Laser technology continues to be widely used in industrial terms in various manufacturing processes. This continuously leads to a significant flow of research into the most diverse aspects of this technology, namely in cutting, welding, texturing, engraving operations, and, more recently, three-dimensional (3D) printing of various materials. The most recent technological developments directly related to laser applications have led to new lines of research, which justify the development of some special volumes of high-quality research in this area of knowledge.
Citation: Francisco J. G. Silva, Rita C. M. Sales-Contini. Advances in laser materials and processing technologies: An overview[J]. AIMS Materials Science, 2025, 12(1): 23-27. doi: 10.3934/matersci.2025002
Laser technology continues to be widely used in industrial terms in various manufacturing processes. This continuously leads to a significant flow of research into the most diverse aspects of this technology, namely in cutting, welding, texturing, engraving operations, and, more recently, three-dimensional (3D) printing of various materials. The most recent technological developments directly related to laser applications have led to new lines of research, which justify the development of some special volumes of high-quality research in this area of knowledge.
[1] |
Salminen A, Piili H, Purtonen T (2010) The characteristics of high power fibre laser welding. P I Mech Eng C-J Mec 224: 1019–1029. https://doi.org/10.1243/09544062JMES1762 doi: 10.1243/09544062JMES1762
![]() |
[2] |
Gook S, Gumenyuk A, Rethmeier M (2013) Hybrid laser arc welding of X80 and X120 steel grade. Sci Technol Weld Join 19: 15–24. https://doi.org/10.1179/1362171813Y.0000000154 doi: 10.1179/1362171813Y.0000000154
![]() |
[3] |
Jaeschke P, Herzog D, Haferkamp H, et al. (2010) Laser transmission welding of high-performance polymers and reinforced composites—A fundamental study. J Reinf Plast Comp 29: 3083–3094. https://doi.org/10.1177/0731684410365365 doi: 10.1177/0731684410365365
![]() |
[4] |
Moskal D, Martan J, Honner M (2023) Scanning strategies in laser surface texturing: A review. Micromachines 14: 1241. https://doi.org/10.3390/mi14061241 doi: 10.3390/mi14061241
![]() |
[5] |
Fergani O, Brotan V, Bambach M, et al. (2018) Texture evolution in stainless steel processed by selective laser melting and annealing. Mater Sci Technol 34: 2223–2230. https://doi.org/10.1080/02670836.2018.1523518 doi: 10.1080/02670836.2018.1523518
![]() |
[6] |
Sales-Contini R de CM, Costa JP, Pinto AM, et al. (2025) Quality improvement of Nd:YAG laser marked DMC and QR codes on the surface of PBT/glass fiber composites by DOE methodology. J Thermoplast Compos Mater 38: 239–276. https://doi.org/10.1177/08927057241251826 doi: 10.1177/08927057241251826
![]() |
[7] |
Ridealgh JA, Rawlings RD, West DRF (1990) Laser cutting of glass ceramic matrix composite. Mater Sci Technol 6: 395–398. https://doi.org/10.1179/mst.1990.6.4.395 doi: 10.1179/mst.1990.6.4.395
![]() |
[8] |
Amaral I, Silva FJG, Pinto GFL, et al. (2019) Improving the cut surface quality by optimizing parameters in the fibre laser cutting process. Procedia Manuf 38: 1111–1120. https://doi.org/10.1016/j.promfg.2020.01.199 doi: 10.1016/j.promfg.2020.01.199
![]() |
[9] |
Lanotte L, Luponio C, De Iorio I, et al. (1992) Effect of laser cutting on magnetic properties of grain oriented Fe–Si ribbons. Mater Sci Technol 8: 252–256. https://doi.org/10.1179/mst.1992.8.3.252 doi: 10.1179/mst.1992.8.3.252
![]() |
[10] | Silva FJG, Bartolomeu F, Duarte T, et al. (2023) Impressão 3D–Materiais, Tecnologias e Aplicações, Porto, Portugal: Engebook, ISBN: 9789899101593. |
[11] |
Hixson WR, Yu J, Wilson A, et al. (2023) Eutectic composition titanium metal matrix composites for laser powder bed fusion via surface remelt analyses. Mater Sci Technol 39: 1650–1660. https://doi.org/10.1080/02670836.2023.2178178 doi: 10.1080/02670836.2023.2178178
![]() |
[12] |
Dwivedi A, Khurana MK, Bala YG (2024) Effect of parameters on quality of IN718 parts using laser additive manufacturing. Mater Sci Technol 40: 633–648. https://doi.org/10.1177/02670836231219865 doi: 10.1177/02670836231219865
![]() |
[13] |
Gu DD, Meiners W, Wissenbach K, et al. (2012) Laser additive manufacturing of metallic components: Materials, processes and mechanisms. Int Mater Rev 57: 133–164. https://doi.org/10.1179/1743280411Y.0000000014 doi: 10.1179/1743280411Y.0000000014
![]() |
[14] |
Barros R, Silva FJG, Gouveia RM, et al. (2019) Laser powder bed fusion of inconel 718: Residual stress analysis before and after heat treatment. Metals 9: 1290. https://doi.org/10.3390/met9121290 doi: 10.3390/met9121290
![]() |
[15] |
Gouveia RM, Silva FJG, Atzeni E, et al. (2020) Effect of scan strategies and use of support structures on surface quality and hardness of L-PBF AlSi10Mg parts. Materials 13: 2248. https://doi.org/10.3390/ma13102248 doi: 10.3390/ma13102248
![]() |
[16] | Chalus M, Liska J (2016) 3D robotic welding with a laser profile scanner. 2016 International Conference on Control, Automation and Information Sciences (ICCAIS), Ansan, Korea (South), 7–12. https://doi.org/10.1109/ICCAIS.2016.7822426 |
[17] |
Sristi NA, Zaman PB (2024) A review of textured cutting tools' impact on machining performance from a tribological perspective. Int J Adv Manuf Technol 133: 4023–4057. https://doi.org/10.1007/s00170-024-13865-5 doi: 10.1007/s00170-024-13865-5
![]() |
[18] |
Alexander DR, Khlif MS (1996) Laser marking using organo-metallic films. Opt Laser Eng 25: 55–70. https://doi.org/10.1016/0143-8166(95)00046-1 doi: 10.1016/0143-8166(95)00046-1
![]() |
[19] |
da Silva SL, Prado FM, Brito IV, et al. (2024) Holographic method for stress distribution analysis in photoelastic materials. AIMS Mater Sci 11: 620–633. https://doi.org/10.3934/matersci.2024032 doi: 10.3934/matersci.2024032
![]() |
[20] |
Sales-Contini RCM, Costa JP, Silva FJG, et al. (2024) Influence of laser marking parameters on data matrix code quality on polybutylene terephthalate/glass fiber composite surface using microscopy and spectroscopy techniques. AIMS Mater Sci 11: 150–172. https://doi.org/10.3934/matersci.2024009 doi: 10.3934/matersci.2024009
![]() |
[21] |
Equbal A, Murmu R, Kumar V, et al. (2024) A recent review on advancements in dimensional accuracy in fused deposition modeling (FDM) 3D printing. AIMS Mater Sci 11: 950–990. https://doi.org/10.3934/matersci.2024046 doi: 10.3934/matersci.2024046
![]() |
[22] |
Dawood LL, AlAmeen ES (2024) Influence of infill patterns and densities on the fatigue performance and fracture behavior of 3D-printed carbon fiber-reinforced PLA composites. AIMS Mater Sci 11: 833–857. https://doi.org/10.3934/matersci.2024041 doi: 10.3934/matersci.2024041
![]() |