Research article

Hermite-Hadamard type inequalities in the setting of k-fractional calculus theory with applications

  • Received: 07 October 2019 Accepted: 04 December 2019 Published: 16 December 2019
  • MSC : 26A33, 26A51, 26D15, 26E60

  • The main objective of this paper is to derive some new k-fractional refinements of HermiteHadamard like inequalities. We also discuss some new special cases of the main results. In the last section, we discuss applications, which shows the significance of the obtained results.

    Citation: Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Aslam Noor, Khalida Inayat Noor. Hermite-Hadamard type inequalities in the setting of k-fractional calculus theory with applications[J]. AIMS Mathematics, 2020, 5(1): 629-639. doi: 10.3934/math.2020042

    Related Papers:

  • The main objective of this paper is to derive some new k-fractional refinements of HermiteHadamard like inequalities. We also discuss some new special cases of the main results. In the last section, we discuss applications, which shows the significance of the obtained results.


    加载中


    [1] M. U. Awan, M. A. Noor, M. V, Mihai, et al. On bounds involving k-Appell's hypergeometric functions, J. Inequal. Appl., 2017 (2017), 118.
    [2] W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Pupl. Inst. Math., 23 (1978), 13-20.
    [3] G. Cristescu, L. Lupsa, Non-Connected Convexities and Applications, Dordrecht: Kluwer Academic Publishers, 2002.
    [4] R. Diaz, E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15 (2007), 179-192.
    [5] S. D. Sever, Inequalities of Jensen type for h-convex functions on linear spaces, Math. Moravica, 19 (2015), 107-121.
    [6] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Australia: Victoria University, 2000.
    [7] S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341.
    [8] E. K. Godunova, V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkcii. Vycislitel. Mat. i, Mat. Fiz. Mezvuzov. Sb. Nauc. Trudov, Moskva: MGPI, 1985,138-142.
    [9] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006.
    [10] T. Lian, W. Tang, R. Zhou, Fractional Hermite-Hadamard inequalities for (s, m)-convex or sconcave functions, J. Inequal. Appl., 2018 (2018), 240.
    [11] C. P. Niculescu, L. E. Persson, Convex Functions and their Applications. A Contemporary Approach, New York: Springer-Verlag, 2006.
    [12] M. Z. Sarikaya, A. Karaca, On the k-Riemann-Liouville fractional integral and applications, Int. J. Stat. Math., 1 (2014), 33-43.
    [13] M. Z. Sarikaya, E. Set, H. Yaldiz, et al. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407.
    [14] M. Tunc, E. Gov, U. Sanal, On tgs-convex function and their inequalities, Facta universitatis Ser. Math. Inform., 30 (2015), 679-691.
    [15] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311.
    [16] S. Wu, M. U. Awan, M. V. Mihai, et al. Estimates of upper bound for a kth order differentiable functions involving Riemann-Liouville integrals via higher order strongly h-preinvex functions, J. Inequal. Appl., 2019 (2019), 227.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3065) PDF downloads(334) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog