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Abstract: We consider the semi-linear fractional Schrodinger equation

(=AN)*u+V(x)u= f(x,u), xeR",
ue H'RY),

where both V(x) and f(x,u) are periodic in x, O belongs to a spectral gap of the operator (-A)* + V
and f(x,u) is subcritical in u. We obtain the existence of nontrivial solutions by using a generalized
linking theorem, and based on this existence we further establish infinitely many geometrically distinct
solutions. We weaken the super-quadratic condition of f, which is usually assumed even in the standard
Laplacian case so as to obtain the existence of solutions.
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1. Introduction

We consider the following semi-linear fractional Schrodinger equation

—A)* = N
{( AY'u+V(xu = f(x,u), xeR", (1.1)

u € H'(RV),

where (—A)*, s € (0, 1), denotes the usual fractional Laplace operator, a Fourier multiplier of symbol
|€]>. Here H*(R") is the fractional Sobolev space

_ 2
HRY) := {u e L*RY): f f dedy < oo}.
RN RN

|x _ y|N+2s
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Suppose that V : R¥ — Rand f : RV x R — R satisfy the following basic assumptions
(Vy,) : V€ C(RY,R) is 1-periodic in each component xi, X», ..., xy of x and

sup{o[(-A)* + V] N (—0,0)} < 0 < inf{o[(-A)* + V] N (0, )},

where o[(—A)* + V] denotes the spectrum of (-A)* + V.
(F)): f € CRYN xR,R) is 1-periodic in each of x;, x,, ..., xy and | f(x, £)| < ¢;(1 +|t|’~!) for some ¢; > 0
and p € (2,2;), where 2} = % if N >2s,2; =400 if N < 2s.
(F»): f(x,1) = o(Jt]) as |t| — 0 uniformly in x € R,
Denote A := inf{o[(—A)* + V] N (0, 0)}. By (V;), one has A; > 0.
Two simple examples of function satisfying the conditions (¥) and (F,) are the following:

[t = POorIn(l + 1), f(x,1) = P2,

where the function P(x) is 1-periodic in each of xi, x,, ..., xy.
The fractional Schrodinger equation is a fundamental equation of fractional quantum mechanics. It
was introduced by Laskin [16] and [17] as a result of expanding the Feynman path integral from the
Brownian-like to the Lévy-like quantum mechanical paths, where the Feynman path integral leads to
the classical Schrodinger equation, and the path integral over Lévy trajectories leads to the fractional
Schrédinger equation.

The fractional Laplacian operator is defined as

(—A)'u(x) = C(N, 5)P.V. f ) — uQ) 4

Y |x — yVeRs
Here P.V. stands for the Cauchy principal value and the positive constant C(N, s) depends only on N
and s, which is not essential in our problem and we will omit it for simplicity of notation. For
fractional Laplacian operators and fractional spaces, the reader can refer to [4] and [8]. The authors
in [1] raise the following assumption (AR) of the nonlinear term to study a semi-linear elliptic
boundary value problem
(AR): There exists ¢ > 2 such that 0 < uF(x, 1) < tf(x,t), forx e RN, t # 0,
where F(x,t) := fot f(x,7)dt. By a direct integration of (AR), one can deduce the existence of positive
constants A, B such that F(x,7) > Al|t}* — B for any t € R. We first recall some main results of the
particular case s = 1, namely the standard Laplacian case of (1.1). The existence of a nontrivial
solution to (1.1) has been obtained in [2,3,7,15,23,29,31] under (AR) and some other standard
assumptions of f. The authors of [21] introduce the following more natural super-quadratic condition
to replace (AR)
(SQ) : limyeo @ = oo uniformly in x € R",
and obtain the existence of nontrivial solutions of (1.1) under (SQ) and some other standard
assumptions of f by imposing some compact conditions on the potential function V.After that,
condition (SQ) is also used in many papers, see [5,9, 19,20, 25,30,32,33]. In the definite cases
where o(-A + V) C (0, 00), [20] obtains a ground state solution via a Nehari type argument for (1.1).
The corresponding energy functional of (1.1) in the case s = 1 is

O(u) = % f (vul* + V(x)u?)dx — f F(x,u)dx.
RN RN
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Let E = H'(RY). Recall that E = E~ @ E* corresponds to the spectral decomposition of —A + V with
respect to the positive and negative part of the spectrum, and u = u~ + u* € E~ @ E*. (See Section 2
for more details.) The following set has been introduced in [22]

M={uecE\E :{(®(u),u)y =(D'(u),vy =0forallve E}.

By definition, M contains all nontrivial critical points of /. The authors of [25] develop an ingenious
approach to find ground state solutions of (1.1). Their approach transforms, by a direct and simple
reduction, the indefinite variational problem to a definite one, resulting in a new minimax
characterization of the corresponding critical value. More precisely, they establish the following two
propositions by introducing the strictly monotonicity assumption (Mo)

(Mo): t — % is strictly increasing on (—oo, 0) and on (0, o).

Proposition 1.1. ([25]) Assume (V1), (F), (F,),(Mo),(SQ) are satisfied and let m = in/\f/( O(u). Then m
ue
is attained, m > 0 and if uy € M satisfies D(uy) = m, then ug is a solution of (1.1).

Proposition 1.2. ([25]) Assume (V), (F1), (F»),(Mo), (SQ) are satisfied and f(x,t) is odd in t. Then
(1.1) admits infinitely many pairs geometrically distinct solutions +u.

In [24], the author obtains nontrivial and ground solutions of Schrodinger equation (1.1) under
weaker conditions than those of [25]. Via deformation arguments jointed with the notion of Cerami
sequence(See Section 2 for concrete definition), [9] establishes the following proposition.

Proposition 1.3. ([9]) Assume that V and f satisfy (V1), (F1), (F3), (S Q) and the following condition
(DL) : F(x,t) =2 0,G(x,1t) = %f(x, Nt—F(x,t) >0if t #0,G(x,t) = +c0 as |t| — oo uniformly in
x € RN, and there exists c,, 19 > 0 and v > max{1, X} such that

‘f(x,t) )
t

v

< e,G(x,t) forall |t| > ry and x € R".

Then (1.1) has a nontrivial solution. If, in addition, f(x,t) is odd in t, then (1.1) admits infinitely many
pairs geometrically distinct solutions +u.

In [26], the author obtains the existence of ground state solutions by non-Nehari manifold method
for (1.1) with periodic and asymptotically periodic potential function V, under (SQ) and some other
standard assumptions of f. Recently, under the weaker super-quadratic condition (SQ)" and some
other standard assumptions of f, the authors in [28] obtain the existence of nontrivial solution for
(1.1) with periodic and non-periodic potential function V. The authors of [27] further obtain the
existence of ground state solutions and infinitely many geometrically distinct solutions under
(SQ)" and non-strictly monotonicity condition (Mo)’, and as a compensation, additional condition
(Fy) or (Fy) is necessary. These conditions are defined as follows.

Mo): u — % is nondecreasing on (—oo, 0) and on (0, o).

(SQ)’: There exists a domain Q C RY, such that limy_ % = o0, a.e x € Q.
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(Fp): G(x,1) := %f(x, Ht— F(x,t) > 0, there exists ¢y > 0, Ry > 0 and « € (0, 1), such that

e < coG(x,1), Y [t]| > Ry, if N > 3,

[If(x, 2 ] Gt

and for some k € (1, =],

> l-a

k
] < coG(x, 1), V|t| 2Ry, if N = 1,2;

(Fp): G(x,b) = %f(x, Nt— F(x,r) > 0, F(x,t) = 0, and there exists ¢cg > 0,09 € (0,A) and a €
(0, 1), such that

f();, 1) < coG(x, 1), if N > 3,

Lf G, ) | T
"

> Ay — 0o implies [

and for some k € (1, =1,

lf (x, D

|t

f(x, 1)
t

k
> Ay — 6 implies [ ] <coGx, 0, if N =1,2.

The following propositions are established in [27].

Proposition 1.4. Assume that V and f satisfy (V1), (Fo)', (F1),(Fy) and (S Q). Then (1.1) has a solution
up € E\{0} such that ®(uy) = inlg ®(u) > 0, where K := {u € E\{0} : ®'(u) = O}. If, in addition, f(x,t)is

odd in t, then (1.1) admits infinitely many pairs geometrically distinct solutions +u.

Proposition 1.5. Assume that V and f satisfy (V1), (Fy), (F1), (F3),(Mo) and (S Q). Then (1.1) has a
solution uy € E such that ®(uy) = in/\f/l O(u) > 0. If, in addition, f(x,t) is odd in t, then (1.1) admits

infinitely many pairs geometrically distinct solutions +u.

Existence of nontrivial solutions to a strongly indefinite Choquard equation with critical exponent
is obtained in [13]. We also want to mention that the existence and some quantitative properties of
periodic solutions of fractional equation with double well potential in one-dimensional case are
established in [10, 12, 14].

In this paper we will generalize the existence of nontrivial solutions in [9] by replacing (SQ), (DL)
by the weaker conditions (F3) and (F,), and generalize the existence of infinitely many geometrically
different solutions in [27] by replacing (Mo)’, (SQ)" by the weaker conditions (F3) and (Fy).

The corresponding energy functional of (1.1) is

_ 2
O, (u) := lf % dxdy + lf V(x)uz(x) dx — f F(x,u(x))dx.
4 RN JRN |X - yl 2 RN RN

It is easy to verify that @, is C'(H*(R"),R) and

@=L [ [ D00 00
RN RN

2 |.X' _y|N+2s
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+ f V(x)u(x)v(x)dx — f f(x, u(x))v(x) dx.
RN RV
From (F) and (F>), for any given € > 0, there exists C. > 0 such that
[f(x. 0] < elt] + Cli”™", Y(x,1) e RY xR, (1.2)

which yields
|F(x,0)| < €t + Ct?, Y(x,1) € RY xR. (1.3)

The following conditions are required to arrive at our results.
(F3): F(x,t) > 0 for any (x,1) € R¥ x R, and there exists r; > 0 such that F(x, ) > A for any || > r,
and x € RV,
(F): G(x,t) = %f(x, Nt — F(x,t) > 0if |¢f| # 0, G(x,t) — +oo as |[f| — oo uniformly in x, and there
exists ¢3, 7, > 0 and o > max{1, %} such that @ 7 < c3G(x,1t) for |t| > r, and x € RV,

An example that satisfies the conditions (F)-(F4), but does not satisfy (SQ) is

1+ et
1) = h(x)tln ——,
f 0 = heorn

where h(x) is 1-periodic in each of xi, x,, ..., xy and inf A(x) > 4A;.
The followings are our main results.

Theorem 1.1. Assume (Vi) and (F)-(F4) are satisfied. Then (1.1) has a nontrivial solution.

Theorem 1.2. Assume (V) and (F)-(F4) are satisfied and f(x,t) is odd in t. Then (1.1) admits
infinitely many pairs geometrically distinct solutions +u.

We note that if 1 is a solution of (1.1), then so are all elements of the orbit of 1, under the action
of ZV, O(u) = {k *u : k € ZV}, where k * u(x) := u(x + k). Two solutions u; and u, are said to be
geometrically distinct if O(u;) and O(u,) are disjoint.

2. Preliminaries

Denote A, = (—A)* + V. Plainly A; is self-adjoint in L>(R") with domain D(A,) = H*(R"). Let
{Y(d) : —oo < A < 400} and |A,| be the spectral family and the absolute value of A respectively, and
|AS|% be the square root of |A,|. Let E, = Z)(IAslé) and

E; =T,(0)E,, E] =[id - T (0)]E,. 2.1
For any u € E,, it is easy to see that u = u~ + u* and

A~ = —|Aglu”, At =|A ut forany u € E; N D(A)), (2.2)

where
u ="T,0)uekE;, u =[id-"",0)]uecE;. (2.3)

Under assumption (Vy), we can define an inner product

,v) = (A1 1A, V) 2, u,v € E, (2.4)
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and the corresponding norm
1
llull = A ull 2.

By (V,), E, = H*(RY) with equivalent norms. Therefore E; embeds continuously in L?(R") for all
2 < p £ 27. Hence, there exists constant y, > 0 such that |[ul|;» < y,|lul|. By the definitions of A, and
ET we also have

lull> > Allull;, for any u € E. (2.5)
From (2,2)—(2.4), one has

B(u,v) := l f f W) ~ G = vy) dxdy + f V(x)u(x)v(x)dx
RN JRN RN

2 |x — y|N+2s
= (A, V)2
= (AJu*, V)2 = (AU, )2
= (A" v = (A V)2
= (A2 u*, JA V) 2 — (AP0 JAV )2

=W v - ,v).

Then

1
D, (u) = EB(M’ u) —f F(x,u)dx
RN
Lo -2 (2.6)
= E(IIM I = ")) = | F(x,u)dx foranyu € Ei.
RN

Let X be a real Hilbert space. Recall that a functional ¢ € C'(X,R) is said to be weakly sequentially
lower semi-continuous if for any #, — u in X one has ¥(u) < liminf, . ¥(u,), and ¢’ is said to
be weakly sequentially continuous if lim,_,'(u,),v) = &'(u),v) for each v € X. Let Y(u) =
fRN F(x,u)dx. By (F;)—(F3), one can easily get that ¥ is weakly sequentially lower semi-continuous
and ¥’ is weakly sequentially continuous.

We introduce the following generalized linking theorem.

Lemma 2.1. ([15,18]) Let X be a real Hilbert space, ¢ € C'(X,R), ¢(0) = 0 and
o(u) = %(Ilbfll2 — ) —yw), u=u +u eX ®X".
Suppose that the following assumptions are satisfied
i) : ¢ € CY(X,R) is bounded from below and weakly sequentially lower semi-continuous;
ii) 1 Y’ is weakly sequentially continuous;
iii) . there exists T > 0 such that

m, = inf u)>0;

ueXt |lull=1

AIMS Mathematics Volume 6, Issue 8, 8509-8524.
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iv) : there exists r > 7> 0, e € X*and ||e|| = 1, such that

m. > sup ¢(00,,),

where
Qeri={v+ze:veX ,z>0,[v+zel <r}.

Then there exists a constant Cy € [mq, sup(Q.,)] and a sequence {u,} € X, such that ¢(u,) — Co,
ll" ()l + [latal]) — 0.

A sequence {u,} is called Cerami sequence (denoted also as (C,).-sequence) of the energy functional
¢, if there exists constant ¢ such that ¢(u,) — ¢ and ||¢’(u,)||(1 + ||lu,])) — O.

3. The existence of nontrivial solutions

In this section, we will prove Theorem 1.1 by applying Lemma 2.1.

Lemma 3.1. Under the assumptions (V), (F) and (F»), there exists p > 0 such that
my, = inf{®;w) :ueE,|ull =p}>0

Proof. By (2.6), for u € E}, we have O(u) = %Ilull2 - fRN F(x,u)dx. Inequality (1.3) shows that for
any given € > 0 the inequality |F(x, u)| < €lul*> holds for small |u|. So |fRN F(x,u)dx| < €||ul|*, and the
conclusion follows if p is sufficiently small. O

Lemma 3.2. ([11], Theorem 1.1) The fractional Schrodinger operator A; = (—=A)* + V has purely
continuous spectrum, which is bounded below and consists of closed disjoint intervals.

Since Y (Ay) is purely continuous, for any given p > A, the space Y, := (), — (Ty)o),2 is
infinitely dimensional, where (((';),)cr denotes spectrum family of A;. By (2.5), for Ay < u < 2A; we
have

Y, CE;, and AyIl7, < VI < plivll, forall v € Y, 3.1)

Lemma 3.3. Suppose that (V) and (F5) are satisfied. Then for any e € Y, sup @, (E; ®R"e) < co and
there is r, > 0 such that
O (u) <0foranyuc E; ®R%e, |ul| > r,.

Proof. Arguing indirectly, assume that for some sequence {u,} € E; ® R'e, e € Y, with |[u,||
— oo and @ (u,) > 0. Setting v, = ”Z—"”, then ||v,|| = 1. Hence there exists v = v* + v~ such that

v, = Vv, v, = v, vi = v" e R*e. Here the strong convergence of {v;} is due to the reason that R*e
is finite dimensional. We have

q)s(un) 1 _ F(x’ Mn)
< = Lavre = o - f i dx
R

P 2 llall?

We claim that v # 0. Suppose not, then

1 F(x,u,) 1
0<— 2+f > dx < =|VIP > 0,
2||v,,|| T x 2||v,1||

AIMS Mathematics Volume 6, Issue 8, 8509-8524.
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where the first inequality use the fact that F > 0. The above relation gives ||v; || — 0, hence 1 = |[v,||*> =
V11> + |lv, 1> = 0, which is a contradiction, and the claim is true. By (3.1)

V1P = V1P = 24, fN Vidx < plvIR, = VIR = 2(AVTIE, + AlvTIE)
R
< —(Q@A, = IV IE +IvIP) < 0.
Hence, there exists a bounded set Q € RY such that
IWWV—HVMZ—ZAﬂf\de<O.
Q

Note that

lluall> lluall®

AS n 2 - F s Uy
=5 (||v:f||2 — v II* - ZASfVi dx) +f |ut] 2()c u )dx
Q Q el

] ARIQ
~ (||V+||2 - ||V;||2 —2A; f vi dx) + ¢
2 Q

llal?

D, (u, _ F(x,u,
() 4w%—nn>—£ LD

where the last inequality use the assumption (F3). Here |Q| denotes Lebesgue’s measure of Q. By the
weak lower-semi continuity of the norm, we have ||[v7||* < liminf,_,o v, |I>. Thus

q)s n 1 —
0 < liminf ” (LItIZ) < liminf (llv 1> = 1lv, > = 2A, f vﬁdx)
n—00 Uy Q

<5 (||v+||2 —v7IP = 24, f V? dx) <0,
2 Q

a contradiction follows. O

Lemma 3.4. Under the assumptions of (V), (F,) and (F4), any (C,).-sequence is bounded.

Proof. Let{u,} € E;be a(C,).-sequence. Suppose that u, is unbounded, define v, = ””"”, then ||v,|| = 1.

Passing to subsequence, we may assume that v, — vin E;, v, — v in L” (RN ),2 < p <2 and

v, — va.e. in R¥. Moreover ||v,||.» < Ypllvall = y,. Note that

CD/s(un)(u; - l/l,_,) = ”Mn”2 (1 - fRN f(X, M,,)(V; - V;)) ,

llu|

hence

f Joow)n —vi) (3.2)
RN

llunll

since {u,} C E; is a (C,).~sequence. For R > 0,0 < a < b, we define
Qu(a,b) := {x e R, a < |u,(x)| < b},

Gg :=inf {G(x,u) : x € RY, |u| > R}

AIMS Mathematics Volume 6, Issue 8, 8509-8524.
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and

G(x,
Gz:inf{ (xzu)xERN,aslulsb}.
u

By (F4), Gk > O for R > 0 and Gg — +00 as R — +oco. Since G(x,u) > 0 for u # 0 and depends
periodically on x, we have
G(x,u,) > Golu,*, x € Q,(a,b). (3.3)

Observe that for n large

1
14+ Cy = Dy(u,) - Ed)’s(un)un = f G(x,u,)dx
RN

= f G(x,u,)dx + f G(x,u,)dx + f G(x,u,)dx (3.4)
Q,(0,a) Qy(a,b) Q;(b,00)

> f G(x,u,)dx +G" f i, |? dx + Gp|Q,(b, ).
Q,(0,a) Q,(a,b)

Denote o’ as the conjugate number of o, namely % + Ul =1. Sett, = %, then 7, = 207 € (2,2)),
since o > max({l1, ££}. Fix a 7 € (1, 2}). By (3.4), we can see

1+C0—>0

|€2,(b, 20)| <
uniformly in n as b — +co. By using Holder inequality we have

f Val™ < Y2 1Qu(b,00)|'"F - 0 (3.5)
Qu(boo)

uniformly in n as b — co. For any given 0 < ¢ < % let bs > r,. From (3.4), (3.5) and (F;), we have

J(x,u,) _
f e LA ||
Q2 (b3.09)

et

o\ = ;
< f ) ( f W —v,;nvnw’)
( Q,(bs.0) Q,(bs,00) (3.6)
1 1 1
< ( f c3G(x, un)) ( f vy = v, IT") ( f Ivnl"’)
RV Q,(bs.0) Qu(bs,00)

S,

Q‘._.

J(x, 1)

Uy

IA

where we use the relation 7, = 20”. By (F»), there exist as > 0 such that |f(x, 7)| < (y%)zltl for any |f] <

fx, u,) _
f vy = vl
0,(0,a5) ||

o P
: i = villvl < = vl < 6.
Ln(o,a(g) (72)2 (’y2)2 12
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From (3.4) we have

1 1+C
f v, |* dx = > f |u,|? dx < - 02 — 0asn — co. (3.8)
Q,(a,b) o] Qu(a,b) Gollu |

Note that there exists y = y(d) > 0 such as |f(x, u,)| < ylu,| for x € Q,(as, bs). By (3.8), there exists
ng > 0, for n > ny we have

S(x,u,) _ _
f — (v, =Vl < Ylvy = v, vl
Quasby) Ul Qu(as.by)

%
< Ylvallzz (f |Vn|2) <6
Qu(as,bs)
Combining (3.6), (3.7) and (3.9) we have
SO u)(vy =)
RV [l
which contradicts with (3.2). O
Proof of Theorem 1.1 From Lemmas 3.1 and 3.3, we verify that all the conditions of Lemma 2.1

hold true. Hence there exist a Cerami sequence such that Og(u,) — Co, ||D}(u,)II(1 + [|u,ll) — 0. By
Lemma 3.4 and Sobolev imbedding theorem, there exists C > 0 such that ||u,|[;» < C. If

0 := lim sup sup f > dx = 0,
Bi(y)

n—oo yERN

(3.9)

<36<1,

then by Lions’ concentration compactness principle, u, — 0 in LP(R"Y) for 2 < p < 2% . For € = 4%02,
from (1.2) and (1.3) it follows that
1 3 3
lim supf — f(x, u)u, — F(x,u,)|dx < =eC* + C, lim lleall?, = 5 Co.
nooo Jrv |2 2 n—oo 8
We obtain
1
Co+o(1) = y(un) - 5 (O (), )
1 3
= 5 SO uuy — F(x,uy) | dx < 2Co + o(1),
R [ 2 8
a contradiction follows, and so ¢ > 0.
Passing to a subsequence, we may assume the existence of k, € Z" such that
0
f luPdx > =.
Bl+ \/E(kn) 2
Let us define v,(x) = u,(x + k,), then
)
f valdx > ~. (3.10)
Br, () 2

Since V(x) is 1-periodic in each of xy, x,, ..., xy, then |[u,|| = ||v,|| and
Q;(v,) = Co, QW)L + [Ivall) — O.
Passing to a subsequence, we have v, — v in E;. Obviously, (3.10) implies that ¥ # 0. By a standard

argument, one has @’ (v) = 0. We complete the proof of Theorem 1.1. O
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4. The existence of infinite many solutions

In this section, we give the proof of Theorem 1.2.
We need to introduce some notations. For d, > d; > —oo, we set

(D?z = {I/t € Es : CDS(M) < dz}, Is,dl = {I/t € Es : (Ds(u) > d]}, (Di‘l,zch = Iiiz N (Ds,dp

K={ueE\{0}: () =0}, Ky={uecK: Dy u)=d.

Lemma 4.1. Assume that (Vy), (F), (F), (F4) hold, then

)by :==inflllull : u € K} > 0;

. . (4.1)
ii) by == inf{®s(u) : u e K} >0.
Proof. 1) Assume b; = 0, then there is a sequence {u,,} C K with ||u,|| — 0, and
0= llf - [ e - i)
RN
This and (1.2) yield that
llual* < €lluanll7s + Celluall7, - (4.2)

By this and Sobolev imbedding theorem we deduce |lu,|*? < C., which contradicts with the
assumption ||u,|| — O.

ii) By .
(Ds(un) = (I)s(un) - ECD,;(un)un = f G(x, un) >0, u, € K, (43)
RN

we have b, > 0. Assume b, = 0, then there is a sequence {u,} C K such that ®(u,) — 0. Since {u,} is
a (C,).~o sequence, by lemma 3.4, u, is bounded. By Sobolev imbedding theorem, there exists C > 0
such that ||un||i2 < C. Note that

llall® = fRN SO u)(uy — uy,) 4.4)

By (4.3), for any 0 < a < b, we have
o(l) = f G(x,u,)dx
RN
= f G(x,u,)dx + f G(x,u,)dx + f G(x,u,)dx 4.5
Q,(0,a) Qy(a,b) Q,(b,00)
> f G(x,u,) dx + G f lunl* dx + Gyl Qu(b, o0),
Q,(0,a) Qy(a,b)

which gives

1
f lu,|* dx = o(1), |Q,(b, )| < oll) =o(1)
Qu(a.b) Gy
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as n — oo. Similar as the derivation of (3.5), for any p € (2,2}) we have

f lu,Pdx — 0asn — oo. (4.6)
Q,(b,»)

Next, we prove ||u,|| — 0. For any given € > 0, by (F»), there exist a. > 0 such that |f(x, 1) < 35
for any |f| < a. and x € R". Hence,

€ €
|f Ce, u)lluy — u,)|ldx < — (f |Mn|2) <= 4.7)
£n<o,ae> 3C \Ja,0.a0) 3

There exists b, > a. > 0 such as |f(x, 1) < C|t|’~! for |t| > b. and x € RY, and for large n we have

f |f Ce, u)llu,, — u,,|dx
Q(be,00)
p-1 1 (4.8)

_ " e
<C. (f Iunlpdx) X (f |u,; — u;lpdx) <-,
Q(be.co) Q(be.co) 3

where the last inequality follows from (4.6). Note that there exists ¥ = y(e) > 0 such as |f(x, )| <
y\t| for |t| € (a., b.) and x € R". So for large n

f f G )ty — g ldx < f Yy = iy llun|dx
Qu(ae.be) Qu(ae.be)

! 4.9
< 7||un||L2 (f |un|2dx) < E
Qu(ach) 3
Therefore, it follows from (4.7)—(4.9) and (4.4), we have that
lim sup ||u,|I* < €,
which contradicts with the result ||u,|| > b; > 0 of i). O

Lemma 4.2. Assume that (F) and (F») hold. If u, — i in H*(R"), then along a subsequence of {u,)},

[f(x’ un) - f(xa Up — ﬁ) - f(x’ ﬁ)]¢dx = 0.

RN

lim sup
% peHs(RN),||gl1<1

Proof. We can refer to Lemma 4.1 of [27]. The only difference is that the space H'(R") there is

replaced by H*(R") in this lemma, the rest argument is almost similar as the proof of Lemma 4.1 in

[27] and we omit it. O
Applying Lemma 4.2, we can obtain the next lemma.

Lemma 4.3. Assume that (Vy), (F) and (F3) hold. If u, — u in E;, then
Oy (u,) = Oy(ir) + Oy(u, — it) + o(1), (4.10)
@' (u,) = O(w) + O (u, — 1) + o(1). “4.11)
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Proof. The proof is rather similar as that of lemma 4.2 of [9]. The main differences are that the space
E and the energy functional @ there are replaced by E; and @, respectively. We omit it here. O
Remark Theorem 1.1 shows that equation (1.1) has a nontrivial solution u € E, and so K # 0. We
choose a subset Q of K such that @ = —Q (here —Q := {w : —w € @Q}) and each orbit O(u) C K has a
unique representative in Q. It suffices to show that the set Q is infinite, so from now on we assume by

contradiction that
Q is a finite set. (4.12)

Let [a] stands for the largest integer not exceeding a. As a consequence of Lemmas 3.4, 4.1, 4.3,
we have the following lemma (see [9] lemma 4.4, [15] proposition 4.2 and [27] lemma 4.4. The only
difference is that the space E is replaced by E, and the energy functional ® is replaced by @;. )

Lemma 4.4. Suppose that (V) and (F1)—(F,) are satisfied. Let {u,} be a (C,). sequence of I, in E,.
Then either

(i) u, > 0 in E; (and hence ¢ =0) ; or

(i) ¢ = b, and there exists a positive integer { < [biz], points iy, iy, ..., Uy € K, a subsequence denoted
again by {u,} and sequences {a'} C Z", such that

¢
ey = Y dl il > 0 asn — oo,
i=1

la! —al|l = oo fori# j asn— oo

and

4
q)s(ﬁi) =C.
=1

1

For any ¢ > b,, asin [6,7,9, 13, 15], we let

J
QC::{Zl(ai*Mi):1SjS b

C
2

, aiEZN,M,‘EQ}.

Plainly Q. C Q. for any ¢ > ¢’ > b,.
Following the argument of Proposition 1.55 in [6], we have the next lemma.

Lemma 4.5. Let ¢ > by. Then k. := inf {||lu; — us|| : uy,ur € Qe uy # up} > 0.

To prove Theorem 1.2, we need to establish the following lemmas 4.6—4.10. The proofs of lemmas
4.6-4.10 are rather similar to the the proofs of lemmas 4.6—4.10 in [27]. The main differences are that
the space E and the energy functional @ there are replaced by E and @, respectively. We omit them
here.

Lemma 4.6. Let ¢ > by. If {ul}, {u?} C O p, are two (C,)-sequence for @, then either lim,_, |ju. —
u%l” =0 orlim SUP,, 00 ”urlz - ui” 2 K.

Lemma 4.7. Let ¢ > by, @ € (0,a¢] (a9 € (0,(c — b2)/2] )and u € E \ (K U {0}) be such that
c—a < On(t,u)) <c+aforallt e [0,00). Then uy, = lim,_,, n(t, u) exists and u,, € ©**_ N K.

S,c—
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Lemma 4.8. Let ¢ > b,. If K. = 0, then there exists € > 0 such that lim,_., ®,(n(t,u)) < c — € for
u e ot

Lemma 4.9. Let ¢ > b,. Then for every 6 € (0,k./4), there exists € = €(c,0) > 0 and an odd and
continuous map ¢ : D€\ Us(Q.) — D¢, where Us(Q,) := {v € E; : dist(v,Q.) < 6}.

Lemma 4.10. Let ¢ > b,. Then for every § € (0,k./4), y(Us(Q.)) = 1, where y(Us(Q.)) denotes the
usual Krasnoselskki genus of Us(Q,.).

Proof of Theorem 1.2 We can prove Theorem 1.2 by applying Lemmas 4.6—4.10. Since the proof
is rather similar that of the second part of theorem 1.4 and 1.5 in [27], we omit it here. O

5. Conclusions

In this paper we obtained the existence of nontrivial solutions to a semi-linear fractional Schrodinger
equation by using a generalized linking theorem. Based on this existence results, infinitely many
geometrically distinct solutions are further established under weaken conditions of the nonlinearity of
the equation.
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