Research article

Inference of fuzzy reliability model for inverse Rayleigh distribution

  • Received: 29 March 2021 Accepted: 22 June 2021 Published: 29 June 2021
  • In this paper, the question of inference of the reliability parameter of fuzzy stress strength ${R_F} = P(Y < X)$ is attached to the difference between stress and strength values when X and Y are independently distributed from inverse Rayleigh random variables. Including fuzziness in the stress-strength interference enables researchers to make more sensitive and precise analyses about the underlying systems. The maximum product of the spacing method for the reliability of fuzzy stress intensity inference has been introduced. As classical estimation methods and Bayesian estimation methods are used to estimate the reliability parameter $R_F$, the maximum product of spacing and maximum likelihood estimation methods is used. The maximum product of spacing under fuzzy reliability of stress strength model is introducing in this paper. Markov Chain Monte Carlo approach is used to obtain Bayesian estimators of traditional and fuzzy reliability of stress strength for inverse Rayleigh model by using the Metropolis-Hastings algorithm. Using an extensive Monte Carlo simulation analysis, the outputs of the fuzzy reliability and traditional reliability estimators are contrasted. Finally, for example, and to verify the efficiency of the proposed estimators, a genuine data application is used.

    Citation: Mohamed A. H. Sabry, Ehab M. Almetwally, Osama Abdulaziz Alamri, M. Yusuf, Hisham M. Almongy, Ahmed Sedky Eldeeb. Inference of fuzzy reliability model for inverse Rayleigh distribution[J]. AIMS Mathematics, 2021, 6(9): 9770-9785. doi: 10.3934/math.2021568

    Related Papers:

  • In this paper, the question of inference of the reliability parameter of fuzzy stress strength ${R_F} = P(Y < X)$ is attached to the difference between stress and strength values when X and Y are independently distributed from inverse Rayleigh random variables. Including fuzziness in the stress-strength interference enables researchers to make more sensitive and precise analyses about the underlying systems. The maximum product of the spacing method for the reliability of fuzzy stress intensity inference has been introduced. As classical estimation methods and Bayesian estimation methods are used to estimate the reliability parameter $R_F$, the maximum product of spacing and maximum likelihood estimation methods is used. The maximum product of spacing under fuzzy reliability of stress strength model is introducing in this paper. Markov Chain Monte Carlo approach is used to obtain Bayesian estimators of traditional and fuzzy reliability of stress strength for inverse Rayleigh model by using the Metropolis-Hastings algorithm. Using an extensive Monte Carlo simulation analysis, the outputs of the fuzzy reliability and traditional reliability estimators are contrasted. Finally, for example, and to verify the efficiency of the proposed estimators, a genuine data application is used.



    加载中


    [1] H. Z. Huang, Reliability analysis method in the presence of fuzziness attached to operating time, Microelectro. Reliab., 35 (1995), 1483-1487. doi: 10.1016/0026-2714(94)00173-L
    [2] H. Z. Huang, M. J. Zuo, Z. Q. Sun, Bayesian reliability analysis for fuzzy lifetime data, Fuzzy Sets Syst., 157 (2006), 1674-1686. doi: 10.1016/j.fss.2005.11.009
    [3] H. C. Wu, Fuzzy reliability estimation using Bayesian approach, Comput. Ind. Eng., 46 (2004), 467-493. doi: 10.1016/j.cie.2004.01.009
    [4] H. C. Wu, Fuzzy Bayesian system reliability assessment based on exponential distribution, Appl. Math. Model., 30 (2006), 509-530. doi: 10.1016/j.apm.2005.05.014
    [5] S. Eryilmaz, G. Y. Tütüncüb, Stress strength reliability in the presence of fuzziness, J. Comput. Appl. Math., 282 (2015), 262-267. doi: 10.1016/j.cam.2014.12.047
    [6] M. A. Hussian, E. Amin, A. Fuzzy, Reliability estimation for exponential distribution using ranked set sampling, IJCMS, 12 (2017), 31-42. doi: 10.12988/ijcms.2017.612158
    [7] D. Bamber, The area above the ordinal dominance graph and the area below the receiver operating graph, J. Math. Psychol., 12 (1975), 387-415. doi: 10.1016/0022-2496(75)90001-2
    [8] M. Z. Raqab, M. T. Madi, D. Kundu, Estimation of P (Y < X) for a 3-parameter generalized exponential distribution, Com. Stat. Theory Methods, 37 (2008), 2854-2864. doi: 10.1080/03610920802162664
    [9] A. Wong, Interval estimation of P (Y < X) for generalized Pareto distribution, J. Stat. Plan. Infer., 142 (2012), 601-607. doi: 10.1016/j.jspi.2011.04.024
    [10] A. Asgharzadeh, R. Valiollahi, M. Z. Raqab, Estimation of the stress-strength reliability for the generalized logistic distribution, Stat. Method, 15 (2013), 73-94. doi: 10.1016/j.stamet.2013.05.002
    [11] F. G. Akgül, B. Şenoğlu, Estimation of P (X < Y) using some modifications of ranked set sampling for Weibull distribution, Pak. J. Stat. Oper. Res., 13 (2017), 931-958. doi: 10.18187/pjsor.v13i4.2056
    [12] A. I. Al-Omari, I. M. Almanjahie, A. S. Hassan, H. F. Nagy, Estimation of the stress-strength reliability for exponentiated Pareto distribution using median and ranked set sampling methods, CMC, 64 (2020), 835-857.
    [13] F. P. A. Coolen, M. J. Newby, A note on the use of the product of spacings in Bayesian inference, Memorandum COSOR, Vol. 9035, Technische Universiteit Eindhoven, 1990.
    [14] R. Alshenawy, M. A. H. Sabry, E. M. Almetwally, H. M. Elomngy, Product spacing of stress-strength under progressive hybrid censored for exponentiated-gumbel distribution, Comput. Mater. Continua, 66 (2021), 2973-2995. doi: 10.32604/cmc.2021.014289
    [15] R. K. Singh, S. K. Singh, U. Singh, Maximum product spacings method for the estimation of parameters of generalized inverted exponential distribution under Progressive Type Ⅱ Censoring, J. Stat. Manage. Syst., 19 (2016), 219-245.
    [16] H. M. Almongy, F. Y. Alshenawy, E. M. Almetwally, D. A. Abdo, Applying transformer insulation using Weibull extended distribution based on progressive censoring scheme, Axioms, 10 (2021), 100. doi: 10.3390/axioms10020100
    [17] E. S. A. El-Sherpieny, E. M. Almetwally, H. Z. Muhammed, Progressive Type-Ⅱ hybrid censored schemes based on maximum product spacing with application to Power Lomax distribution, Phys. A: Stat. Mech. Appl., 553 (2020), 124251. doi: 10.1016/j.physa.2020.124251
    [18] E. M. Almetwally, H. M. Almongy, M. K. Rastogi, M. Ibrahim, Maximum product spacing estimation of Weibull distribution under adaptive type-Ⅱ progressive censoring schemes, Ann. Data Sci., 7 (2020), 257-279.
    [19] K. Krishnamoorthy, S. Mukherjee, H. Guo, Inference on reliability in two-parameter exponential stress-strength model, Metrika, 65 (2007), 261-273. doi: 10.1007/s00184-006-0074-7
    [20] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, D. B. Rubin, Bayesian data analysis, CRC press, 2013.
    [21] E. M. Almetwally, H. M. Almongy, Parameter estimation and stress-strength model of power Lomax distribution, classical methods and Bayesian estimation, J. Data Sci., 18 (2020), 718-738.
    [22] E. M. Almetwally, H. M. Almongy, A. El sayed Mubarak, Bayesian and maximum likelihood estimation for the Weibull generalized exponential distribution parameters using progressive censoring schemes, Pak. J. Stat. Oper. Res., 14 (2018), 853-868.
    [23] H. M. Almongy, E. M. Almetwally, R. Alharbi, D. Alnagar, E. H. Hafez, M. M. Mohie El-Din, The Weibull generalized exponential distribution with censored sample: estimation and application on real data. Complexity, 2021 (2021), 1-15.
    [24] W. R. Gilks, P. Wild, Adaptive rejection sampling for Gibbs sampling, Appl. Stat., 41 (1992), 337-348. doi: 10.2307/2347565
    [25] W. R. Gilks, N. G. Best, K. K. C. Tan, Adaptive rejection Metropolis sampling within Gibbs sampling, Appl. Stat., 44 (1995), 455-472. doi: 10.2307/2986138
    [26] L. Martino, J. Read, D. Luengo, Independent doubly adaptive rejection Metropolis sampling within Gibbs sampling, IEEE Trans. Signal Process., 63 (2015), 3132-3138.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2784) PDF downloads(149) Cited by(24)

Article outline

Figures and Tables

Figures(4)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog