Processing math: 63%
Research article

Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag

  • Correction on: AIMS Mathematics 7: 258-259
  • This study is focused on the numerical solutions of the nonlinear Volterra-Fredholm integral equations (NV-FIEs) of the second kind, which have several applications in physical mathematics and contact problems. Herein, we develop a new technique that combines the modified Adomian decomposition method and the quadrature (trapezoidal and Weddle) rules that used when the definite integral could be extremely difficult, for approximating the solutions of the NV-FIEs of second kind with a phase lag. Foremost, Picard's method and Banach's fixed point theorem are implemented to discuss the existence and uniqueness of the solution. Furthermore, numerical examples are presented to highlight the proposed method's effectiveness, wherein the results are displayed in group of tables and figures to illustrate the applicability of the theoretical results.

    Citation: Gamal A. Mosa, Mohamed A. Abdou, Ahmed S. Rahby. Numerical solutions for nonlinear Volterra-Fredholm integral equations of the second kind with a phase lag[J]. AIMS Mathematics, 2021, 6(8): 8525-8543. doi: 10.3934/math.2021495

    Related Papers:

    [1] Yanping Yang, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . New Hermite-Hadamard inequalities in fuzzy-interval fractional calculus via exponentially convex fuzzy interval-valued function. AIMS Mathematics, 2021, 6(11): 12260-12278. doi: 10.3934/math.2021710
    [2] Muhammad Bilal Khan, Pshtiwan Othman Mohammed, Muhammad Aslam Noor, Abdullah M. Alsharif, Khalida Inayat Noor . New fuzzy-interval inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation. AIMS Mathematics, 2021, 6(10): 10964-10988. doi: 10.3934/math.2021637
    [3] Hongling Zhou, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah . Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals. AIMS Mathematics, 2022, 7(2): 2602-2617. doi: 10.3934/math.2022146
    [4] Fangfang Shi, Guoju Ye, Dafang Zhao, Wei Liu . Some integral inequalities for coordinated log-h-convex interval-valued functions. AIMS Mathematics, 2022, 7(1): 156-170. doi: 10.3934/math.2022009
    [5] Muhammad Bilal Khan, Gustavo Santos-García, Hüseyin Budak, Savin Treanțǎ, Mohamed S. Soliman . Some new versions of Jensen, Schur and Hermite-Hadamard type inequalities for (p,J)-convex fuzzy-interval-valued functions. AIMS Mathematics, 2023, 8(3): 7437-7470. doi: 10.3934/math.2023374
    [6] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
    [7] Muhammad Bilal Khan, Muhammad Aslam Noor, Thabet Abdeljawad, Bahaaeldin Abdalla, Ali Althobaiti . Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Mathematics, 2022, 7(1): 349-370. doi: 10.3934/math.2022024
    [8] Muhammad Bilal Khan, Savin Treanțǎ, Hleil Alrweili, Tareq Saeed, Mohamed S. Soliman . Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Mathematics, 2022, 7(8): 15659-15679. doi: 10.3934/math.2022857
    [9] Zehao Sha, Guoju Ye, Dafang Zhao, Wei Liu . On interval-valued K-Riemann integral and Hermite-Hadamard type inequalities. AIMS Mathematics, 2021, 6(2): 1276-1295. doi: 10.3934/math.2021079
    [10] Muhammad Bilal Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Kamsing Nonlaopon, Y. S. Hamed . Some new Jensen, Schur and Hermite-Hadamard inequalities for log convex fuzzy interval-valued functions. AIMS Mathematics, 2022, 7(3): 4338-4358. doi: 10.3934/math.2022241
  • This study is focused on the numerical solutions of the nonlinear Volterra-Fredholm integral equations (NV-FIEs) of the second kind, which have several applications in physical mathematics and contact problems. Herein, we develop a new technique that combines the modified Adomian decomposition method and the quadrature (trapezoidal and Weddle) rules that used when the definite integral could be extremely difficult, for approximating the solutions of the NV-FIEs of second kind with a phase lag. Foremost, Picard's method and Banach's fixed point theorem are implemented to discuss the existence and uniqueness of the solution. Furthermore, numerical examples are presented to highlight the proposed method's effectiveness, wherein the results are displayed in group of tables and figures to illustrate the applicability of the theoretical results.



    In convex function theory, the classical Hermite-Hadamard inequality is one of the most well-known inequalities with geometrical interpretation, and it has a wide range of applications, see [1,2].

    Let S:KR+ be a convex function on a convex set K and ρ,ςK with ρς. Then,

    S(ρ+ς2)1ςρςρS(ϖ)dϖS(ρ)+S(ς)2. (1)

    In [3], Fejér looked at the key extensions of HH-inequality which is known as Hermite-Hadamard-Fejér inequality (HH-Fejér inequality).

    Let S:KR+ be a convex function on a convex set K and ρ,ς K with ρς. Then,

    S(ρ+ς2)1ςρD(ϖ)dϖςρS(ϖ)D(ϖ)dϖS(ρ)+S(ς)2ςρD(ϖ)dϖ. (2)

    If D(ϖ)=1, then we obtain (1) from (2). We should remark that Hermite-Hadamard inequality is a refinement of the idea of convexity, and it can be simply deduced from Jensen's inequality. In recent years, the Hermite-Hadamard inequality for convex functions has gotten a lot of attention, and there have been a lot of improvements and generalizations examined. Sarikaya [4] proved the Hadamard type inequality for coordinated convex functions such that

    Let G:ΔR+ be a coordinate convex function on Δ=[ς,ρ]×[μ,ν]. If G is double fractional integrable, then following inequalities hold:

    G(μ+ν2,ς+ρ2)Γ(α+1)4(νμ)α[Iαμ+G(ν,ς+ρ2)+IανG(μ,ς+ρ2)]+Γ(β+1)4(ρς)β[Iβς+G(μ+ν2,ρ)+IβρG(μ+ν2,ς)]Γ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρG(ν,ς)+Iα,βν,ς+G(μ,ρ)+Iα,βν,ρG(μ,ς)]Γ(α+1)8(νμ)α[Iαμ+G(ν,ς)GIαμ+G(ν,ρ)+IανG(μ,ς)+IανG(μ,ρ)]+Γ(β+1)4(ρς)β[Iβς+G(μ,ρ)˜+IβρG(ν,ς)+Iβς+G(μ,ρ)+IβρG(ν,ς)]G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. (3)

    If α=1, then we obtain the following Dragomir inequality [5] on coordinates:

    G(μ+ν2,ς+ρ2)
    12[1νμνμG(x,ς+ρ2)dx+1ρςρςG(μ+ν2,y)dy]1(νμ)(ρς)νμρςG(x,y)dydx14(νμ)[νμG(x,ς)dx+νμG(x,ρ)dx]+14(ρς)[ρςG(μ,y)dy+ρςG(ν,y)dy]G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. (4)

    For more details related to inequalities, see [6,7,8,9] and reference therein.

    Interval analysis, on the other hand, is a well-known example of set-valued analysis, which is the study of sets in the context of mathematical analysis and general topology. It was created as a way of dealing with the interval uncertainty that can be found in many mathematical or computer models of deterministic real-world phenomena. Archimede's method, which is used to calculate the circumference of a circle, is an old example of an interval enclosure. Moore [10], who is credited with being the first user of intervals in computational mathematics, published the first book on interval analysis in 1966. Following the publication of his book, a number of scientists began to research the theory and applications of interval arithmetic. Interval analysis is now a helpful technique in a variety of fields that are interested in ambiguous data because of its applicability. Computer graphics, experimental and computational physics, error analysis, robotics, and many more fields have applications.

    Furthermore, in recent years, numerous major inequalities (Hermite-Hadamard, Ostrowski and others) have been addressed for interval-valued functions. Chalco-Cano et al. used the Hukuhara derivative for interval-valued functions to construct Ostrowski type inequalities for interval-valued functions in [11,12,13,14]. For interval-valued functions, Román-Flores et al. developed Minkowski and Beckenbach's inequality in [15]. For fuzzy interval-valued function, Khan et al. [16,17,18] derived some new versions of Hermite-Hadamard type inequalities and proved their validity with the help of non-trivial examples. Moreover, Khan et al. [19,20] discussed some novel types of Hermite-Hadamard type inequalities in fuzzy-interval fractional calculus and proved that many classical versions are special cases of these inequalities. Recently, Khan et al. [21] introduced the new class of convexity in fuzzy-interval calculus which is known as coordinated convex fuzzy-interval-valued functions and with the support of these classes, some Hermite-Hadamard type inequalities are obtained via newly defined fuzzy-interval double integrals. We encourage readers to [22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54] for other related results.

    The following is an overview of the paper's structure. Section 2 recalls some preliminary notions and definitions. Moreover, some properties of introduced coordinated LR-convex IVF are also discussed. Section 3 presents some Hermite-Hadamard type inequalities for coordinated LR-convex IVF. With the help of this class, some fractional integral inequalities are also derived for the coordinated LR-convex IVF and for the product of two coordinated LR-convex IVFs. The fourth section, Conclusions and Future Work, brings us to a close.

    Let R be the set of real numbers and RI be the space of all closed and bounded intervals of R, such that URI is defined by

    U=[U,U]={yR|UyU},(U,UR). (5)

    If U=U, then U is said to be degenerate. If U0, then [U,U] is called positive interval. The set of all positive interval is denoted by R+I and defined as R+I={[U,U]:[U,U]RIandU0}.

    Let ϱR and ϱU be defined by

    ϱ.U={[ϱU,ϱU]ifϱ>0,{0}ifϱ=0,[ϱU,ϱU]ifϱ<0. (6)

    Then, the Minkowski difference DU, addition U+D and U×D for U,DRI are defined by

    [D,D][U,U]=[DU,DU],[D,D]+[U,U]=[D+U,D+U], (7)

    and

    [D,D]×[U,U]=[min{DU,DU,DU,DU},max{DU,DU,DU,DU}].

    The inclusion "⊇" means that

    UD if and only if, [U,U][D,D], and if and only if

    UD,DU. (8)

    Remark 1. [36] (ⅰ) The relation "≤p" is defined on RI by

    [D,D]p[U,U]ifandonlyifDU,DU, (9)

    for all [D,D],[U,U]RI, and it is a pseudo order relation. The relation [D,D]p[U,U] coincident to [D,D][U,U] on RI when it is "≤p"

    (ⅱ) It can be easily seen that "p" looks like "left and right" on the real line R, so we call "p" is "left and right" (or "LR" order, in short).

    For [D,D],[U,U]RI, the Hausdorff-Pompeiu distance between intervals [D,D] and [U,U] is defined by

    d([D,D],[U,U])=max{|DU|,|DU|}. (10)

    It is familiar fact that (RI,d) is a complete metric space.

    Theorem 1. [10] If G:[μ,ν]RRI is an I-V-F given by (x) [G(x),G(x)], then G is Riemann integrable over [μ,ν] if and only if, G and G both are Riemann integrable over [μ,ν] such that

    (IR)νμG(x)dx=[(R)νμG(x)dx,(R)νμG(x)dx]. (11)

    The collection of all Riemann integrable real valued functions and Riemann integrable I-V-F is denoted by R[μ,ν] and TR[μ,ν], respectively.

    Definition 1. [31,33] Let G:[μ,ν]RI be interval-valued function and GTR[μ,ν]. Then interval Riemann-Liouville-type integrals of G are defined as

    Iαμ+G(y)=1Γ(α)yμ(yt)α1G(t)dt(y>μ), (12)
    IανG(y)=1Γ(α)νy(ty)α1G(t)dt(y<ν), (13)

    where α>0 and Γ is the gamma function.

    Theorem 2. [20] Let G:[ς,ρ]RI+ be a LR-convex I-V.F such that G(y)=[G(y),G(y)] for all y[ς,ρ]. If GL([ς,ρ],R+I), then

    G(ς+ρ2)pΓ(α+1)2(ρς)α[Iας+G(ρ)+IαρG(ς)]pG(ς)+G(ρ)2. (14)

    Theorem 3. [20] Let G,S:[ς,ρ]R+I be two LR-convex I-V.Fs such that G(x)=[G(x),G(x)] and S(x)=[S(x),S(x)] for all x[ς,ρ]. If G×SL([ς,ρ],R+I) is fuzzy Riemann integrable, then

    Γ(α+1)2(ρς)α[Iας+G(ρ)×S(ρ)+IαρG(ς)×S(ς)]
    p(12α(α+1)(α+2))M(ς,ρ)+(α(α+1)(α+2))N(ς,ρ), (15)

    and

    G(ς+ρ2)×S(ς+ρ2)
    pΓ(α+1)4(ρς)α[Iας+G(ρ)×S(ρ)+IαρG(ς)×S(ς)]
    +12(12α(α+1)(α+2))M(ς,ρ)+12(α(α+1)(α+2))N(ς,ρ), (16)

    where M(ς,ρ)=G(ς)×S(ς)+G(ρ)×S(ρ), N(ς,ρ)=G(ς)×S(ρ)+G(ρ)×S(ς),

    and M(ς,ρ)=[M(ς,ρ),M(ς,ρ)] and N(ς,ρ)=[N(ς,ρ),N(ς,ρ)].

    Note that, the Theorem 1 is also true for interval double integrals. The collection of all double integrable I-V-F is denoted TOΔ, respectively.

    Theorem 4. [35] Let Δ=[ς,ρ]×[μ,ν]. If G:ΔRI is interval-valued doubl integrable (ID-integrable) on Δ. Then, we have

    (ID)ρςνμG(x,y)dydx=(IR)ρς(IR)νμG(x,y)dydx.

    Definition 2. [36] Let G:ΔR+I and GTOΔ. The interval Riemann-Liouville-type integrals Iα,βμ+,ς+,Iα,βμ+,ρ, Iα,βν,ς+,Iα,βν,ρ of G order α,β>0 are defined by

    Iα,βμ+,ς+G(x,y)=1Γ(α)Γ(β)xμyς(xt)α1(ys)β1G(t,s)dsdt(x>μ,y>ς), (17)
    Iα,βμ+,ρG(x,y)=1Γ(α)Γ(β)xμρy(xt)α1(sy)β1G(t,s)dsdt(x>μ,y<ρ), (18)
    Iα,βν,ς+G(x,y)=1Γ(α)Γ(β)νxyς(tx)α1(ys)β1G(t,s)dsdt(x<ν,y>ς), (19)
    Iα,βν,ρG(x,y)=1Γ(α)Γ(β)νxρy(tx)α1(sy)β1G(t,s)dsdt(x<ν,y<ρ). (20)

    Definition 3. [38] The I-V.F G:ΔR+I is said to be coordinated LR-convex I-V.F on Δ if

    G(τμ+(1τ)ν,sς+(1s)ρ)
    pτsG(μ,ς)+τ(1s)G(μ,ρ)+(1τ)sG(ν,ς)+(1τ)(1s)G(ν,ρ), (21)

    for all (μ,ν),(ς,ρ)Δ, and τ,s[0,1]. If inequality (21) is reversed, then G is called coordinate LR-concave I-V.F on Δ.

    Lemma 1. [38] Let G:ΔR+I be an coordinated I-V.F on Δ. Then, G is coordinated LR-convex I-V.F on Δ, if and only if there exist two coordinated LR-convex I-V.Fs Gx:[ς,ρ]R+I, Gx(w)=G(x,w) and Gy:[μ,ν]R+I, Gy(z)=G(z,y).

    Theorem 5. [38] Let G:ΔR+I be a I-V.F on Δ such that

    G(x,ϖ)=[G(x,ϖ),G(x,ϖ)], (22)

    for all (x,ϖ)Δ. Then, G is coordinated LR-convex I-V.F on Δ, if and only if, G(x,ϖ) and G(x,ϖ) are coordinated convex functions.

    Example 1. We consider the I-V.Fs G:[0,1]×[0,1]R+I defined by,

    G(x)(σ)={σ2(6+ex)(6+eϖ),σ[0,2(6+ex)(6+eϖ)]4(6+ex)(6+eϖ)σ2(6+ex)(6+eϖ),σ(2(6+ex)(6+eϖ),4(6+ex)(6+eϖ)]0,otherwise,

    Then, for each θ[0,1], we have G(x)=[2θ(6+ex)(6+eϖ),(4+2θ)(6+ex)(6+eϖ)]. Since end point functions G((x,ϖ),θ), G((x,ϖ),θ) are coordinate concave functions for each θ[0,1]. Hence S(x,ϖ) is coordinate LR-concave I-V.F.

    From Lemma 1, we can easily note that each LR-convex I-V.F is coordinated LR-convex I-V.F. But the converse is not true.

    Remark 2. If one takes G(x,ϖ)=G(x,ϖ), then G is known as coordinated function if G satisfies the coming inequality

    G(τμ+(1τ)ν,sς+(1s)ρ)
    τsG(μ,ς)+τ(1s)G(μ,ρ)+(1τ)sG(ν,ς)+(1τ)(1s)G(ν,ρ),

    is valid which is defined by Dragomir [5]

    Let one takes G(x,ϖ)G(x,ϖ), where G(x,ϖ) is affine function and G(x,ϖ) is a concave function. If coming inequality,

    G(τμ+(1τ)ν,sς+(1s)ρ)
    τsG(μ,ς)+τ(1s)G(μ,ρ)+(1τ)sG(ν,ς)+(1τ)(1s)G(ν,ρ),

    is valid, then G is named as coordinated IVF which is defined by Zhao et al. [37, Definition 2 and Example 2]

    In this section, we shall continue with the following fractional HH-inequality for coordinated LR-convex I-V.Fs, and we also give fractional HH-Fejér inequality for coordinated LR-convex I-V.F through fuzzy order relation.

    Theorem 6. Let G:ΔR+I be a coordinate LR-convex I-V.F on Δ such that G(x,y)=[G(x,y),G(x,y)] for all (x,y)Δ. If GTOΔ, then following inequalities holds:

    G(μ+ν2,ς+ρ2)pΓ(α+1)4(νμ)α[Iαμ+G(ν,ς+ρ2)+IανG(μ,ς+ρ2)]
    +Γ(β+1)4(ρς)β[Iβς+G(μ+ν2,ρ)+IβρG(μ+ν2,ς)]
    pΓ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρG(ν,ς)+Iα,βν,ς+G(μ,ρ)+Iα,βν,ρG(μ,ς)]
    pΓ(α+1)8(νμ)α[Iαμ+G(ν,ς)+Iαμ+G(ν,ρ)+IανG(μ,ς)+IανG(μ,ρ)]
    +Γ(β+1)4(ρς)β[Iβς+G(μ,ρ)+IβρG(ν,ς)+Iβς+G(μ,ρ)+IβρG(ν,ς)]
    pG(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. (23)

    If G(x) coordinated LR-concave I-V.F, then

    G(μ+ν2,ς+ρ2)pΓ(α+1)4(νμ)α[Iαμ+G(ν,ς+ρ2)+IανG(μ,ς+ρ2)]
    +Γ(β+1)4(ρς)β[Iβς+G(μ+ν2,ρ)+IβρG(μ+ν2,ς)]
    pΓ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρG(ν,ς)+Iα,βν,ς+G(μ,ρ)+Iα,βν,ρG(μ,ς)]
    pΓ(α+1)8(νμ)α[Iαμ+G(ν,ς)+Iαμ+G(ν,ρ)+IανG(μ,ς)+IανG(μ,ρ)]
    +Γ(β+1)4(ρς)β[Iβς+G(μ,ρ)+IβρG(ν,ς)+Iβς+G(μ,ρ)+IβρG(ν,ς)]
    pG(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. (24)

    Proof. Let G:[μ,ν]R+I be a coordinated LR-convex I-V.F. Then, by hypothesis, we have

    4G(μ+ν2,ς+ρ2)pG(τμ+(1τ)ν,τς+(1τ)ρ)+G((1τ)μ+τν,(1τ)ς+τρ).

    By using Theorem 5, we have

    4G(μ+ν2,ς+ρ2)G(τμ+(1τ)ν,τς+(1τ)ρ)+G((1τ)μ+τν,(1τ)ς+τρ),4G(μ+ν2,ς+ρ2)G(τμ+(1τ)ν,τς+(1τ)ρ)+G((1τ)μ+τν,(1τ)ς+τρ).

    By using Lemma 1, we have

    2G(x,ς+ρ2)G(x,τς+(1τ)ρ)+G(x,(1τ)ς+τρ),2G(x,ς+ρ2)G(x,τς+(1τ)ρ)+G(x,(1τ)ς+τρ), (25)

    and

    2G(μ+ν2,y)G(τμ+(1τ)ν,y)+G((1τ)μ+tν,y),2G(μ+ν2,y)G(τμ+(1τ)ν,y)+G((1τ)μ+tν,y). (26)

    From (25) and (26), we have

    2[G(x,ς+ρ2),G(x,ς+ρ2)]
    p[G(x,τς+(1τ)ρ),G(x,τς+(1τ)ρ)]
    +[G(x,(1τ)ς+τρ),G(x,(1τ)ς+τρ)],

    and

    2[G(μ+ν2,y),G(μ+ν2,y)]
    p[G(τμ+(1τ)ν,y),G(τμ+(1τ)ν,y)]
    +[G(τμ+(1τ)ν,y),G(τμ+(1τ)ν,y)],

    It follows that

    G(x,ς+ρ2)pG(x,τς+(1τ)ρ)+G(x,(1τ)ς+τρ), (27)

    and

    G(μ+ν2,y)pG(τμ+(1τ)ν,y)+G(τμ+(1τ)ν,y). (28)

    Since G(x,.) and G(.,y), both are coordinated LR-convex-IVFs, then from inequality (14), inequalities (27) and (28) we have

    Gx(ς+ρ2)pΓ(β+1)2(ρς)β[Iβς+Gx(ρ)+IβρGx(ς)]pGx(ς)+Gx(ρ)2. (29)

    and

    Gy(μ+ν2)pΓ(α+1)2(νμ)α[Iαμ+Gy(ν)+IανGy(μ)]pGy(μ)+Gy(ν)2 (30)

    Since Gx(w)=G(x,w), the inequality (29) can be written as

    G(x,ς+ρ2)pΓ(β+1)2(ρς)β[Iας+G(x,ρ)+IαρG(x,ς)]pG(x,ς)+G(x,ρ)2. (31)

    That is

    G(x,ς+ρ2)pβ2(ρς)β[ρς(ρs)β1G(x,s)ds+ρς(sς)β1G(x,s)ds]pG(x,ς)+G(x,ρ)2.

    Multiplying double inequality (31) by α(νx)α12(νμ)α and integrating with respect to x over [μ,ν], we have

    α2(νμ)ανμG(x,ς+ρ2)(νx)α1dx
    pνμρς(νx)α1(ρs)β1G(x,s)dsdx+νμρς(νx)α1(sς)β1G(x,s)dsdx
    pα4(νμ)α[νμ(νx)α1G(x,ς)dx+νμ(νx)α1G(x,ρ)dx]. (32)

    Again multiplying double inequality (31) by α(xμ)α12(νμ)α and integrating with respect to x over [μ,ν], we have

    α2(νμ)ανμG(x,ς+ρ2)(νx)α1dx
    pαβ4(νμ)α(ρς)βνμρς(xμ)α1(ρs)β1G(x,s)dsdx
    +αβ4(νμ)α(ρς)βνμρς(xμ)α1(sς)β1G(x,s)dsdx
    pα4(νμ)α[νμ(xμ)α1G(x,ς)dx+νμ(xμ)α1G(x,d)dx]. (33)

    From (32), we have

    Γ(α+1)2(νμ)α[Iαμ+G(ν,ς+ρ2)]
    pΓ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βν,ς+G(ν,ς)]
    pΓ(α+1)4(νμ)α[Iαμ+G(ν,ς)+Iαμ+G(ν,ρ)]. (34)

    From (33), we have

    Γ(α+1)2(νμ)α[IανG(μ,ς+ρ2)]
    pΓ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βν,ς+G(μ,ρ)+Iα,βν,ρG(μ,ς)]
    pΓ(α+1)4(νμ)α[IανG(μ,ς)+IανG(μ,ρ)]. (35)

    Similarly, since Gy(z)=G(z,y) then, from (34) and (35), (30) we have

    Γ(β+1)2(ρς)β[Iβς+G(μ+ν2,ρ)]
    pΓ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βν,ς+G(μ,ρ)]
    pΓ(β+1)4(ρς)β[Iβς+G(μ,ρ)+Iβς+G(ν,ρ)], (36)

    and

    Γ(β+1)2(ρς)α[IβρG(μ+ν2,ς)]
    pΓ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βμ+,ρG(ν,ς)+Iα,βν,ρG(μ,ς)]
    pΓ(β+1)4(ρς)β[IβρG(μ,ς)+IβρG(ν,ς)]. (37)

    After adding the inequalities (46), (35), (36) and (37), we will obtain as resultant second, third and fourth inequalities of (23).

    Now, from left part of inequality (14), we have

    G(μ+ν2,ς+ρ2)pΓ(β+1)2(ρς)β[Iβς+G(μ+ν2,ρ)+IβρG(μ+ν2,ς)], (38)

    and

    G(μ+ν2,ς+ρ2)pΓ(α+1)2(νμ)α[Iαμ+G(ν,ς+ρ2)+IανG(μ,ς+ρ2)]. (39)

    Summing the inequalities (38) and (39), we obtain the following inequality:

    G(μ+ν2,ς+ρ2)
    pΓ(α+1)4(νμ)α[Iαμ+G(ν,ς+ρ2)+IανG(μ,ς+ρ2)]+Γ(β+1)4(ρς)β[Iβς+G(μ+ν2,ρ)+IβρG(μ+ν2,ς)], (40)

    this is the first inequality of (23).

    Now, from right part of inequality (14), we have

    Γ(β+1)2(ρς)β[Iβς+G(μ,ρ)+IβρG(μ,ς)]pG(μ,ς)+G(μ,ρ)2, (41)
    Γ(β+1)2(ρς)β[Iβς+G(ν,ρ)+IβρG(ν,ς)]pG(ν,ς)+G(ν,ρ)2, (42)
    Γ(α+1)2(νμ)α[Iαμ+G(ν,ς)+IανG(μ,ς)]pG(μ,ς)+G(ν,ς)2, (43)
    Γ(α+1)2(νμ)α[Iαμ+G(ν,ρ)+IανG(μ,ρ)]pG(μ,ρ)+G(ν,ρ)2. (44)

    Summing inequalities (41), (42), (43) and (44), and then taking multiplication of the resultant with 14, we have

    Γ(α+1)8(νμ)α[Iαμ+G(ν,ς)+IανG(μ,ς)+Iαμ+G(ν,ρ)+IανG(μ,ρ)]
    +Γ(β+1)2(ρς)β[Iβς+G(μ,ρ)+IβρG(μ,ς)+Iβς+G(ν,ρ)+IβρG(ν,ς)]
    pG(μ,ς)+G(μ,ρ)+G(ν,ς)+G(ν,ρ)4. (45)

    This is last inequality of (23) and the result has been proven.

    Remark 3. If one to take α=1 and β=1, then from (23), we achieve the coming inequality, see [38]:

    G(μ+ν2,ς+ρ2)
    p12[1νμνμG(x,ς+ρ2)dx+1ρςρςG(μ+ν2,y)dy]p1(νμ)(ρς)νμρςG(x,y)dydxp14(νμ)[νμG(x,ς)dx+νμG(x,ρ)dx]+14(ρς)[ρςG(μ,y)dy+ρςG(ν,y)dy]
    pG(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. (46)

    Let one takes G(x,y) is an affine function and G(x,y) is concave function. If G(x,y)G(x,y), then from Remark 2 and (24), we acquire the coming inequality, see [31]:

    G(μ+ν2,ς+ρ2)Γ(α+1)4(νμ)α[Iαμ+G(ν,ς+ρ2)+IανG(μ,ς+ρ2)]+Γ(β+1)4(ρς)β[Iβς+G(μ+ν2,ρ)+IβρG(μ+ν2,ς)]
    Γ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρG(ν,ς)+Iα,βν,ς+G(μ,ρ)+Iα,βν,ρG(μ,ς)]
    Γ(α+1)8(νμ)α[Iαμ+G(ν,ς)GIαμ+G(ν,ρ)+IανG(μ,ς)+IανG(μ,ρ)]
    +Γ(β+1)4(ρς)β[Iβς+G(μ,ρ)˜+IβρG(ν,ς)+Iβς+G(μ,ρ)+IβρG(ν,ς)]
    G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. (47)

    Let one takes α=1 and β=1, G(x,y) is an affine function and G(x,y) is concave function. If G(x,y)G(x,y), then Remark 2 and from (24), we acquire the coming inequality, see [37]:

    G(μ+ν2,ς+ρ2)
    12[1νμνμG(x,ς+ρ2)dx+1ρςρςG(μ+ν2,y)dy]1(νμ)(ρς)νμρςG(x,y)dydx
    14(νμ)[νμG(x,ς)dx+νμG(x,ρ)dx]+14(ρς)[ρςG(μ,y)dy+ρςG(ν,y)dy]
    G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4. (48)

    Example 2. We consider the I-V-Fs G:[0,1]×[0,1]R+I defined by,

    G(x)=[2,6](6+ex)(6+ey).

    Since end point functions G(x,y), G(x,y) are convex functions on coordinate, then G(x,y) is convex I-V-F on coordinate. Then for α=1 and β=1, we have

    G(μ+ν2,ς+ρ2)=[2(5+e12)2,6(6+e12)2],
    Γ(α+1)4(νμ)α[Iαμ+G(ν,ς+ρ2)+IανG(μ,ς+ρ2)]+Γ(β+1)4(ρς)β[Iβς+G(μ+ν2,ρ)+IβρG(μ+ν2,ς)]
    =[4(6+e12)(5+e),12(6+e12)(5+e)],
    Γ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βμ+,ς+G(ν,ρ)+Iα,βμ+,ρG(ν,ς)+Iα,βν,ς+G(μ,ρ)+Iα,βν,ρG(μ,ς)]
    =[2(5+e)2,6(5+e)2],
    Γ(α+1)8(νμ)α[Iαμ+G(ν,ς)GIαμ+G(ν,ρ)+IανG(μ,ς)+IανG(μ,ρ)]
    +Γ(β+1)4(ρς)β[Iβς+G(μ,ρ)˜+IβρG(ν,ς)+Iβς+G(μ,ρ)+IβρG(ν,ς)]
    =[(5+e)(13+e),3(5+e)(13+e)]
    G(μ,ς)+G(ν,ς)+G(μ,ρ)+G(ν,ρ)4=[(6+e)(20+e)+492,6((6+e)(20+e)+49)2].

    That is

    [2(5+e12)2,6(6+e12)2]p[4(6+e12)(5+e),12(6+e12)(5+e)]
    p[2(5+e)2,6(5+e)2]
    p[(5+e)(13+e),3(5+e)(13+e)]
    p[(6+e)(20+e)+492,3((6+e)(20+e)+49)].

    Hence, Theorem 3.1 has been verified

    Next both results obtain Hermite-Hadamard type inequalities for the product of two coordinate LR-convex I-V.Fs

    Theorem 7. Let G,S:ΔR+I be a coordinate LR-convex I-V.Fs on Δ such that G(x,y)=[G(x,y),G(x,y)] and S(x,y)=[S(x,y),S(x,y)] for all (x,y)Δ. If G×STOΔ, then following inequalities holds:

    Γ(α+1)Γ(β+1)4(νμ)α(ρς)β[Iα,βμ+,ς+G(ν,ρ)×S(ν,ρ)+Iα,βμ+,ρG(ν,ς)×S(ν,ς)+Iα,βν,ς+G(μ,ρ)×S(μ,ρ)+Iα,βν,ρG(μ,ς)×S(μ,ς)]
    {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)K\left(\mu , \nu , \varsigma , \rho \right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)L\left(\mu , \nu , \varsigma , \rho \right)
    +\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\frac{\beta }{(\beta +1)(\beta +2)}\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)+\frac{\beta }{(\beta +1)(\beta +2)}\frac{\alpha }{(\alpha +1)(\alpha +2)}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . (49)

    If \mathfrak{G} and \mathfrak{S} both are coordinate LR-concave I-V.Fs on \Delta , then above inequality can be written as

    \begin{array}{l} \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}[{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; +{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)] \end{array}
    {\ge }_{p}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)K\left(\mu , \nu , \varsigma , \rho \right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)L\left(\mu , \nu , \varsigma , \rho \right)
    +\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\frac{\beta }{(\beta +1)(\beta +2)}\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)+\frac{\beta }{(\beta +1)(\beta +2)}\frac{\alpha }{(\alpha +1)(\alpha +2)}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . (50)

    Where

    K\left(\mu , \nu , \varsigma , \rho \right) = \mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right),
    L\left(\mu , \nu , \varsigma , \rho \right) = \mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\widetilde {+}\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right) ,
    \mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) = \mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right),
    \mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) = \mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right) .

    and K\left(\mu , \nu , \varsigma , \rho \right) , \widetilde {L}\left(\mu , \nu , \varsigma , \rho \right) , \mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) and \mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) are defined as follows:

    K\left(\mu , \nu , \varsigma , \rho \right) = \left[{K}_{*}\left(\mu , \nu , \varsigma , \rho \right), {K}^{*}\left(\mu , \nu , \varsigma , \rho \right)\right] ,
    L\left(\mu , \nu , \varsigma , \rho \right) = \left[{L}_{*}\left(\mu , \nu , \varsigma , \rho \right), {L}^{*}\left(\mu , \nu , \varsigma , \rho \right)\right] ,
    \mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) = \left[{\mathcal{M}}_{\mathcal{*}}\left(\mu , \nu , \varsigma , \rho \right), {\mathcal{M}}^{\mathcal{*}}\left(\mu , \nu , \varsigma , \rho \right)\right],
    \mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) = \left[{\mathcal{N}}_{\mathcal{*}}\left(\mu , \nu , \varsigma , \rho \right), {\mathcal{N}}^{\mathcal{*}}\left(\mu , \nu , \varsigma , \rho \right)\right].

    Proof. Let \mathfrak{G} and \mathfrak{S} both are coordinated LR-convex I-V.Fs on \left[\mu , \nu \right]\times \left[\varsigma , \rho \right] . Then

    \mathfrak{G}\left(\tau \mu +\left(1-\tau \right)\nu , s\varsigma +\left(1-s\right)\rho \right)
    {\le }_{p}\tau s\mathfrak{G}\left(\mu , \varsigma \right)+\tau \left(1-s\right)\mathfrak{G}\left(\mu , \rho \right)+\left(1-\tau \right)s\mathfrak{G}\left(\nu , \varsigma \right)+\left(1-\tau \right)\left(1-s\right)\mathfrak{G}\left(\nu , \rho \right),

    and

    \mathfrak{S}\left(\tau \mu +\left(1-\tau \right)\nu , s\varsigma +\left(1-s\right)\rho \right)
    {\le }_{p}\tau s\mathfrak{S}\left(\mu , \varsigma \right)+\tau \left(1-s\right)\mathfrak{S}\left(\mu , \rho \right)+\left(1-\tau \right)s\mathfrak{S}\left(\nu , \varsigma \right)+\left(1-\tau \right)\left(1-s\right)\mathfrak{S}\left(\nu , \rho \right).

    Since \mathfrak{G} and \mathfrak{S} both are coordinated LR-convex I-V.Fs, then by Lemma 1, there exist

    {\mathfrak{G}}_{\mathcal{x}}:\left[\varsigma , \rho \right]\to {\mathbb{R}}_{I}^{+} , {\mathfrak{G}}_{\mathcal{x}}\left(\mathit{y}\right) = \mathfrak{G}\left(\mathcal{x}, \mathit{y}\right) , \;\;\;\;{\mathfrak{S}}_{\mathcal{x}}:\left[\varsigma , \rho \right]\to {\mathbb{R}}_{I}^{+} , {\mathfrak{S}}_{\mathcal{x}}\left(\mathit{y}\right) = \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right) ,

    Since {\mathfrak{G}}_{\mathcal{x}} , and {\mathfrak{S}}_{\mathcal{x}} are I-V.Fs, then by inequality (15), we have

    \frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }{\mathfrak{G}}_{\mathcal{x}}\left(\rho \right)\times {\mathfrak{S}}_{\mathcal{x}}\left(\rho \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }{\mathfrak{G}}_{\mathcal{x}}\left(\varsigma \right)\times {\mathfrak{S}}_{\mathcal{x}}\left(\varsigma \right)\right]
    {\le }_{p}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left({\mathfrak{G}}_{\mathcal{x}}\left(\varsigma \right)\times {\mathfrak{S}}_{\mathcal{x}}\left(\varsigma \right)+{\mathfrak{G}}_{\mathcal{x}}\left(\rho \right)\times {\mathfrak{S}}_{\mathcal{x}}\left(\rho \right)\right)
    +\left(\frac{\beta }{(\beta +1)(\beta +2)}\right)\left({\mathfrak{G}}_{\mathcal{x}}\left(\varsigma \right)\times {\mathfrak{S}}_{\mathcal{x}}\left(\rho \right)+{\mathfrak{G}}_{\mathcal{x}}\left(\rho \right)\times {\mathfrak{S}}_{\mathcal{x}}\left(\varsigma \right)\right).

    That is

    \frac{\beta }{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\int }_{\varsigma }^{\rho }{\left(\rho -\mathit{y}\right)}^{\beta -1}\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)\times \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right)\rho \mathit{y}+{\int }_{\varsigma }^{\rho }{\left(\mathit{y}-\varsigma \right)}^{\beta -1}\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)\times \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right)\rho \mathit{y}\right]
    {\le }_{p}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\mathcal{x}, \varsigma \right)\times \mathfrak{S}\left(\mathcal{x}, \varsigma \right)+\mathfrak{G}\left(\mathcal{x}, \rho \right)\times \mathfrak{S}\left(\mathcal{x}, \rho \right)\right)
    +\left(\frac{\beta }{(\beta +1)(\beta +2)}\right)\left(\mathfrak{G}\left(\mathcal{x}, \varsigma \right)\times \mathfrak{S}\left(\mathcal{x}, \rho \right)+\mathfrak{G}\left(\mathcal{x}, \rho \right)\times \mathfrak{S}\left(\mathcal{x}, \varsigma \right)\right). (51)

    Multiplying double inequality (51) by \frac{\alpha {\left(\nu -\mathcal{x}\right)}^{\alpha -1}}{{2\left(\nu -\mu \right)}^{\alpha }} and integrating with respect to \mathcal{x} over \left[\mu , \nu \right], we get

    \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\end{array}\right]
    {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)
    +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\frac{\beta }{(\beta +1)(\beta +2)}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right). (52)

    Again, multiplying double inequality (51) by \frac{\alpha {\left(\mathcal{x}-\mu \right)}^{\alpha -1}}{{2\left(\nu -\mu \right)}^{\alpha }} and integrating with respect to \mathcal{x} over \left[\mu , \nu \right], we gain

    \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right]
    {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)
    +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\frac{\beta }{(\beta +1)(\beta +2)}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right). (53)

    Summing (52) and (53), we have

    \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +\begin{array}{c}{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\end{array}\right]
    {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right)
    +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)
    +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\frac{\beta }{(\beta +1)(\beta +2)}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)
    +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\frac{\beta }{(\beta +1)(\beta +2)}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) . (54)

    Now, again with the help of integral inequality (15) for first two integrals on the right-hand side of (54), we have the following relation

    \frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right)
    {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right)
    +\left(\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right). (55)
    \frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)
    {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)
    +\left(\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right). (56)
    \frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)
    {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)
    +\left(\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)\right). (57)

    And

    \frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right)
    {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right)
    +\left(\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right). (58)

    From (55)–(58), inequality (54) we have

    \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right]
    \begin{array}{l} {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)K\left(\mu , \nu , \varsigma , \rho \right)\\ \;\;\;\;\;\;\;\;\;\;\;\;+\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)L\left(\mu , \nu , \varsigma , \rho \right) \end{array}
    +\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\frac{\beta }{(\beta +1)(\beta +2)}\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)+\frac{\beta }{(\beta +1)(\beta +2)}\frac{\alpha }{(\alpha +1)(\alpha +2)}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) .

    Hence, the result has been proven.

    Remark 4. If one to take \alpha = 1 and \beta = 1 , then from (49), we achieve the coming inequality, see [38]:

    \frac{1}{\left(\nu -\mu \right)\left(\rho -\varsigma \right)}{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)\times \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}
    {\le }_{p}\frac{1}{9}K\left(\mu , \nu , \varsigma , \rho \right)+\frac{1}{18}\left[L\left(\mu , \nu , \varsigma , \rho \right)+\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)\right]+\frac{1}{36}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . (59)

    Let one takes {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is an affine function and {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is concave function. If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right)\ne {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) , then by Remark 2 and (50), we acquire the coming inequality, see [36]:

    \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right]
    \supseteq \left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)K\left(\mu , \nu , \varsigma , \rho \right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)L\left(\mu , \nu , \varsigma , \rho \right)
    +\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\frac{\beta }{(\beta +1)(\beta +2)}\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)+\frac{\beta }{(\beta +1)(\beta +2)}\frac{\alpha }{(\alpha +1)(\alpha +2)}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . (60)

    Let one takes {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is an affine function and {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is concave function. If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right)\ne {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) , then by Remark 2 and (50), we acquire the coming inequality, see [37]:

    \frac{1}{\left(\nu -\mu \right)\left(\rho -\varsigma \right)}{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)\times \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}
    \supseteq \frac{1}{9}K\left(\mu , \nu , \varsigma , \rho \right)+\frac{1}{18}\left[L\left(\mu , \nu , \varsigma , \rho \right)+\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)\right]+\frac{1}{36}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . (61)

    If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) and {\mathfrak{S}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) = {\mathfrak{S}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) , then from (49), we acquire the coming inequality, see [39]:

    \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right]
    \le \left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)K\left(\mu , \nu , \varsigma , \rho \right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)L\left(\mu , \nu , \varsigma , \rho \right)
    +\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\frac{\beta }{(\beta +1)(\beta +2)}\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)+\frac{\beta }{(\beta +1)(\beta +2)}\frac{\alpha }{(\alpha +1)(\alpha +2)}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . (62)

    Theorem 8. Let \mathfrak{G}, \mathfrak{S}:\Delta \to {\mathbb{R}}_{I}^{+} be a coordinate LR-convex I-V.F on \Delta such that \mathfrak{G}\left(\mathcal{x}, \mathit{y}\right) = \left[{\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right), {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right)\right] and \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right) = \left[{\mathfrak{S}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right), {\mathfrak{S}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right)\right] for all \left(\mathcal{x}, \mathit{y}\right)\in \Delta . If {\mathfrak{G}\times \mathfrak{S}\in \mathfrak{T}\mathfrak{O}}_{\Delta } , then following inequalities holds:

    4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)
    \begin{array}{l} {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\+\left[\frac{\alpha }{2\left(\alpha +1\right)\left(\alpha +2\right)}+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\right]K\left(\mu , \nu , \varsigma , \rho \right) \end{array}
    +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]L\left(\mu , \nu , \varsigma , \rho \right)
    +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)
    +\left[\frac{1}{4}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . (63)

    If \mathfrak{G} and \mathfrak{S} both are coordinate LR-concave I-V.Fs on \Delta , then above inequality can be written as

    \begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\\ \;\;\;\;\;\;\;\;\;\;{\ge }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\;\;\;+\left[\frac{\alpha }{2\left(\alpha +1\right)\left(\alpha +2\right)}+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\right]K\left(\mu , \nu , \varsigma , \rho \right) \end{array}
    \begin{array}{l} +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]L\left(\mu , \nu , \varsigma , \rho \right) \\ +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) \\ +\left[\frac{1}{4}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} (64)

    Where K\left(\mu , \nu , \varsigma , \rho \right) , L\left(\mu , \nu , \varsigma , \rho \right) , \mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) and \mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) are given in Theorem 7.

    Proof. Since \mathfrak{G}, \mathfrak{S}:\Delta \to {\mathbb{R}}_{I}^{+} be two LR-convex I-V.Fs, then from inequality (16) , we have

    \begin{array}{l} 2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\\ \;\;\;\;\;\;\;\;\;\;\;\; {\le }_{p}\frac{\alpha }{{2\left(\nu -\mu \right)}^{\alpha }}\left[\begin{array}{c}{\int }_{\mu }^{\nu }{\left(\nu -\mathcal{x}\right)}^{\alpha -1}\mathfrak{G}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)d\mathcal{x}\\ +{\int }_{\mu }^{\nu }{\left(\mathcal{x}-\mu \right)}^{\alpha -1}\mathfrak{G}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)d\mathcal{x}\end{array}\right] \\ \;\;\;\;\;\;\;\;\;\;\;\;+\left(\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\left(\mathfrak{G}\left(\mu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mu , \frac{\varsigma +\rho }{2}\right)+\mathfrak{G}\left(\nu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\nu , \frac{\varsigma +\rho }{2}\right)\right) \\ \;\;\;\;\;\;\;\;\;\;\;\;+\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\nu , \frac{\varsigma +\rho }{2}\right)+\mathfrak{G}\left(\nu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mu , \frac{\varsigma +\rho }{2}\right)\right) , \end{array} (65)

    and

    \begin{array}{l} 2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\\ \;\;\;\;\;\;\;\;\;\;\;\; {\le }_{p}\frac{\beta }{{2\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\int }_{\varsigma }^{\rho }{\left(\rho -\mathit{y}\right)}^{\beta -1}\mathfrak{G}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)d\mathit{y}\\ +{\int }_{\varsigma }^{\rho }{\left(\mathit{y}-\varsigma \right)}^{\beta -1}\mathfrak{G}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)d\mathit{y}\end{array}\right] \\ \;\;\;\;\;\;\;\;\;\;\;\;+\left(\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\frac{\mu +\nu }{2}, \varsigma \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \varsigma \right)+\mathfrak{G}\left(\frac{\mu +\nu }{2}, \rho \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \rho \right)\right) \\ \;\;\;\;\;\;\;\;\;\;\;\;+\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\frac{\mu +\nu }{2}, \varsigma \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \rho \right)+\mathfrak{G}\left(\frac{\mu +\nu }{2}, \rho \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \varsigma \right)\right) , \end{array} (66)

    Adding (73) and (74), and then taking the multiplication of the resultant one by 2, we obtain

    \begin{array}{l} 8\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\;\;\;\;\;{\le }_{p}\frac{\alpha }{{2\left(\nu -\mu \right)}^{\alpha }}\left[\begin{array}{c}{\int }_{\mu }^{\nu }2{\left(\nu -\mathcal{x}\right)}^{\alpha -1}\mathfrak{G}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)d\mathcal{x}\\ +{\int }_{\mu }^{\nu }2{\left(\mathcal{x}-\mu \right)}^{\alpha -1}\mathfrak{G}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)d\mathcal{x}\end{array}\right] \\ \;\;\;\;\;\;\;\;\;\;\;\;+\frac{\beta }{{2\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\int }_{\varsigma }^{\rho }2{\left(\rho -\mathit{y}\right)}^{\beta -1}\mathfrak{G}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)d\mathit{y}\\ +{\int }_{\varsigma }^{\rho }2{\left(\mathit{y}-\varsigma \right)}^{\beta -1}\mathfrak{G}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)d\mathit{y}\end{array}\right] \\ \;\;\;\;\;\;\;\;\;\;\;\;+\left(\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\left(2\mathfrak{G}\left(\mu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mu , \frac{\varsigma +\rho }{2}\right)+2\mathfrak{G}\left(\nu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\nu , \frac{\varsigma +\rho }{2}\right)\right) \\ \;\;\;\;\;\;\;\;\;\;\;\;+\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(2\mathfrak{G}\left(\mu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\nu , \frac{\varsigma +\rho }{2}\right)+2\mathfrak{G}\left(\nu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mu , \frac{\varsigma +\rho }{2}\right)\right) \\ \;\;\;\;\;\;\;\;\;\;\;\;+\left(\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \varsigma \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \varsigma \right)+2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \rho \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \rho \right)\right) \\ \;\;\;\;\;\;\;\;\;\;\;\;+\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \varsigma \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \rho \right)+2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \rho \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \varsigma \right)\right) . \end{array} (67)

    Again, with the help of integral inequality (16) and Lemma 1 for each integral on the right-hand side of (67), we have

    \begin{array}{l} \frac{\alpha }{{2\left(\nu -\mu \right)}^{\alpha }}{\int }_{\mu }^{\nu }2{\left(\nu -\mathcal{x}\right)}^{\alpha -1}\mathfrak{G}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)d\mathcal{x} \\ \;\;\;\;\;\;\;\;{\le }_{p}\frac{\alpha \beta }{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }{\left(\nu -\mathcal{x}\right)}^{\alpha -1}{\left(\rho -\mathit{y}\right)}^{\beta -1}\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}\\ +{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }{\left(\nu -\mathcal{x}\right)}^{\alpha -1}{\left(\mathit{y}-\varsigma \right)}^{\beta -1}\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}\end{array}\right] \\ \;\;\;\;\;\;\;\;+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\frac{\alpha }{{2\left(\nu -\mu \right)}^{\alpha }}{\int }_{\mu }^{\nu }{\left(\nu -\mathcal{x}\right)}^{\alpha -1}\left(\mathfrak{G}\left(\mathcal{x}, \varsigma \right)\times \mathfrak{S}\left(\mathcal{x}, \varsigma \right)+\mathfrak{G}\left(\mathcal{x}, \rho \right)\times \mathfrak{S}\left(\mathcal{x}, \rho \right)\right)d\mathcal{x} \\ \;\;\;\;\;\;\;\;+\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\frac{\alpha }{{2\left(\nu -\mu \right)}^{\alpha }}{\int }_{\mu }^{\nu }{\left(\nu -\mathcal{x}\right)}^{\alpha -1}\left(\mathfrak{G}\left(\mathcal{x}, \varsigma \right)\times \mathfrak{S}\left(\mathcal{x}, \rho \right)+\mathfrak{G}\left(\mathcal{x}, \rho \right)\times \mathfrak{S}\left(\mathcal{x}, \varsigma \right)\right)d\mathcal{x} , \\ \;\;\;\;\;\;\;\; = \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\;+\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left(\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\;+\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right). \end{array} (68)
    \begin{array}{l} \frac{\alpha }{{2\left(\nu -\mu \right)}^{\alpha }}{\int }_{\mu }^{\nu }2{\left(\mathcal{x}-\mu \right)}^{\alpha -1}\mathfrak{G}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mathcal{x}, \frac{\varsigma +\rho }{2}\right)d\mathcal{x} \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\alpha \beta }{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }{\left(\mathcal{x}-\mu \right)}^{\alpha -1}{\left(\rho -\mathit{y}\right)}^{\beta -1}\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}\\ +{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }{\left(\mathcal{x}-\mu \right)}^{\alpha -1}{\left(\mathit{y}-\varsigma \right)}^{\beta -1}\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}\end{array}\right] \\ \;\;\;\;\;\;\;\;+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\frac{\alpha }{{2\left(\nu -\mu \right)}^{\alpha }}{\int }_{\mu }^{\nu }{\left(\mathcal{x}-\mu \right)}^{\alpha -1}\left(\mathfrak{G}\left(\mathcal{x}, \varsigma \right)\times \mathfrak{S}\left(\mathcal{x}, \varsigma \right)+\mathfrak{G}\left(\mathcal{x}, \rho \right)\times \mathfrak{S}\left(\mathcal{x}, \rho \right)\right)d\mathcal{x} \\ \;\;\;\;\;\;\;\;+\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\frac{\alpha }{{2\left(\nu -\mu \right)}^{\alpha }}{\int }_{\mu }^{\nu }{\left(\mathcal{x}-\mu \right)}^{\alpha -1}\left(\mathfrak{G}\left(\mathcal{x}, \varsigma \right)\times \mathfrak{S}\left(\mathcal{x}, \rho \right)+\mathfrak{G}\left(\mathcal{x}, \rho \right)\times \mathfrak{S}\left(\mathcal{x}, \varsigma \right)\right)d\mathcal{x} , \\ \;\;\;\;\;\;\;\; = \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\;+\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left(\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right) \\ \;\;\;\;\;\;\;\;+\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right). \end{array} (69)
    \frac{\beta }{{2\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\int }_{\varsigma }^{\rho }2{\left(\rho -\mathit{y}\right)}^{\beta -1}\mathfrak{G}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)d\mathit{y}\end{array}\right]
    \begin{array}{l} {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)\end{array}\right] \\ \;\;\;\;\;\;\;\;+\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left(\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\;+\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right). \end{array} (70)
    \frac{\beta }{{2\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\int }_{\varsigma }^{\rho }2{\left(\mathit{y}-\varsigma \right)}^{\beta -1}\mathfrak{G}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \mathit{y}\right)d\mathit{y}\end{array}\right]
    \begin{array}{l} {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\;+\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left(\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right) \\ \;\;\;\;\;\;\;\; +\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right). \end{array} (71)

    And

    \begin{array}{l} 2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \varsigma \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \varsigma \right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left[{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) , \end{array} (72)
    \begin{array}{l} 2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \rho \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \rho \right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left[{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right) , \end{array} (73)
    \begin{array}{l} 2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \varsigma \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \rho \right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left[{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)\right) , \end{array} (74)
    \begin{array}{l} 2\mathfrak{G}\left(\frac{\mu +\nu }{2}, \rho \right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \varsigma \right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left[{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right] \end{array}
    \begin{array}{l} +\frac{\alpha }{(\alpha +1)(\alpha +2)}\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right) \\ +\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left(\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) , \end{array} (75)
    \begin{array}{l} 2\mathfrak{G}\left(\mu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mu , \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) , \end{array} (76)
    \begin{array}{l} 2\mathfrak{G}\left(\nu , \frac{\varsigma +\rho }{2}\right)\times {\mathfrak{S}}_{\phi }\left(\nu , \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right) , \end{array} (77)
    \begin{array}{l} 2\mathfrak{G}\left(\mu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\nu , \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right) , \end{array} (78)

    and

    \begin{array}{l} 2\mathfrak{G}\left(\nu , \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\mu , \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left[{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right] \\ \;\;\;\;\;\;\;\; +\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right) \\ \;\;\;\;\;\;\;\; +\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left(\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) , \end{array} (79)

    From inequalities (68) to (79), inequality (67) we have

    \begin{array}{l} 8\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\end{array}\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +\left(\frac{2\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left[\begin{array}{c}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)\\ +\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +2\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\left[\begin{array}{c}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)\\ +\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +2\left(\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)\left[\begin{array}{c}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)\\ +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +2\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)\left[\begin{array}{c}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right)\\ +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right)\end{array}\right] \end{array}
    +\frac{2\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}K\left(\mu , \nu , \varsigma , \rho \right)++\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\frac{2\beta }{\left(\beta +1\right)\left(\beta +2\right)}L\left(\mu , \nu , \varsigma , \rho \right)
    \begin{array}{l}+\frac{2\alpha }{(\alpha +1)(\alpha +2)}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) \\ +2\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} (80)

    Again, with the help of integral inequality (15) and Lemma 1, for each integral on the right-hand side of (80), we have

    \begin{array}{l}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)\end{array} \\ \;\;\;\;\;\;\;\; +\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)\right)\\ \;\;\;\;\;\;\;\; {\le }_{p}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)K\left(\mu , \nu , \varsigma , \rho \right)+\frac{\beta }{(\beta +1)(\beta +2)}\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) . (81)
    \begin{array}{l}\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)+{\mathcal{I}}_{{\varsigma }^{+}}^{\beta }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)\end{array} \\ \;\;\;\;\;\;\;\; +\frac{\mathit{\Gamma } \left(\beta +1\right)}{{2\left(\rho -\varsigma \right)}^{\beta }}\left({\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\rho }^{-}}^{\beta }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\left(\frac{1}{2}-\frac{\beta }{(\beta +1)(\beta +2)}\right)L\left(\mu , \nu , \varsigma , \rho \right)+\frac{\beta }{(\beta +1)(\beta +2)}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . (82)
    \begin{array}{l}\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \varsigma \right)\times \mathfrak{S}\left(\nu , \varsigma \right)+{\mathcal{I}}_{{\mu }^{+}}^{\alpha }\mathfrak{G}\left(\nu , \rho \right)\times \mathfrak{S}\left(\nu , \rho \right)\right)\end{array} \\ \;\;\;\;\;\;\;\; +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \varsigma \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \rho \right)\right)\\ \;\;\;\;\;\;\;\; {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)K\left(\mu , \nu , \varsigma , \rho \right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}L\left(\mu , \nu , \varsigma , \rho \right) . (83)
    \begin{array}{l} \frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) \\ \;\;\;\;\;\;\;\; +\frac{\mathit{\Gamma } \left(\alpha +1\right)}{{2\left(\nu -\mu \right)}^{\alpha }}\left({\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \varsigma \right)\times \mathfrak{S}\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}}^{\alpha }\mathfrak{G}\left(\mu , \rho \right)\times \mathfrak{S}\left(\mu , \varsigma \right)\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\left(\frac{1}{2}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\right)\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} (84)

    From (77) to (84), (80) we have

    \begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +\left[\frac{\alpha }{2\left(\alpha +1\right)\left(\alpha +2\right)}+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\right]K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]L\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{4}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} (85)

    This concludes the proof of Theorem 8 result has been proven.

    Remark 5. If we take \alpha = 1 and \beta = 1 , then from (63), we achieve the coming inequality, see [38]:

    \begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; {\le }_{p}\frac{1}{\left(\nu -\mu \right)\left(\rho -\varsigma \right)}{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)\times \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}+\frac{5}{36}K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\frac{7}{36}\left[L\left(\mu , \nu , \varsigma , \rho \right)+\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)\right]+\frac{2}{9}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right). \end{array} (86)

    Let one takes {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is an affine function and {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is convex function. If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right)\ne {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) , then from Remark 2 and (64), we acquire the coming inequality, see [37]:

    \begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; \supseteq \frac{1}{\left(\nu -\mu \right)\left(\rho -\varsigma \right)}{\int }_{\mu }^{\nu }{\int }_{\varsigma }^{\rho }\mathfrak{G}\left(\mathcal{x}, \mathit{y}\right)\times \mathfrak{S}\left(\mathcal{x}, \mathit{y}\right)d\mathit{y}d\mathcal{x}+\frac{5}{36}K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\frac{7}{36}\left[L\left(\mu , \nu , \varsigma , \rho \right)+\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right)\right]+\frac{2}{9}\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right). \end{array} (87)

    Let one takes {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is an affine function and {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) is convex function. If {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right)\ne {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) , then from Remark 2 and (64) we acquire the coming inequality, see [36]:

    \begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\\ \;\;\;\;\;\;\;\; \supseteq \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +\left[\frac{\alpha }{2\left(\alpha +1\right)\left(\alpha +2\right)}+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\right]K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]L\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{4}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} (88)

    If we take {\mathfrak{G}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) = {\mathfrak{G}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) and {\mathfrak{S}}_{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) = {\mathfrak{S}}^{\mathfrak{*}}\left(\mathcal{x}, \mathit{y}\right) , then from (63), we acquire the coming inequality, see [39]:

    \begin{array}{l} 4\mathfrak{G}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right)\times \mathfrak{S}\left(\frac{\mu +\nu }{2}, \frac{\varsigma +\rho }{2}\right) \\ \;\;\;\;\;\;\;\; \le \frac{\mathit{\Gamma } \left(\alpha +1\right)\mathit{\Gamma } \left(\beta +1\right)}{{4\left(\nu -\mu \right)}^{\alpha }{\left(\rho -\varsigma \right)}^{\beta }}\left[\begin{array}{c}{\mathcal{I}}_{{\mu }^{+}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\nu , \rho \right)\times S\left(\nu , \rho \right)+{\mathcal{I}}_{{\mu }^{+}, {\rho }^{-}}^{\alpha , \beta }G\left(\nu , \varsigma \right)\times S\left(\nu , \varsigma \right)\\ +{\mathcal{I}}_{{\nu }^{-}, {\varsigma }^{+}}^{\alpha , \beta }G\left(\mu , \rho \right)\times S\left(\mu , \rho \right)+{\mathcal{I}}_{{\nu }^{-}, {\rho }^{-}}^{\alpha , \beta }G\left(\mu , \varsigma \right)\times S\left(\mu , \varsigma \right)\end{array}\right] \\ \;\;\;\;\;\;\;\; +\left[\frac{\alpha }{2\left(\alpha +1\right)\left(\alpha +2\right)}+\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)\right]K\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\alpha }{\left(\alpha +1\right)\left(\alpha +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]L\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{2}\left(\frac{1}{2}-\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right)+\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{M}\left(\mu , \nu , \varsigma , \rho \right) \\ \;\;\;\;\;\;\;\; +\left[\frac{1}{4}-\frac{\alpha }{(\alpha +1)(\alpha +2)}\frac{\beta }{\left(\beta +1\right)\left(\beta +2\right)}\right]\mathcal{N}\left(\mu , \nu , \varsigma , \rho \right) . \end{array} (89)

    In this study, with the help of coordinated LR-convexity for interval-valued functions, several novel Hermite-Hadamard type inequalities are presented. It is also demonstrated that the conclusions reached in this study represent a possible extension of previously published equivalent results. Similar inequalities may be discovered in the future using various forms of convexities. This is a novel and intriguing topic, and future study will be able to find equivalent inequalities for various types of convexity and coordinated m-convexity by using different fractional integral operators.

    The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research. All authors read and approved the final manuscript. This work was funded by Taif University Researchers Supporting Project number (TURSP-2020/345), Taif University, Taif, Saudi Arabia.

    The authors declare that they have no competing interests.



    [1] S. Abbasbandy, E. Shivanian, A new analytical technique to solve Fredholm's integral equations, Numer. Algorithms, 56 (2011), 27–43. doi: 10.1007/s11075-010-9372-2
    [2] M. A. Abdou, M. M. El-Kojok, Numerical method for the two-dimensional mixed nonlinear integral equation in time and position, Univers. J. Integr. Equations, 4 (2016), 42–53.
    [3] M. A. Abdou, S. A. Raad, New numerical approach for the nonlinear quadratic integral equations, J. Comput. Theor. Nanosci., 13 (2016), 6435–6439. doi: 10.1166/jctn.2016.5582
    [4] A. Akbarzadeh, J. Fu, Z. Chen, Three-phase-lag heat conduction in a functionally graded hollow cylinder, Trans. Can. Soc. Mech. Eng., 38 (2014), 155–171. doi: 10.1139/tcsme-2014-0010
    [5] H. Almasieh, J. Meleh, Hybrid functions method based on radial basis functions for solving nonlinear Fredholm integral equations, J. Math. Ext., 7 (2014), 29–38.
    [6] P. Assari, H. Adibi, M. Dehghan, A meshless method based on the moving least squares (mls) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains, Numer. Algorithms, 67 (2014), 423–455. doi: 10.1007/s11075-013-9800-1
    [7] K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge: Cambridge University Press, 1997.
    [8] I. Aziz, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 239 (2013), 333–345. doi: 10.1016/j.cam.2012.08.031
    [9] C. Brezinski, M. Redivo-Zaglia, Extrapolation methods for the numerical solution of nonlinear Fredholm integral equations, J. Integr. Equations Appl., 31 (2019), 29–57.
    [10] H. Brunner, On the numerical solution of nonlinear Volterra-Fredholm integral equations by collocation methods, SIAM J. Numer. Anal., 27 (1990), 987–1000. doi: 10.1137/0727057
    [11] P. Cheng, J. Huang, Extrapolation algorithms for solving nonlinear boundary integral equations by mechanical quadrature methods, Numer. Algorithms, 58 (2011), 545–554. doi: 10.1007/s11075-011-9469-2
    [12] S. Chiriţă, On the time differential dual-phase-lag thermoelastic model, Meccanica, 52 (2017), 349–361. doi: 10.1007/s11012-016-0414-2
    [13] C. Constanda, M. E. Pérez, Integral Methods in Science and Engineering, Springer, 2010.
    [14] M. M. El-Borai, M. A. Abdou, M. M. El-Kojok, On a discussion of nonlinear integral equation of type Volterra-Fredholm, J. Korean Soc. Ind. Appl. Math., 10 (2006), 59–83.
    [15] J. A. Ezquerro, M. A. Hernández-Verón, Nonlinear Fredholm integral equations and majorant functions, Numer. Algorithms, 82 (2019), 1303–1323. doi: 10.1007/s11075-019-00656-3
    [16] J. Gao, M. Condon, A. Iserles, Spectral computation of highly oscillatory integral equations in laser theory, J. Comput. Phys., 395 (2019), 351–381. doi: 10.1016/j.jcp.2019.06.045
    [17] F. Ghoreishi, M. Hadizadeh, Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations, Numer. Algorithms, 52 (2009), 541. doi: 10.1007/s11075-009-9297-9
    [18] A. Hadjadj, J. Dussauge, Shock wave boundary layer interaction, Shock Waves, 19 (2009), 449–452. doi: 10.1007/s00193-009-0238-2
    [19] A. Jerri, Introduction to Integral Equations with Applications, John Wiley & Sons, 1999.
    [20] R. Katani, Numerical solution of the Fredholm integral equations with a quadrature method, SeMA J., 76 (2019), 271–276. doi: 10.1007/s40324-018-0175-z
    [21] F. R. Lin, Preconditioned iterative methods for the numerical solution of Fredholm equations of the second kind, Calcolo, 40 (2003), 231–248. doi: 10.1007/s10092-003-0078-x
    [22] K. Maleknejad, M. Hadizadeh, A new computational method for Volterra-Fredholm integral equations, Comput. Math. Appl., 37 (1999), 1–8.
    [23] S. Noeiaghdam, M. A. F. Araghi, S. Abbasbandy, Optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic, Numer. Algorithms, 81 (2019), 237–267. doi: 10.1007/s11075-018-0546-7
    [24] S. Pishbin, Numerical solution and structural analysis of two-dimensional integral-algebraic equations, Numer. Algorithms, 73 (2016), 305–322. doi: 10.1007/s11075-016-0096-9
    [25] A. B. Sawaoka, Shock Waves in Materials Science, Springer Science & Business Media, 2012.
    [26] H. Song, Z. Yang, H. Brunner, Analysis of collocation methods for nonlinear Volterra integral equations of the third kind, Calcolo, 56 (2019), 7. doi: 10.1007/s10092-019-0304-9
    [27] K. Takayama, Shock Waves: Proceedings of the 18th International Symposium on Shock Waves, Held at Sendai, Japan 21–26 July 1991, Springer Science & Business Media, 2012.
    [28] A. Wazwaz, A reliable treatment for mixed Volterra-Fredholm integral equations, Appl. Math. Comput., 127 (2002), 405–414.
    [29] A. Wazwaz, Linear and Nonlinear Integral Equations, Vol. 639, Berlin: Springer, 2011.
    [30] A. Wazwaz, S. M. El-Sayed, A new modification of the Adomian decomposition method for linear and nonlinear operators, Appl. Math. Comput., 122 (2001), 393–405.
    [31] J. Xie, X. Gong, W. Shi, R. Li, W. Zhao, T. Wang, Applying the three-dimensional block-pulse functions to solve system of Volterra-Hammerstein integral equations, Numer. Methods Partial Differ. Equations, 36 (2020), 1648–1661. doi: 10.1002/num.22496
    [32] J. Xie, Q. Huang, F. Zhao, Numerical solution of nonlinear Volterra-Fredholm-Hammerstein integral equations in two-dimensional spaces based on block pulse functions, J. Comput. Appl. Math., 317 (2017), 565–572. doi: 10.1016/j.cam.2016.12.028
    [33] J. Xie, Z. Ren, Y. Li, X. Wang, T. Wang, Numerical scheme for solving system of fractional partial differential equations with Volterra-type integral term through two-dimensional block-pulse functions, Numer. Methods Partial Differ. Equations, 35 (2019), 1890–1903. doi: 10.1002/num.22383
    [34] J. Xie, M. Yi, Numerical research of nonlinear system of fractional Volterra-Fredholm integral-differential equations via block-pulse functions and error analysis, J. Comput. Appl. Math., 34 (2019), 159–167.
    [35] S. M. Zemyan, The Classical Theory of Integral Equations: A Concise Treatment, Springer Science & Business Media, 2012.
    [36] F. Zhang, Shock Waves Science and Technology Library, Detonation Dynamics, Springer Science & Business Media, 2012.
  • This article has been cited by:

    1. Waqar Afzal, Khurram Shabbir, Thongchai Botmart, Generalized version of Jensen and Hermite-Hadamard inequalities for interval-valued (h_1, h_2) -Godunova-Levin functions, 2022, 7, 2473-6988, 19372, 10.3934/math.20221064
    2. Muhammad Bilal Khan, Omar Mutab Alsalami, Savin Treanțǎ, Tareq Saeed, Kamsing Nonlaopon, New class of convex interval-valued functions and Riemann Liouville fractional integral inequalities, 2022, 7, 2473-6988, 15497, 10.3934/math.2022849
    3. Miguel J. Vivas-Cortez, Hasan Kara, Hüseyin Budak, Muhammad Aamir Ali, Saowaluck Chasreechai, Generalized fractional Hermite-Hadamard type inclusions for co-ordinated convex interval-valued functions, 2022, 20, 2391-5455, 1887, 10.1515/math-2022-0477
    4. Tareq Saeed, Eze R. Nwaeze, Muhammad Bilal Khan, Khalil Hadi Hakami, New Version of Fractional Pachpatte-Type Integral Inequalities via Coordinated ℏ-Convexity via Left and Right Order Relation, 2024, 8, 2504-3110, 125, 10.3390/fractalfract8030125
    5. HAIYANG CHENG, DAFANG ZHAO, GUOHUI ZHAO, FRACTIONAL QUANTUM HERMITE–HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS, 2023, 31, 0218-348X, 10.1142/S0218348X23501049
    6. Haiyang Cheng, Dafang Zhao, Guohui Zhao, Delfim F. M. Torres, New quantum integral inequalities for left and right log-ℏ-convex interval-valued functions, 2024, 31, 1072-947X, 381, 10.1515/gmj-2023-2088
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4215) PDF downloads(273) Cited by(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog