Citation: Haifa Bin Jebreen, Yurilev Chalco Cano, Ioannis Dassios. An efficient algorithm based on the multi-wavelet Galerkin method for telegraph equation[J]. AIMS Mathematics, 2021, 6(2): 1296-1308. doi: 10.3934/math.2021080
[1] | B. Alpert, G. Beylkin, D. Gines, L. Vozovoi, Adaptive solution of partial differential equations in multi-wavelet bases, J. Comput. Phys., 182 (2002), 149-190. doi: 10.1006/jcph.2002.7160 |
[2] | B. Alpert, G. Beylkin, R. R. Coifman, V. Rokhlin, Wavelet-like bases for the fast solution of second-kind integral equations, SIAM J. Sci. Statist. Comput., 14 (1993), 159-184. doi: 10.1137/0914010 |
[3] | A. Akgül, D. Grow, Existence of unique solutions to the Telegraph equation in binary reproducing kernel Hilbert spaces, Differ. Equ. Dyn. Syst., 28 (2020), 715-744. doi: 10.1007/s12591-019-00453-3 |
[4] | B. Boutarfa, I. Dassios, A stability result for a network of two triple junctions on the plane, Math. Method Appl. Sci., 40 (2017), 6076-6084. doi: 10.1002/mma.3767 |
[5] | I. Dassios, F. Font, Solution method for the time-fractional hyperbolic heat equation, Math. Method Appl. Sci., (2020). |
[6] | I. Dassios, Stability of bounded dynamical networks with symmetry, Symmetry, 10 (2018), 121. |
[7] | I. Dassios, Stability of basic steady states of networks in bounded domains, Comput. Math. Appl., 70 (2015), 2177-2196. doi: 10.1016/j.camwa.2015.08.011 |
[8] | M. Dehghan, A. Ghesmati, Solution of the second order one-dimentional hyperbolic telegraph equation by using the dual reciprocity boundary integral equation (DRBIE) method, Eng. Anal. Boundary Elem., 34 (2010), 51-59. doi: 10.1016/j.enganabound.2009.07.002 |
[9] | M. Dehghan, M. Lakestani, The use of Chebyshev cardinal functions for solution of the secondorder one-dimensional telegraph equation, Numer. Math. Part. DE., 25 (2009), 931-938. doi: 10.1002/num.20382 |
[10] | M. Dehghan, B. N. Saray, M. Lakestani, Mixed finite difference and Galerkin methods for solving Burgers equations using interpolating scaling functions, Math. Method Appl. Sci., 37 (2014), 894- 912. doi: 10.1002/mma.2847 |
[11] | M. Dehghan, A. Shokri, A Numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080-1093. doi: 10.1002/num.20306 |
[12] | M. Dosti, A. Nazemi, Quartic B-spline collocation method for solving one-dimensional hyperbolic telegraph equation, J. Inf. Comput. Sci., 7 (2012), 083-090. |
[13] | M. S. El-Azab, M. El-Gamel, A numerical algorithm for the solution of telegraph equations, Appl. Math. Comput., 190 (2007), 757-764. |
[14] | A. Guezane-Lakoud, J. Dabas, D. Bahuguna, Existence and uniqueness of generalized solutions to a Telegraph equation with an integral boundary condition via Galerkin's method, IJMMS., 2011 (2011), 1-14. |
[15] | M. H. Heydari, M. R. Hooshmandasl, F. M. Maalek Ghaini, A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type, Appl. Math. Model., 38 (2014), 1597-1606. |
[16] | N. Hovhannisyan, S. Müller, R. Schäfer, Adaptive multiresolution discontinuous Galerkin schemes for conservation laws, Math. Comp., 83 (2014), 113-151. |
[17] | R. Jiwari, Lagrange interpolation and modified cubic B-spline differential quadrature methods for solving hyperbolic partial differential equations with Dirichlet and Neumann boundary conditions, Comput. Phys. Common., 193 (2015), 55-65. doi: 10.1016/j.cpc.2015.03.021 |
[18] | R. Jiwari, S. Pandit, R. C. Mittal, A differential quadrature algorithm to solve the two dimensional linear hyperbolic telegraph equation with Dirichlet and Neumann boundary conditions, Appl. Math. Comput., 218 (2012), 7279-7294. |
[19] | M. Lakestani, B. N. Saray, Numerical solution of telegraph equation using interpolating scaling functions, Comput. Math. Appl., 60 (2010), 1964-1972. doi: 10.1016/j.camwa.2010.07.030 |
[20] | R. C. Mittal, R. Bhatia, Numerical solution of second order one dimensional hyperbolic telegraph equation by cubic B-spline collocation method, Appl. Math. Comput., 220 (2013), 496-506. |
[21] | W. Qu, A high accuracy method for long-time evolution of acoustic wave equation, Appl. Math. Lett., 98 (2019), 135-141. doi: 10.1016/j.aml.2019.06.010 |
[22] | B. N. Saray, An efficient algorithm for solving Volterra integro-differential equations based on Alpert's multi-wavelets Galerkin method, J. Comput. Appl, Math., 348 (2019), 453-465. doi: 10.1016/j.cam.2018.09.016 |
[23] | B. N. Saray, M. Lakestani, C. Cattani, Evaluation of mixed Crank-Nicolson scheme and Tau method for the solution of Klein-Gordon equation, Appl. Math. Comput., 331 (2018), 169-181. |
[24] | B. N. Saray, M. Lakestani, M. Razzaghi, Sparse representation of system of Fredholm integrodifferential equations by using alpert multi-wavelets, Comp. Math. Math. Phys., 55 (2015), 1468- 1483. doi: 10.1134/S0965542515090031 |
[25] | F. Ureña, L. Gavete, J. J. Benito, A. Garcia, A. M. Vargas, Solving the telegraph equation in 2-D and 3-D using generalized finite difference method (GFDM), Eng. Anal. Bound. Elem., 112 (2020), 13-24. doi: 10.1016/j.enganabound.2019.11.010 |
[26] | Y. Zhou, W. Qu, Y. Gu, H. Gao, A hybrid meshless method for the solution of the second order hyperbolic telegraph equation in two space dimensions, Eng. Anal. Bound. Elem., 115 (2020), 21-27. doi: 10.1016/j.enganabound.2020.02.015 |