Research article

Novel accelerated methods of tensor splitting iteration for solving multi-systems

  • Received: 04 November 2019 Accepted: 04 March 2020 Published: 17 March 2020
  • MSC : 65H10, 65K05, 49M15

  • Tensor splitting iteration method is a class of popular technique for solving multi-linear systems. In this paper, we present one kind of efficient alternating splitting iteration method, and further generalize accelerated overrelaxation method (AOR) and symmetric accelerated overrelaxation method (SAOR) from linear systems to multi-systems. Then, one type of preconditioned (alternating) tensor splitting method is also applied for solving multi-systems. Numerical experiments illustrate the efficiency of the provided methods.

    Citation: Yajun Xie, Minhua Yin, Changfeng Ma. Novel accelerated methods of tensor splitting iteration for solving multi-systems[J]. AIMS Mathematics, 2020, 5(3): 2801-2812. doi: 10.3934/math.2020180

    Related Papers:

  • Tensor splitting iteration method is a class of popular technique for solving multi-linear systems. In this paper, we present one kind of efficient alternating splitting iteration method, and further generalize accelerated overrelaxation method (AOR) and symmetric accelerated overrelaxation method (SAOR) from linear systems to multi-systems. Then, one type of preconditioned (alternating) tensor splitting method is also applied for solving multi-systems. Numerical experiments illustrate the efficiency of the provided methods.


    加载中


    [1] H. He, L. Chen, L. Qi, et. al. A globally and quadratically convergent algorithm for solving multilinear systems with ${\mathcal {M}}$-tensors, J. Sci. Comput., 76 (2018), 1718-1741. doi: 10.1007/s10915-018-0689-7
    [2] C. Lv, C. Ma, A Levenberg-Marquardt method for solving semi-symmetric tensor equations, J. Comput. Appl. Math., 332 (2018), 13-25. doi: 10.1016/j.cam.2017.10.005
    [3] X. Wang, M. Che, Y. Wei, Neural networks based approach solving multi-linear systems with ${{\mathcal {M}}}$-tensors, Neurocomputing, 351 (2019), 33-42. doi: 10.1016/j.neucom.2019.03.025
    [4] Z. Xie, X. Jin, Y. Wei, Tensor methods for solving symmetric ${{\mathcal {M}}}$-tensor systems, J. Sci. Comput., 74 (2018), 412-425. doi: 10.1007/s10915-017-0444-5
    [5] Z. Xie, X. Jin, Y. Wei, A fast algorithm for solving circulant tensor systems, Linear Multilinear Algebra, 65 (2017), 1894-1904.
    [6] T. G. Kolda, Multilinear operators for higher-order decompositions, Technical report SAND2006-2081, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, 2006.
    [7] D. Liu, W. Li, S. W. Vong, Relaxation methods for solving the tensor equation arising from the higher-order Markov chains, Numer. Linear Algebra Appl., 26 (2019): e2260.
    [8] Y. Song, L. Qi, Spectral properties of positively homogeneous operators induced by higher order tensors, SIAM J. Matrix Anal. Appl., 34 (2013), 1302-1324.
    [9] Y. Song, L. Qi, Properties of some classes of structured tensors, J. Optim. Theory Appl., 165 (2015), 854-873.
    [10] L. Zhang, L. Qi, G. Zhou, M-tensors and some applications, SIAM J. Matrix Anal. Appl., 35 (2014), 437-452.
    [11] W. Ding, Y. Wei, Solving multilinear systems with ${{\mathcal {M}}}$-tensors, J. Sci. Comput., 68 (2016), 689-715. doi: 10.1007/s10915-015-0156-7
    [12] W. Ding, Y. Wei, Generalized tensor eigenvalue problems, SIAM J. Matrix Anal. Appl., 36 (2015), 1073-1099. doi: 10.1137/140975656
    [13] L. Han, A homotopy method for solving multilinear systems with ${{\mathcal {M}}}$-tensors, Appl. Math. Lett., 69 (2017), 49-54. doi: 10.1016/j.aml.2017.01.019
    [14] D. Liu, W. Li, S. W. Vong, The tensor splitting with application to solve multi-linear systems, J. Comput. Appl. Math., 330 (2018), 75-94. doi: 10.1016/j.cam.2017.08.009
    [15] W. Li, D. Liu, S. W. Vong, Comparison results for splitting iterations for solving multi-linear systems, Appl. Numeri. Math., 134 (2018), 105-121. doi: 10.1016/j.apnum.2018.07.009
    [16] W. Li, M. K. Ng, On the limiting probability distribution of a transition probability tensor, Linear Multilinear Algebra, 62 (2014), 362-385. doi: 10.1080/03081087.2013.777436
    [17] A. Cichocki, R. Zdunek, A-H. Phan, et al., Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind Source Separation, A John Wiley and Sons, Ltd, Publication, 2009.
    [18] T. G. Kolda, B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), 455-500. doi: 10.1137/07070111X
    [19] K. Pearson, Essentially positive tensors, Int. J. Algebra, 4 (2010), 421-427.
    [20] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40 (2005), 1302-1324.
    [21] W. Ding, L. Qi, Y. Wei, ${{\mathcal {M}}}$-tensors and nonsingular ${{\mathcal {M}}}$-tensors, Linear Algebra Appl., 439 (2013), 3264-3278.
    [22] L. Qi, Z. Luo, Tensor Analysis: Spectral Theory and Special Tensors, SIAM, 2017.
    [23] Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl., 31 (2010), 2517-2530.
    [24] A. Berman, J. R. Plemmons, Nonnegative Matrices in the Mathematical Science, SIAM, Philadelphia, 1994.
    [25] T. Kohno, H. Kotakemori, H. Niki, et al., Improving the modified Gauss-Seidel method for Zmatrices, Linear Algebra Appl., 267 (1917), 113-123.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3036) PDF downloads(276) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog