We consider the semi-linear fractional Schrödinger equation
$ \begin{align*} \begin{cases} (-\Delta)^s u+V(x)u = f(x,u), \; \; \; x\in \mathbb{R}^N ,\\ u\in H^{s}(\mathbb {R}^N) , \\ \end{cases} \end{align*} $
where both $ V(x) $ and $ f(x, u) $ are periodic in $ x $, $ 0 $ belongs to a spectral gap of the operator $ (-\Delta)^s+V $ and $ f(x, u) $ is subcritical in $ u $. We obtain the existence of nontrivial solutions by using a generalized linking theorem, and based on this existence we further establish infinitely many geometrically distinct solutions. We weaken the super-quadratic condition of $ f $, which is usually assumed even in the standard Laplacian case so as to obtain the existence of solutions.
Citation: Jian Wang, Zhuoran Du. Multiple entire solutions of fractional Laplacian Schrödinger equations[J]. AIMS Mathematics, 2021, 6(8): 8509-8524. doi: 10.3934/math.2021494
We consider the semi-linear fractional Schrödinger equation
$ \begin{align*} \begin{cases} (-\Delta)^s u+V(x)u = f(x,u), \; \; \; x\in \mathbb{R}^N ,\\ u\in H^{s}(\mathbb {R}^N) , \\ \end{cases} \end{align*} $
where both $ V(x) $ and $ f(x, u) $ are periodic in $ x $, $ 0 $ belongs to a spectral gap of the operator $ (-\Delta)^s+V $ and $ f(x, u) $ is subcritical in $ u $. We obtain the existence of nontrivial solutions by using a generalized linking theorem, and based on this existence we further establish infinitely many geometrically distinct solutions. We weaken the super-quadratic condition of $ f $, which is usually assumed even in the standard Laplacian case so as to obtain the existence of solutions.
[1] | A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349–381. doi: 10.1016/0022-1236(73)90051-7 |
[2] | T. Bartsch, Y. H. Ding, On a nonlinear Schrödinger equation with periodic potential, Math. Ann., 313 (1999), 15–37. doi: 10.1007/s002080050248 |
[3] | T. Bartsch, Z. Q. Wang, Existence and muitipliticity results for some superlinear elliptic problem on $\mathbb R^N$, Commun. Part. Diff. Eq., 20 (1995), 1725–1741. doi: 10.1080/03605309508821149 |
[4] | L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. doi: 10.1080/03605300600987306 |
[5] | G. W. Chen, S. W. Ma, Asymptotically or super linear cooperative elliptic systems in the whole space, Sci. China Math., 56 (2013), 1181–1194. doi: 10.1007/s11425-013-4567-3 |
[6] | V. Coti. Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693–727. doi: 10.1090/S0894-0347-1991-1119200-3 |
[7] | V. C. Zelati, P. H. Rabinowitz, Homoniclinic type solutions for a semilinear elliptic PDE on $\mathbb R^N$, Commun. Pure Appl. Math., 45 (1992), 1217–1269. doi: 10.1002/cpa.3160451002 |
[8] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhikeri's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. doi: 10.1016/j.bulsci.2011.12.004 |
[9] | Y. H. Ding, C. Lee, Multiple solutions of Schrödinger equations with infinite linear part and super or asymptotially linear terms, J. Differ. Equations., 222 (2006), 137–163. doi: 10.1016/j.jde.2005.03.011 |
[10] | Z. R. Du, C. F. Gui, Further study on periodic solutions of elliptic equations with a fractional Laplacian, Nonlinear Anal., 193 (2020), 111417. doi: 10.1016/j.na.2019.01.007 |
[11] | F. Fang, C. Ji, On a fractional Schrödinger equation with periodic potential, Comput. Math. Appl., 78 (2019), 1517–1530. doi: 10.1016/j.camwa.2019.03.044 |
[12] | Z. P. Feng, Z. R. Du, Periodic solutions of Non-autonomous Allen-Cahn Equations involving fractional Laplacian, Adv. Nonlinear Stud., 20 (2020), 725–737. doi: 10.1515/ans-2020-2075 |
[13] | F. S. Gao, M. B. Yang, A strongly indefinite Choquard equation with critical exponent due to the Hardy-Littlewood-Sobolev inequality, Commun. Contemp. Math., 20 (2018), 1750037. doi: 10.1142/S0219199717500377 |
[14] | C. F. Gui, J. Zhang, Z. R. Du, Periodic solutions of a semilinear elliptic equation with a fractional Laplacian, J. Fixed Point Theory Appl., 19 (2017), 363–373. doi: 10.1007/s11784-016-0357-1 |
[15] | W. Kryszewski, A. Szulkin, Generalized linking theorem with application semilinear Schrödinger equation, Adv. Differ, Equations, 3 (1998), 441–472. |
[16] | N. Laskin, Fractional quantum mechsnics and Lévy path integrals, Phys. Lett. A., 268 (2002), 298–305. |
[17] | N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108 |
[18] | G. B. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763–776. doi: 10.1142/S0219199702000853 |
[19] | S. Liu, On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Dif., 45 (2012), 1–9. doi: 10.1007/s00526-011-0447-2 |
[20] | Y. Li, Z. Wang, J. Zeng, Ground States of nonlinear Schrödinger equations with potentials, Annales de l'I.H.P. Analyse Non Linéaire, 23 (2006), 829–837. |
[21] | Z. L. Liu, Z. Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 563–574. |
[22] | A. Pankov, Peridic nonlinear Schrödinger equation with application to photonic crystals, Milian J. Math., 73 (2005), 259–287. doi: 10.1007/s00032-005-0047-8 |
[23] | P. H. Rabinowitz, On a class of nonliear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270–291. doi: 10.1007/BF00946631 |
[24] | M. Schechter, Superlinear Schrödinger operators, J. Funct. Anal., 262 (2012), 2677–2694. doi: 10.1016/j.jfa.2011.12.023 |
[25] | A. Szulki, T. Weth, Ground state solution for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802–3822. doi: 10.1016/j.jfa.2009.09.013 |
[26] | X. H. Tang, Non-Nehair manifold method for asympotically a periodic Schrödinger equations, Sci. China Math., 58 (2015), 715–728. |
[27] | X. H. Tang, S. T. Chen, X. Y. Lin, J. S. Yu, Ground state solutions of Nehari-Pankov type for Schrödinger equations with local supper-quadratic conditions, J. Differ. Equations., 268 (2020), 4663–4690. doi: 10.1016/j.jde.2019.10.041 |
[28] | X. H. Tang, X. Y. Lin, J. S. Yu, Nontrivial solution for Schrödinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat., 31 (2019), 369–383. doi: 10.1007/s10884-018-9662-2 |
[29] | C. Troestler, M. Willem, Nontrivial solution of a semilinear Schrödinger equation, Commun. Part. Diff. Eq., 21 (1996), 1431–1449. doi: 10.1080/03605309608821233 |
[30] | M. B. Yang, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities, Nonlinear Anal., 72 (2010), 2620–2627. doi: 10.1016/j.na.2009.11.009 |
[31] | M. B. Yang, Existence of semiclassical solutions for some critical Schrödinger-Poisson equations with potentials, Nonlinear Anal., 198 (2020), 111874. doi: 10.1016/j.na.2020.111874 |
[32] | J. Zhang, W. M. Zou, The critical cases for a Berestyski-Lions theorem, Sci. China Math., 57 (2014), 541–554. doi: 10.1007/s11425-013-4687-9 |
[33] | X. X. Zhou, W. M. Zou, Ground state and muitiple solutions via generalized Nehair manifold, Nonlinear Anal., 102 (2014), 251–263. doi: 10.1016/j.na.2014.02.018 |