L2(0,T;L2ρ(Ω))×‖ℑxξv)‖L2(0,T;L2ρ(Ω)) ≤a2b24‖v‖L2(0,T;L2ρ(Ω))×‖w(n)−w‖L2(0,T;H1ρ(Ω)), | (6.63) |
(ℑy(ηv),x(w(n)x−wx))L2(0,T;L2ρ(Ω)) ≤a‖ℑy(ηv)‖L2(0,T;L2ρ(Ω))×‖w(n)x−wx‖L2(0,T;L2ρ(Ω)) ≤ab22‖v‖L2(0,T;L2ρ(Ω))×‖w(n)−w‖L2(0,T;H1ρ(Ω)), | (6.64) |
−(ℑyηv,(w(n)−w))L2(0,T;L2ρ(Ω)) ≤‖ℑy(ηv)‖L2(0,T;L2ρ(Ω))×‖w(n)−w‖L2(0,T;L2ρ(Ω))≤b22‖v‖L2(0,T;L2ρ(Ω))×‖w(n)−w‖L2(0,T;H1ρ(Ω)), | (6.65) |
(ℑxξv,y(w(n)y−wy))L2(0,T;L2ρ(Ω))≤b‖ℑx(ξv)‖L2(0,T;L2ρ(Ω))×‖w(n)y−wy‖L2(0,T;L2ρ(Ω))≤a2b2‖v‖L2(0,T;L2ρ(Ω))×‖w(n)−w‖L2(0,T;H1ρ(Ω)), | (6.66) |
\begin{eqnarray} &&-\left( \Im _{x}\xi v, (w^{(n)}-w)\right) _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))} \\ &\leq &\Vert \Im _{x}(\xi v)\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\times \Vert w^{(n)}-w\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))} \\ &\leq &\frac{a^{2}}{2}\Vert v\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\times \Vert w^{(n)}-w\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))}. \end{eqnarray} | (6.67) |
If we combine equality (6.60) and inequalities (6.61)–(6.67), we obtain
\begin{eqnarray} &&M(w^{(n)}-w, v) \\ &\leq &C_{5}\Vert v\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\Big(\Vert w^{(n)}-w\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))} \\ \ &&+\left\Vert \partial _{T}^{\beta +1}v\right\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\Vert w^{(n)}-w\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))} \Big) \end{eqnarray} | (6.68) |
where
\begin{equation*} C_{5} = \max \Big\{\frac{a^{2}b^{2}}{4}, \frac{a^{2}b}{2}, \frac{ab^{2}}{2}, \frac{a^{2}}{2}, \frac{b^{2}}{2}\Big\} \end{equation*} |
On the other side we have
\begin{eqnarray} &&\left( v, \Im _{xy}\xi \eta \tilde{H}(\xi , \eta , t, w^{(n-1)}, \frac{\partial w^{(n-1)}}{\partial \xi }, \frac{\partial w^{(n-1)}}{\partial \eta })\right. \\ &&\left. -\Im _{xy}\xi \eta \tilde{H}(\xi , \eta , t, w, \frac{\partial w}{ \partial \xi }, \frac{\partial w}{\partial \eta }))\right) _{L^{2}(0, T;L^{2}(\Omega ))} \\ &\leq &\frac{(ab)^{\frac{3}{2}}\lambda }{8}\Vert v\Vert _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}\times \Vert w^{(n-1)}-w\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))}. \end{eqnarray} | (6.69) |
Taking into account (6.68) and (6.69) and passing to the limit in (6.58) as n\rightarrow \infty to obtain
\begin{equation} M(w, v) = \left( v, \Im _{xy}\xi \eta \tilde{H}(\xi , \eta , t, w, \frac{\partial w}{ \partial \xi }, \frac{\partial w}{\partial \eta })\right) _{L^{2}(0, T;L_{\rho }^{2}(\Omega ))}. \end{equation} | (6.70) |
Hence (6.17) holds. Now to conclude that problem (6.5)-(6.8) has weak solution, we show that (6.7) holds. Since w\in L^{2}(0, T; H_{\rho }^{1}(\Omega)) , then \int\limits_{0}^{t}\frac{\partial w }{\partial x}(x, y, s)ds\, \ \ \int\limits_{0}^{t}\frac{\partial w}{\partial y} (x, y, s)ds\in C(Q^{T}) and we conclude that \frac{\partial w}{\partial x} (a, y, t) = 0, \frac{\partial w}{\partial y}(x, b, t) = 0\, \ a.e
Thus we have proved the following
Theorem 6.4. Suppose that condition (6.9) holds and that K < 1 , then problem (6.5)–(6.8) has a weak solution belonging to {L^{2}(0, T; H_{\rho }^{1}(\Omega))} .
It remains to prove that problem (6.5)-(6.8) admits a unique solution.
Theorem 6.5 Assume that condition (6.9) holds, then problem (6.5)-(6.8) admits a unique solution.
Proof. Suppose that w_{1}, w_{2}\in {L^{2}(0, T; H_{\rho }^{1}(\Omega))} are two solutions of (6.5)-(6.8), then V = w_{1}-w_{2}\in {L^{2}(0, T; H_{\rho }^{1}(\Omega))} and satisfies
\begin{equation} \partial _{t}^{\beta }V_{t}-\frac{1}{x}V_{x}-V_{xx}-\frac{1}{y} V_{y}-V_{yy} = \sigma (x, y, t), \end{equation} | (6.71) |
\begin{equation} V(x, y, 0) = 0\ , \ V_{t}(x, y, 0) = 0\ , \end{equation} | (6.72) |
\begin{equation} V_{x}(a, y, t) = 0\ , \ V_{y}(x, b, t) = 0\ , \end{equation} | (6.73) |
\begin{equation} \int\limits_{0}^{a}xV(x, y, t)dx = 0\ , \ \int\limits_{0}^{b}yV(x, y, t)dx = 0, \end{equation} | (6.74) |
where
\begin{equation} \sigma (x, y, t) = \tilde{H}\left( x, y, t, w_{1}, \frac{\partial w_{1}}{\partial x}, \frac{\partial w_{1}}{\partial y}\right) -\tilde{H}\left( x, y, t, w_{2}, \frac{ \partial w_{2}}{\partial x}, \frac{\partial w_{2}}{\partial y}\right) . \end{equation} | (6.75) |
Taking the inner product in {L^{2}(0, T; L_{\rho }^{2}(\Omega))} of (6.71) and the integro-differential operator
\begin{equation} MV = V_{t}-\Im _{xy}^{2}\xi \eta V_{t} \end{equation} | (6.76) |
and following the same procedure done in establishing the proof of Theorem 6.2, we have
\begin{equation} \Vert V\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))}\leq K\Vert V\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))}, \end{equation} | (6.77) |
where
\begin{equation} K = TC_{4}\left( \frac{a^{2}+b^{2}}{8}+1\right) . \end{equation} | (6.78) |
Since K < 1 , it follows from (6.77) that
\begin{equation} (1-K)\Vert V\Vert _{L^{2}(0, T;H_{\rho }^{1}(\Omega ))} = 0. \end{equation} | (6.79) |
Consequently (6.79) implies that V = w_{1}-w_{2} = 0 and hence w_{1} = w_{2}\in {L^{2}(0, T; H_{\rho }^{1}(\Omega))} .
Here we studied a non local mixed problem for a two dimensional singular nonlinear fractional order equation in the Caputo sense. We prove the existence, uniqueness and continuous dependence of a strong solution of the posed problem. We first establish for the associated linear problem a priori estimate and prove that the range of the operator generated by the considered problem is dense. The technique of deriving the a priori estimate is based on constructing a suitable multiplier. From the resulted energy estimate, it is possible to establish the solvability of the linear problem. Then, by applying an iterative process based on the obtained results for the linear problem, we establish the existence, uniqueness and continuous dependence of the weak solution of the nonlinear problem. The main contribution is that we applied and developed the a priori estimate method for a two dimensional singular nonlinear fractional order partial differential equation with Bessel operator that have never been treated in the literature of integer and fractional differential equations.
The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this Research group No. (RG-117).
The authors declare no conflict of interest.
[1] | J. R. Cannon, J. Van der Hoek, The existence and the continuous dependence for the solution of the heat equation subject to the specification of energy, Boll. Uni. Math. Ital. Suppl., 1 (1981), 253–282. |
[2] |
J. R. Cannon, The solution of heat equation subject to the specification of energy, Quart. Appl. Math., 21 (1963), 155–160. doi: 10.1090/qam/160437
![]() |
[3] |
J. R. Canon, S. P. Esteva, J. Van der Hoek, A Galerkin procedure for the diffusion equation subject to the specification of mass, SIAM Numer. Anal., 24 (1987), 499–515. doi: 10.1137/0724036
![]() |
[4] | V. I. Korzyuk, V. Dainyak, A weak solution of a Dirichlet type problem for a third order nonclassical linear differential equation, Differentsial'nye Uravneniya, 28 (1992), 1056–1066. |
[5] |
S. Mesloub, A. Bouziani, Mixed problem with integral conditions for a certain class of hyperbolic equations, J. Appl. Math., 1 (2001), 107–116. doi: 10.1155/S1110757X01000365
![]() |
[6] | S. Mesloub, N. Lekrine, On a nonlocal hyperbolic mixed problem, Acta Sci. Math., 70 (2004), 65–75. |
[7] |
S. Mesloub, A nonlinear nonlocal mixed problem for a second order parabolic equation, J. Math. Anal. Appl., 316 (2006), 189–209. doi: 10.1016/j.jmaa.2005.04.072
![]() |
[8] |
S. Mesloub, On a singular two dimensional nonlinear evolution equation with non local conditions, Nonlinear Anal., 68 (2008), 2594–2607. doi: 10.1016/j.na.2007.02.006
![]() |
[9] | L. S. Pulkina, A nonlocal problem with integral conditions for hyperbolic equations, Electron. J. Diff. Eqns., 45 (1999), 1–6. |
[10] | L. S. Pulkina, On solvability in L2 of nonlocal problem with integral conditions for a hyperbolic equation, Differents. Uravn., 2 (2000). |
[11] |
P. Shi, Weak solution to an evolution problem with a nonlocal constraint, Siam. J. Math. Anal., 24 (1993), 46–58. doi: 10.1137/0524004
![]() |
[12] |
S. Mesloub, F. Aldosari, Even higher order fractional initial boundary value problem with nonlocal constraints of purely integral type, Symmetry, 11 (2019), 305. doi: 10.3390/sym11030305
![]() |
[13] |
S. Mesloub, Existence and uniqueness results for a fractional two-times evolution problem with constraints of purely integral type, Math. Methods Appl. Sci., 39 (2016), 1558–1567. doi: 10.1002/mma.3589
![]() |
[14] | A. A. A. Alikhanov, Priori estimates for solutions of boundary value problems for fractional order equations, Partial Differential Equations, 46 (2010), 660–666. |
[15] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. |
[16] |
F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wavephenomena, Chaos Solitons Fractals, 7 (1996), 1461–1477. doi: 10.1016/0960-0779(95)00125-5
![]() |
[17] | I. Podlubny, Fractional DifferentialEquations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol.198. Elsevier, Amsterdam, 1998. |
[18] |
A. Giusti, F. Mainardi, A dynamic viscoelastic analogy for fluid filled elastic tubes, Meccanica, 51 (2016), 2321–2330. doi: 10.1007/s11012-016-0376-4
![]() |
[19] |
S. Ladaci, J. J. Loiseau, A. Charef, Fractional order adaptive high-gain controllers for a class of linear systems, Commun. Nonlinear Sci., 13 (2008), 707–714. doi: 10.1016/j.cnsns.2006.06.009
![]() |
[20] | B. Ahmad, J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Boundary Value Probl., 2009 (2009), 11. |
[21] |
V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reactiondiffusion systems, J. Comput. Appl. Math., 220 (2008), 215–225. doi: 10.1016/j.cam.2007.08.011
![]() |
[22] | J. Allison, N. Kosmatov, Multi-point boundary value problems of fractional order, Commun. Appl. Anal., 12 (2008), 451–458. |
[23] |
R. W. Ibrahim, M. Darus, Subordination and superordination for univalent solutions for fractional differential equations, J. Math. Anal. Appl., 345 (2008), 871–879. doi: 10.1016/j.jmaa.2008.05.017
![]() |
[24] | K. V. Chukbar, The stochastic transfer and fractional derivatives, Zh. Eksp. Teor. Fiz., 108 (1995), 1875–1884. |
[25] | V. M. Goloviznin, V. P. Kisilev, I. A. Korotkin, Yu. I. Yurkov, Direct problems of nonclassical radionuclide transfer in geological formations, Izv. Ross. Akad. Nauk, Energ., 4 (2004), 121–130. |
[26] | S. Mesloub, On a mixed nonlinear one point boundary value problem for an integrodifferential equation, Boundary Value Probl., 2008 (2008), 8, Article ID 814947. |
[27] | L. Magin Richard, Fractional calculus in bioengineering, Begell House Redding, 2006. |
[28] |
A. Boucherif, Second-order boundary value problems with integral boundary conditions, Nonlinear Anal-Theor., 70 (2009), 364–371. doi: 10.1016/j.na.2007.12.007
![]() |
[29] | Y. K. Chang, J. J. Nieto, W. S. Li, Controllability of semilinear differential systems with nonlocal initial conditions in Banach spaces, to appear in Journal of Optimization Theory and Applications, 142 (2009), 267–273. |
[30] | A. Bachir, J. J. Nieto, Existence Results for Nonlinear Boundary Value Problems of Fractional Integrodifferential Equations with Integral Boundary Conditions, Boundary Value Problems volume 2009, Article number: 708576 (2009). |
[31] |
A. Bachir, A. Alsaedi, B. S. Alghamdi, Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal.: Real World Appl., 9 (2008), 1727–1740. doi: 10.1016/j.nonrwa.2007.05.005
![]() |
[32] |
L. Kasmi, A. Guerfi, S. Mesloub, Existence of solution for 2-D time-fractional differential equations with a boundary integral condition, Adv. Differ. Equ., 2019 (2019), 511. doi: 10.1186/s13662-019-2444-2
![]() |
[33] | A. Akilandeeswari, K. Balachandran, N. Annapoorani, Solvability of hyperbolic fractional partial differential equations, J. Appl. Anal. Comput., 7 (2017), 1570–1585. |
[34] |
S. Mesloub, I. Bachar, On a nonlocal 1-d initial value problem for a singular fractional-order parabolic equation with Bessel operator, Adv. Differ. Equ., 2019 (2019), 254. doi: 10.1186/s13662-019-2196-z
![]() |
[35] |
X. Liu, L. Liu, Y. Wu, Existence of positive solutions for a singular nonlinear fractional differential equation with integral boundary conditions involving fractional derivatives, Boundary Value Probl., 2018 (2018), 24. doi: 10.1186/s13661-018-0943-9
![]() |
[36] |
H. Li, L. Liu, Y. Wu, Positive solutions for singular nonlinear fractional differential equation with integral boundary conditions, Boundary Value Probl., 2015 (2015), 232. doi: 10.1186/s13661-015-0493-3
![]() |
[37] |
A. Bashir, M. M. Matar, R. P. Agarwal, Existence results for fractional differential equations of arbitrary order with nonlocal integral boundary conditions, Boundary Value Probl., 2015 (2015), 220. doi: 10.1186/s13661-015-0484-4
![]() |
[38] | O. L. Ladyzhenskaya, The boundary value problems of mathematical physics, Springer-Verlag, New York, 1985. |
1. | Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez, Generalized conformable operators: Application to the design of nonlinear observers, 2021, 6, 2473-6988, 12952, 10.3934/math.2021749 | |
2. | Said Mesloub, Eman Alhazzani, Hassan Eltayeb Gadain, On One Point Singular Nonlinear Initial Boundary Value Problem for a Fractional Integro-Differential Equation via Fixed Point Theory, 2024, 8, 2504-3110, 526, 10.3390/fractalfract8090526 | |
3. | Said Mesloub, Eman Alhazzani, Hassan Eltayeb Gadain, A Two-Dimensional Nonlocal Fractional Parabolic Initial Boundary Value Problem, 2024, 13, 2075-1680, 646, 10.3390/axioms13090646 | |
4. | Said Mesloub, Eman Alhazzani, Gadain Eltayeb, A Non-Local Non-Homogeneous Fractional Timoshenko System with Frictional and Viscoelastic Damping Terms, 2023, 12, 2075-1680, 689, 10.3390/axioms12070689 | |
5. | Eman Alhazzani, Said Mesloub, Hassan Eltayeb Gadain, On the Solvability of a Singular Time Fractional Parabolic Equation with Non Classical Boundary Conditions, 2024, 8, 2504-3110, 189, 10.3390/fractalfract8040189 | |
6. | Said Mesloub, Reem K. Alhefthi, On a Singular Non local Fractional System Describing a Generalized Timoshenko System with Two Frictional Damping Terms, 2023, 7, 2504-3110, 514, 10.3390/fractalfract7070514 |