Citation: Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Aslam Noor, Khalida Inayat Noor. Hermite-Hadamard type inequalities in the setting of k-fractional calculus theory with applications[J]. AIMS Mathematics, 2020, 5(1): 629-639. doi: 10.3934/math.2020042
[1] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[2] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[3] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[4] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[5] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[6] | Baoli Feng, Mamoona Ghafoor, Yu Ming Chu, Muhammad Imran Qureshi, Xue Feng, Chuang Yao, Xing Qiao . Hermite-Hadamard and Jensen’s type inequalities for modified (p, h)-convex functions. AIMS Mathematics, 2020, 5(6): 6959-6971. doi: 10.3934/math.2020446 |
[7] | Hasan Kara, Hüseyin Budak, Mehmet Eyüp Kiriş . On Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. AIMS Mathematics, 2020, 5(5): 4681-4701. doi: 10.3934/math.2020300 |
[8] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[9] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
[10] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
A function Λ:I⊂R→R is said to be a convex, if
Λ((1−ϱ)u+ϱv)≤(1−ϱ)Λ(u)+ϱΛ(v),∀u,v∈I,ϱ∈[0,1]. |
Recently convexity has received special attention by many researchers and consequently it has been extended and generalized in different directions, for instance, see [3] in which authors introduced and discussed several new types of convexities. Varosanec [15] introduced h-convex functions. It has been noticed that for different suitable choices of function h(.) it contains the classes of Breckner type of s-convexity [2], Godunova-Levin type of s-convexity [5], P-functions [7], Q-functions [8] and tgs-type of convex functions [14] etc.
Definition 1.1. Let h:(0,1)→R be a real function. We say that Λ:I→R is an h-convex function, if
Λ(ϱu+(1−ϱ)v)≤h(ϱ)Λ(u)+h(1−ϱ)Λ(v),∀u,v∈I,ϱ∈(0,1). |
Theory of convexity played significant role in the development of theory of inequalities. Many know results in theory of inequalities can be obtained using the convexity property of functions. A simple yet a powerful result in this regard is Hermite-Hadamard's (HH) integral inequality, which provides us a necessary and sufficient condition for a function to be convex. It reads as:
Theorem 1.1. Let Λ:I=[e,f]⊂R→R be a convex, if Λ∈L[e,f], then
Λ(e+f2)≤1f−ef∫eΛ(u)du≤Λ(e)+Λ(f)2. |
For more information, see [6].
Recently Sarikaya et al. [13] utilized the concepts of Riemann-Liouville (RL) fractional integrals which are defined as:
Definition 1.2 ([9]). Let Λ∈L1[e,f]. Then the RL integrals Jαe+Λ and Jαf−Λ of order α>0 with e≥0 are defined by
Jαe+Λ(u)=1Γ(α)u∫e(u−ϱ)α−1Λ(ϱ)dϱ,u>e, | (1.1) |
and
Jαf−Λ(u)=1Γ(α)f∫u(ϱ−u)α−1Λ(ϱ)dϱ,u<f, | (1.2) |
where
Γ(α)=∫∞0e−uuα−1du. |
and obtained a new version of HH inequality in the setting of fractional calculus.
Theorem 1.2 ([13]). Let Λ:[e,f]→R be a positive function with 0≤e<f and Λ∈L[e,f]. If Λ is convex function on [e,f], then
Λ(e+f2)≤Γ(α+1)2(f−e)α[Jαe+Λ(f)+Jαf−Λ(e)]≤Λ(e)+Λ(f)2. |
Note that if α=1, then the above version of HH inequality reduces to the classical HH inequality as described in Theorem 1.1. We now recall some preliminary concepts of k-fractional calculus. Generalized k-gamma and k-beta functions were introduced and studied by Diaz et al. [4] respectively as:
Γk(u)=limn→∞n!kn(nk)uk−1(u)n,k,k>0,u∈C∖kZ−. | (1.3) |
Γk is one parameter deformation of the classical gamma function as Γk→Γ when k→1. Γk is based on the repeated appearance of the expression of:
ϕ(ϕ+k)(ϕ+2k)(ϕ+3k)…(ϕ+(n−1)k). |
This above statement is a function of the variable ϕ and is denoted by (ϕ)n,k. It is known as Pochhammer k-symbol, which reduces to classical Pochhammer symbol (ϕ)n by taking k=1. The integral form of Γk is given by Γk(u)=∞∫0ϱu−1e−ϱkkdϱ,ℜ(u)>0 and
Bk(u,v)=Γk(u)Γk(v)Γk(u+v),ℜ(u)>0,ℜ(v)>0. | (1.4) |
Integral form of k-Beta function is given by:
Bk(u,v)=1k1∫0ϱuk−1(1−ϱ)vk−1dϱ. |
Sarikaya et al. [12] discussed the concept of k-RL fractional integrals and discussed some of its interesting aspects and applications.
Let Λ be piecewise continuous on I∗=(0,∞) and integrable on any finite subinterval of I=[0,∞]. Then for ϱ>0, we consider k-RL fractional integral of Λ of order α
kJαeΛ(u)=1kΓk(α)u∫e(u−ϱ)αk−1Λ(ϱ)dϱ,u>e,k>0. |
Note that when k→1 k-RL fractional integrals become classical RL fractional integral. For details on fractional inequalities and k-fractional inequalities, see [1,12,16].
The motivation of this paper is to derive some new parametric estimations of Hermite-Hadamard like inequalities via h-convex functions involving the concepts of k-fractional calculus. We also discuss in detail the special cases which can be deduced from the main results of our paper. In the last section, we discuss some applications. This shows the significance of our results. It is expected that the results of this paper may inspire interested readers.
We now derive a new k-fractional integral identity which will play significant role in obtaining main results of the article.
Lemma 2.1. Let Λ:I=[e,f]⊂R→R be k-fractional differentiable function on I∘. If Λ′∈L[e,f], then
|Ξ(e,f;α,k)|=f−e4[∫10ϱαkΛ′(ϱe+f2+(1−ϱ)e)dϱ−∫10ϱαkΛ′(ϱe+f2+(1−ϱ)f)dϱ], |
where
Ξ(e,f;α,k)=Λ(e+f2)+Γk(α+1)f−e[(2e−f)αk−1 kJα(e+f2)+Λ(e)−(2f−e)αk−1 kJα(e+f2)−Λ(f)]. |
Proof. Take
f−e4[∫10ϱαkΛ′(ϱe+f2+(1−ϱ)e)dϱ−∫10ϱαkΛ′(ϱe+f2+(1−ϱ)f)dϱ]=I1−I2. | (2.1) |
Integration by parts and using k-fractional integral, we have
I1=∫10ϱαkΛ′(ϱe+f2+(1−ϱ)e)dϱ=2f−eΛ(e+f2)+αk(2e−f)αk+1e∫e+f2(e−u)αk−1Λ(u)du=2f−eΛ(e+f2)+Γk(α+1)(2f−e)αk+1 kJα(e+f2)+Λ(e). | (2.2) |
Also
I2=∫10ϱαkΛ′(ϱe+f2+(1−ϱ)f)dϱ=−2f−eΛ(e+f2)+Γk(α+1)(2f−e)αk+1 kJα(e+f2)−Λ(f). | (2.3) |
Combining (2.1), (2.2) and (2.3) completes the proof.
Note that for k=1, we have Lemma 2.1 [10].
Now utilizing Lemma 2.1, we derive our main results.
Theorem 2.2. Let Λ:I=[e,f]⊂R→R be k-fractional differentiable function on I∘ and Λ′∈L[e,f]. If |Λ′| is h-convex function, then
|Ξ(e,f;α,k)|≤f−e4{2|Λ′(e+f2)|∫10ϱαkh(ϱ)dϱ+{|Λ′(e)|+|Λ′(f)|}1∫0ϱαkh(1−ϱ)dϱ}. |
Proof. Using Lemma 2.1, the hypothesis of the theorem and the property of modulus, we have
|Ξ(e,f;α)|≤f−e4{∫10ϱαk|Λ′(ϱe+f2+(1−ϱ)e)|dϱ+∫10ϱαk|Λ′(ϱe+f2+(1−ϱ)f)|dϱ}≤f−e4{∫10ϱαk[h(ϱ)|Λ′(e+f2)|+h(1−ϱ)|Λ′(e)|]dϱ+∫10ϱαk[h(ϱ)|Λ′(e+f2)|+h(1−ϱ)|Λ′(f)|]dϱ}=f−e4{2|Λ′(e+f2)|∫10ϱαkh(ϱ)dϱ+{|Λ′(e)|+|Λ′(f)|}1∫0ϱαkh(1−ϱ)dϱ}. |
This completes the proof.
We now discuss some special cases of Theorem 2.2.
(i) If h(ϱ)=ϱ, then we have result for convex functions.
Corollary 2.3. Under the conditions of Theorem 2.2, if |Λ′| is convex function, then
|Ξ(e,f;α,k)|≤f−e4{(2kα+2k)|Λ′(e+f2)|+(k2(α+k)(α+2k)){|Λ′(e)|+|Λ′(f)|}}. |
(ii) If h(ϱ)=ϱs, then we have result for s-convex functions of Breckner type.
Corollary 2.4. Under the conditions of Theorem 2.2, if |Λ′| is s-convex function of Breckner type, then
|Ξ(e,f;α,k)|≤f−e4{(2kα+ks+k)|Λ′(e+f2)|+kBk(α+k,ks+k){|Λ′(e)|+|Λ′(f)|}}. |
(iii) If h(ϱ)=ϱ−s, then we have result for s-convex functions of Godunova-Levin type.
Corollary 2.5. Under the conditions of Theorem 2.2, if |Λ′| is s-convex function of Godunova-Levin type, then
|Ξ(e,f;α,k)|≤f−e4{(2kα−ks+k)|Λ′(e+f2)|+kBk(α+k,k−ks){|Λ′(e)|+|Λ′(f)|}}. |
(iv) If h(ϱ)=1, then we have result for P-convex functions.
Corollary 2.6. Under the conditions of Theorem 2.2, if |Λ′| is P-convex function, then
|Ξ(e,f;α,k)|≤k(f−e)4(α+k){|Λ′(e)|+2|Λ′(e+f2)|+|Λ′(f)|}. |
(v) If h(ϱ)=ϱ(1−ϱ), then we have result for tgs-convex functions.
Corollary 2.7. Under the conditions of Theorem 2.2, if |Λ′| is tgs-convex function, then
|Ξ(e,f;α,k)|≤k2(f−e)4(α+2k)(α+3k){|Λ′(e)|+2|Λ′(e+f2)|+|Λ′(f)|}. |
Theorem 2.8. Let Λ:I=[e,f]⊂R→R be k-fractional differentiable function on I∘ and Λ′∈L[e,f]. If |Λ′|q is h-convex function and if q>1,q≥r≥0, then
|Ξ(e,f;α,k)|≤f−e4(k(q−1)α(q−r)+k(q−1))1−1q×{2(1∫0ϱαrkh(ϱ)dϱ)1q|Λ′(e+f2)|+(1∫0ϱαrkh(1−ϱ)dϱ)1q[|Λ′(e)|+|Λ′(f)|]}. |
Proof. Using Lemma 2.1 and the hypothesis of the theorem, we have
|Ξ(e,f;α,k)|≤f−e4{(∫10ϱα(q−r)k(q−1)dϱ)1−1q(1∫0ϱαrk|Λ′(ϱe+f2+(1−ϱ)e)|qdϱ)1q+(∫10ϱα(q−r)k(q−1)dϱ)1−1q(1∫0ϱαrk|Λ′(ϱe+f2+(1−ϱ)f)|qdϱ)1q}≤f−e4{(k(q−1)α(q−r)+k(q−1))1−1q(1∫0ϱαrk[h(ϱ)|Λ′(e+f2)|q+h(1−ϱ)|Λ′(e)|q]dϱ)1q+(k(q−1)α(q−r)+k(q−1))1−1q(1∫0ϱαrk[h(ϱ)|Λ′(e+f2)|q+h(1−ϱ)|Λ′(f)|q]dϱ)1q}≤f−e4(k(q−1)α(q−r)+k(q−1))1−1q×{2(1∫0ϱαrkh(ϱ)dϱ)1q|Λ′(e+f2)|+(1∫0ϱαrkh(1−ϱ)dϱ)1q[|Λ′(e)|+|Λ′(f)|]}, |
here we have used the fact that n∑i=1(ei+fi)w≤n∑i=1ewi+n∑i=1fwi where 0<w<1, e1,e2,…,en≥0 and f1,f2,…,fn≥0. This completes the proof.
We now discuss some special cases of Theorem 2.8.
(i) If h(ϱ)=ϱ, then we have result for convex functions.
Corollary 2.9. Under the assumptions of Theorem 2.8 if |Λ′|q is convex function and if q>1,q≥r≥0, then
|Ξ(e,f;α,k)|≤f−e4(k(q−1)α(q−r)+k(q−1))1−1q×{2(kαr+2k)1q|Λ′(e+f2)|+(k2(αr+k)(αr+2k))1q[|Λ′(e)|+|Λ′(f)|]}. |
(ii) If h(ϱ)=ϱs, then we have result for s-convex functions of Breckner type.
Corollary 2.10. Under the assumptions of Theorem 2.8 if |Λ′|q is s-convex function of Breckner type and if q>1,q≥r≥0, then
|Ξ(e,f;α,k)|≤f−e4(k(q−1)α(q−r)+k(q−1))1−1q×{2(kαr+ks+k)1q|Λ′(e+f2)|+(kBk(k+αr,k+ks))1q[|Λ′(e)|+|Λ′(f)|]}. |
(iii) If h(ϱ)=ϱ−s, then we have result for s-convex functions of Godunova-Levin type.
Corollary 2.11. Under the assumptions of Theorem 2.8 if |Λ′|q is s-convex function of Godunova-Levin type and if q>1,q≥r≥0, then
|Ξ(e,f;α,k)|≤f−e4(k(q−1)α(q−r)+k(q−1))1−1q×{2(kαr−ks+k)1q|Λ′(e+f2)|+(kBk(k+αr,k−ks))1q[|Λ′(e)|+|Λ′(f)|]}. |
(iv) If h(ϱ)=1, then we have result for P-convex functions.
Corollary 2.12. Under the assumptions of Theorem 2.8 if |Λ′|q is P-convex function and if q>1,q≥r≥0, then
|Ξ(e,f;α,k)|≤k(f−e)4(αr+k)1q(k(q−1)α(q−r)+k(q−1))1−1q{|Λ′(e)|+2|Λ′(e+f2)|+|Λ′(f)|}. |
(v) If h(ϱ)=ϱ(1−ϱ), then we have result for tgs-convex functions.
Corollary 2.13. Under the assumptions of Theorem 2.8 if |Λ′|q is tgs-convex function and if q>1,q≥r≥0, then
|Ξ(e,f;α,k)|≤k2(f−e)4[(αr+2k)(αr+3k)]1q(q−1α(q−r)+q−1)1−1q{|Λ′(e)|+2|Λ′(e+f2)|+|Λ′(f)|}. |
Theorem 2.14. Let Λ:I=[e,f]⊂R→R be k-fractional differentiable function on I∘ and Λ′∈L[e,f]. If |Λ′|q is h-convex function and if 1p+1q=1, then
|Ξ(e,f;α,k)|≤f−e4(k(q−1)αq+k(q−1))1p×{2(1∫0h(ϱ)dϱ)1q|Λ′(e+f2)|+(1∫0h(1−ϱ)dϱ)1q[|Λ′(e)|+|Λ′(f)|]}. |
Proof. Using Lemma 2.1 and the hypothesis of the theorem, we have
|Ξ(e,f;α,k)|≤f−e4{(k(q−1)αq+k(q−1))1p(1∫0[h(ϱ)|Λ′(e+f2)|q+h(1−ϱ)|Λ′(e)|q]dϱ)1q+(k(q−1)αq+k(q−1))1p(1∫0[h(ϱ)|Λ′(e+f2)|q+h(1−ϱ)|Λ′(f)|q]dϱ)1q}=f−e4(k(q−1)αq+k(q−1))1p{2(1∫0h(ϱ)dϱ)1q|Λ′(e+f2)|+(1∫0h(1−ϱ)dϱ)1q[|Λ′(e)|+|Λ′(f)|]}, |
here we have used the fact that n∑i=1(ei+fi)w≤n∑i=1ewi+n∑i=1fwi where 0<w<1, e1,e2,…,en≥0 and f1,f2,…,fn≥0. This completes the proof.
We now discuss some special cases of Theorem 2.14.
(i) If h(ϱ)=ϱ, then we have result for convex functions.
Corollary 2.15. Under the assumptions of Theorem 2.14 if |Λ′|q is convex function and if q>1, then
|Ξ(e,f;α,k)|≤f−e22+1q(k(q−1)αq+k(q−1))1−1q{|Λ′(e)|+2|Λ′(e+f2)|+|Λ′(f)|}. |
(ii) If h(ϱ)=ϱs, then we have result for s-convex functions of Breckner type.
Corollary 2.16. Under the assumptions of Theorem 2.14 if |Λ′|q is s-convex function of Breckner type and if q>1, then
|Ξ(e,f;α,k)|≤f−e4(s+1)1q(k(q−1)αq+k(q−1))1−1q{|Λ′(e)|+2|Λ′(e+f2)|+|Λ′(f)|}. |
(iii) If h(ϱ)=ϱ−s, then we have result for s-convex functions of Godunova-Levin type.
Corollary 2.17. Under the assumptions of Theorem 2.14 if |Λ′|q is s-convex function of Godunova-Levin type and if q>1, then
|Ξ(e,f;α,k)|≤f−e4(1−s)1q(k(q−1)αq+k(q−1))1−1q{|Λ′(e)|+2|Λ′(e+f2)|+|Λ′(f)|}. |
(iv) If h(ϱ)=1, then we have result for P-convex functions.
Corollary 2.18. Under the assumptions of Theorem 2.14 if |Λ′|q is P-convex function and if q>1, then
|Ξ(e,f;α,k)|≤f−e4(k(q−1)αq+k(q−1))1−1q{|Λ′(e)|+2|Λ′(e+f2)|+|Λ′(f)|}. |
(v) If h(ϱ)=ϱ(1−ϱ), then we have result for tgs-convex functions.
Corollary 2.19. Under the assumptions of Theorem 2.8 if |Λ′|q is tgs-convex function and if q>1, then
|Ξ(e,f;α,k)|≤f−e22+1q31q(k(q−1)α(q−r)+k(q−1))1−1q{|Λ′(e)|+2|Λ′(e+f2)|+|Λ′(f)|}. |
In this section, we discuss some applications for our results to means of special numbers. Let us recall some previously known concepts.
Definition 3.1 ([11]). Recall the following definitions:
(1) For arbitrary e>0,f>0 and e≠f
L(e,f)=f−elogf−loge, |
is the logarithmic mean.
(2) For arbitrary e,f∈R and e≠f
A(e,f)=e+f2, |
is the arithmetic mean.
(3) For arbitrary e,f∈R and e≠f
Lp(e,f)=[fp+1−ep+1(f−e)(p+1)]1p, |
is the generalized log-mean, p≠−1,0.
We now present our applications.
Proposition 3.1. Let e,f∈R, e<f and n∈R, n≥2, then
|An(e,f)−Lnn(e,f)|≤|n|(f−e)12{2|An−1(e,f)|+A(|e|n−1,|f|n−1)}. |
Proof. The proof is immediate from Corollary 2.3 applied for α=1=k and Λ(u)=un, u∈R.
Proposition 3.2. Let e,f∈R, e<f and 0<s<1, then
|As(e,f)−Lss(e,f)|≤|s|(f−e)2{(1s+2)|As−1(e,f)|+(1(s+1)(s+2))A(|e|s−1,|f|s−1)}. |
Proof. The proof is immediate from Corollary 2.4 applied for α=1=k and Λ:[0,1]→[0,1], Λ(u)=us.
Proposition 3.3. Let e,f∈R, e<f and n∈R, n≥2, then
|An(e,f)−Lnn(e,f)|≤|n|(f−e)2(q−12q−r−1)1−1q{(1r+2)1q|An−1(e,f)|+(1(r+1)(r+2))1qA(|e|n−1,|f|n−1)}. |
Proof. The proof is immediate from Corollary 2.9 applied for α=1=k and Λ(u)=un, u∈R.
Proposition 3.4. Let e,f∈R, e<f and 0<s<1, then
|As(e,f)−Lss(e,f)|≤|s|(f−e)4(q−12q−r−1)1−1q×{2(1r−s+1)1q|As−1(e,f)|+B1q(r+1,s+1)A(|e|s−1,|f|s−1)}. |
Proof. The proof is immediate from Corollary 2.10 applied for α=1=k and Λ:[0,1]→[0,1], Λ(u)=us.
Proposition 3.5. Let e,f∈R, e<f and n∈R, n≥2, then
|An(e,f)−Lnn(e,f)|≤|n|(f−e)21+1q(q−12q−1)1−1q{An−1(e,f)|+A(|e|n−1,|f|n−1)}. |
Proof. The proof is immediate from Corollary 2.15 applied for α=1=k and Λ(u)=un, u∈R.
Proposition 3.6. Let e,f∈R, e<f and 0<s<1, then
|As(e,f)−Lss(e,f)|≤|s|(f−e)2(s+1)1q(q−12q−1)1−1q{As−1(e,f)|+A(|e|s−1,|f|s−1)}. |
Proof. The proof is immediate from Corollary 2.16 applied for α=1=k and Λ:[0,1]→[0,1], Λ(u)=us.
The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-0125. Second author is thankful for the support of HEC project (No. 8081/Punjab/NRPU/R&D/HEC/2017). Authors are grateful to the editor and anonymous referee for their valuable comments and suggestions.
Authors declare that they have no conflict of interest.
[1] | M. U. Awan, M. A. Noor, M. V, Mihai, et al. On bounds involving k-Appell's hypergeometric functions, J. Inequal. Appl., 2017 (2017), 118. |
[2] | W. W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen, Pupl. Inst. Math., 23 (1978), 13-20. |
[3] | G. Cristescu, L. Lupsa, Non-Connected Convexities and Applications, Dordrecht: Kluwer Academic Publishers, 2002. |
[4] | R. Diaz, E. Pariguan, On hypergeometric functions and k-Pochhammer symbol, Divulg. Mat., 15 (2007), 179-192. |
[5] | S. D. Sever, Inequalities of Jensen type for h-convex functions on linear spaces, Math. Moravica, 19 (2015), 107-121. |
[6] | S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Australia: Victoria University, 2000. |
[7] | S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341. |
[8] | E. K. Godunova, V. I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkcii. Vycislitel. Mat. i, Mat. Fiz. Mezvuzov. Sb. Nauc. Trudov, Moskva: MGPI, 1985,138-142. |
[9] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier, 2006. |
[10] | T. Lian, W. Tang, R. Zhou, Fractional Hermite-Hadamard inequalities for (s, m)-convex or sconcave functions, J. Inequal. Appl., 2018 (2018), 240. |
[11] | C. P. Niculescu, L. E. Persson, Convex Functions and their Applications. A Contemporary Approach, New York: Springer-Verlag, 2006. |
[12] | M. Z. Sarikaya, A. Karaca, On the k-Riemann-Liouville fractional integral and applications, Int. J. Stat. Math., 1 (2014), 33-43. |
[13] | M. Z. Sarikaya, E. Set, H. Yaldiz, et al. Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403-2407. |
[14] | M. Tunc, E. Gov, U. Sanal, On tgs-convex function and their inequalities, Facta universitatis Ser. Math. Inform., 30 (2015), 679-691. |
[15] | S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. |
[16] | S. Wu, M. U. Awan, M. V. Mihai, et al. Estimates of upper bound for a kth order differentiable functions involving Riemann-Liouville integrals via higher order strongly h-preinvex functions, J. Inequal. Appl., 2019 (2019), 227. |