We are living in a time where the emphasis is given on the development of new and improved materials having high strength and are correspondingly light in weight for application in fields such as transportation, aerospace, medical and other such related areas. These new materials developed need to be processed and joined with oneself and other materials as well. The paper presents a brief understanding of the advanced joining processes namely friction stir welding, microwave hybrid heating, electron beam welding, laser beam welding, thermo-hydrogenated diffusion bonding, electromagnetic welding and ultra sonic welding. The purpose of these advanced joining techniques is to increase the efficiency of the joining process and prevent failure. The objective of this review paper is to provide an insight into the principles, current trends and research gaps in advanced joining techniques.
Citation: Shashi Bahl, Tarunpreet Singh, Virinder Kumar, Shankar Sehgal, Ashok Kumar Bagha. A systematic review on recent progress in advanced joining techniques of the lightweight materials[J]. AIMS Materials Science, 2021, 8(1): 62-81. doi: 10.3934/matersci.2021005
We are living in a time where the emphasis is given on the development of new and improved materials having high strength and are correspondingly light in weight for application in fields such as transportation, aerospace, medical and other such related areas. These new materials developed need to be processed and joined with oneself and other materials as well. The paper presents a brief understanding of the advanced joining processes namely friction stir welding, microwave hybrid heating, electron beam welding, laser beam welding, thermo-hydrogenated diffusion bonding, electromagnetic welding and ultra sonic welding. The purpose of these advanced joining techniques is to increase the efficiency of the joining process and prevent failure. The objective of this review paper is to provide an insight into the principles, current trends and research gaps in advanced joining techniques.
[1] | Zhang J, Li X, Xu D, et al. (2019) Recent progress in the simulation of microstructure evolution in titanium alloys. Prog Nat Sci 29: 295–304. doi: 10.1016/j.pnsc.2019.05.006 |
[2] | Kaur M, Singh K (2019) Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mat Sci Eng C-Bio S 102: 844–862. doi: 10.1016/j.msec.2019.04.064 |
[3] | Koizumi H, Takeuchi Y, Imai H, et al. (2019) Application of titanium and titanium alloys to fixed dental prostheses. J Prosthodont Res 63: 266–270. doi: 10.1016/j.jpor.2019.04.011 |
[4] | Huang Y, Wang J, Wan L, et al. (2016) Self-riveting friction stir lap welding of aluminum alloy to steel. Mater Lett 185: 181–184. doi: 10.1016/j.matlet.2016.08.102 |
[5] | Zhang J, Song B, Wei Q, et al. (2019) A review of selective laser melting of aluminum alloys: Processing, microstructure, property and developing trends. J Mater Sci Technol 35: 270–284. doi: 10.1016/j.jmst.2018.09.004 |
[6] | Choudhury B, Chandrasekaran M (2017) Investigation on welding characteristics of aerospace materials—A review. Mater Today Proc 4: 7519–7526. doi: 10.1016/j.matpr.2017.07.083 |
[7] | Ebrahimi M, Par MA (2019) Twenty-year uninterrupted endeavor of friction stir processing by focusing on copper and its alloys. J Alloy Compd 781: 1074–1090. doi: 10.1016/j.jallcom.2018.12.083 |
[8] | Soffa WA, Laughlin DE (2004) High-strength age hardening copper-titanium alloys: redivivus. Prog Mater Sci 49: 347–366. doi: 10.1016/S0079-6425(03)00029-X |
[9] | Alaneme KK, Okotete EA (2016) Reconciling viability and cost-effective shape memory alloy options—A review of copper and iron based shape memory metallic systems. Eng Sci Technol Int J 19: 1582–1592. |
[10] | Dundu M (2018) Evolution of stress–strain models of stainless steel in structural engineering applications. Constr Build Mater 165: 413–423. doi: 10.1016/j.conbuildmat.2018.01.008 |
[11] | Gardner L (2019) Stability and design of stainless steel structures—Review and outlook. Thin-Walled Struct 141: 208–216. doi: 10.1016/j.tws.2019.04.019 |
[12] | Corradi M, Di Schino A, Borri A, et al. (2018) A review of the use of stainless steel for masonry repair and reinforcement. Constr Build Mater 181: 335–346. doi: 10.1016/j.conbuildmat.2018.06.034 |
[13] | Anderson DL (1989) Theory of the Earth, Boston: Blackwell Scientific Publications. |
[14] | Revie RW (2011) Uhlig's Corrosion Handbook, 4 Eds., New Jersey: John Wiley & Sons. |
[15] | Boyer RR (1996) An overview on the use of titanium in the aerospace industry. Mat Sci Eng A-Struct 213: 103–114. doi: 10.1016/0921-5093(96)10233-1 |
[16] | Jaffee RI, Promisel NE (1970) Science, Technology and Application of Titanium. Proceedings of an International Conference Held at London, 1 Ed., United Kingdom: Elsevier. |
[17] | Pitchi CS, Priyadarshini A, Sana G, et al. (2020) A review on alloy composition and synthesis of β-Titanium alloys for biomedical applications. Mater Today Proc 26: 3297–3304. doi: 10.1016/j.matpr.2020.02.468 |
[18] | Kumar AS, Rao TVH, Rao VVSK, et al. (2019) Optimizing pulsed current micro plasma arc welding parameters to maximize ultimate tensile strength of titanium (Ti–6Al–4V) alloy using Dragon fly algorithm. Mater Today Proc 27: 2086–2090. doi: 10.1016/j.matpr.2019.09.073 |
[19] | Xiong J, Li S, Gao F, et al. (2015) Microstructure and mechanical properties of Ti6321 alloy welded joint by GTAW. Mat Sci Eng A-Struct 640: 419–423. doi: 10.1016/j.msea.2015.06.022 |
[20] | Baeslack WA, Becker DW, Froes FH (1984) Advances in titanium alloy welding metallurgy. JOM 36: 46–58. doi: 10.1007/BF03338455 |
[21] | Dhinakaran V, Shriragav SV, Fathima AFY, et al. (2020) A review on the categorization of the welding process of pure titanium and its characterization. Mater Today Proc 27: 742–747. doi: 10.1016/j.matpr.2019.12.034 |
[22] | Heinz A, Haszler A, Keidel C, et al. (2000) Recent development in aluminium alloys for aerospace applications. Mat Sci Eng A-Struct 280: 102–107. doi: 10.1016/S0921-5093(99)00674-7 |
[23] | Mohammadi J, Behnamian Y, Mostafaei A, et al. (2015) Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations. Mater Charact 101: 189–207. doi: 10.1016/j.matchar.2015.01.008 |
[24] | Vasanthakumar P, Sekar K, Venkatesh K (2019) Recent developments in powder metallurgy based aluminium alloy composite for aerospace applications. Mater Today Proc 18: 5400–5409. doi: 10.1016/j.matpr.2019.07.568 |
[25] | Jian Z, Zhong-yu P, Shi-ying L, et al. (2019) Investigation of wear behavior of graphite coating on aluminum piston skirt of automobile engine. Eng Fail Anal 97: 408–415. doi: 10.1016/j.engfailanal.2019.01.012 |
[26] | Gupta S, Singh D, Yadav A, et al. (2020) A comparative study of 5083 aluminium alloy and 316L stainless steel for shipbuilding material. Mater Today Proc 28: 2358–2363. doi: 10.1016/j.matpr.2020.04.641 |
[27] | Cagan SC, Venkatesh B, Buldum BB (2020) Investigation of surface roughness and chip morphology of aluminum alloy in dry and minimum quantity lubrication machining. Mater Today Proc 27: 1122–1126. doi: 10.1016/j.matpr.2020.01.547 |
[28] | Kim D, Lee W, Kim J, et al. (2010) Formability evaluation of friction stir welded 6111-T4 sheet with respect to joining material direction. Int J Mech Sci 52: 612–625. doi: 10.1016/j.ijmecsci.2010.01.001 |
[29] | Davis JR (1994) Stainless steels, Asm Specialty Handbook, 1 Ed., Almere: ASM international. |
[30] | Hyun PJ, Kwon HS (2008) Development of high Mn–N duplex stainless steel for automobile structural components. Corros Sci 50: 404–410. doi: 10.1016/j.corsci.2007.07.004 |
[31] | Baddoo NR (2008) Stainless steel in construction: A review of research, applications, challenges and opportunities. J Constr Steel Res 64: 1199–1206. doi: 10.1016/j.jcsr.2008.07.011 |
[32] | Mohan S, Nair SS, Ajay AV, et al. (2019) Corrosion behaviour of ZrO2–TiO2nano composite coating on stainless steel under simulated marine environment. Mater Today Proc 27: 2492–2497. doi: 10.1016/j.matpr.2019.09.224 |
[33] | Nguyen Q, Azadkhou A, Akbari M, et al. (2020) Experimental investigation of temperature field and fusion zone microstructure in dissimilar pulsed laser welding of austenitic stainless steel and copper. J Manuf Process 56: 206–215. doi: 10.1016/j.jmapro.2020.03.037 |
[34] | Patel V, Sali A, Hyder J, et al. (2020) Electron beam welding of inconel 718. Procedia Manuf 48: 428–435. doi: 10.1016/j.promfg.2020.05.065 |
[35] | Niesłony P, Grzesik W, Jarosz K, et al. (2018) FEM-based optimization of machining operations of aerospace parts made of Inconel 718 superalloy. Procedia CIRP 77: 570–573. doi: 10.1016/j.procir.2018.08.220 |
[36] | Akca E, Gürsel A (2015) A review on superalloysand IN718 nickel-based INCONEL superalloy. Period Eng Nat Sci 3: 15–27. |
[37] | Rahman MS, Polychronopoulou K, Polycarpou AA (2019) Tribochemistry of inconel 617 during sliding contact at 950 º С under helium environment for nuclear reactors. J Nucl Mater 521: 21–30. doi: 10.1016/j.jnucmat.2019.04.032 |
[38] | Periane S, Duchosal A, Vaudreuil S, et al. (2019) Machining influence on the fatigue resistance of Inconel 718 fabricated by Selective Laser Melting (SLM). Procedia StructIntegr 19: 415–422. |
[39] | Ahmed MMZ, Seleman MME-S, Zidan ZA, et al. (2021) Microstructure and mechanical properties of dissimilar friction stir welded AA2024-T4/AA7075-T6 t–butt joints. Metals 11: 1–19. |
[40] | Costa AMS, Oliveira JP, Pereira VF, et al. (2018) Ni-based Mar-M247 superalloy as a friction stir processing tool. J Mater Process Tech 262: 605–614. doi: 10.1016/j.jmatprotec.2018.07.034 |
[41] | Singh VP, Patel SK, Ranjan A, et al. (2020) Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: A critical review. J Mater Res Technol 9: 6217–6256. doi: 10.1016/j.jmrt.2020.01.008 |
[42] | Costa M, Rojas R, Mira-Aguiar T, et al. (2015) A comparative techno–economic evaluation of friction stir welding versus resistance seam welding, FSWP 2015 International Conference, 1–3. |
[43] | Shah PH, Badheka VJ (2016) An experimental insight on the selection of the tool tilt angle for friction stir welding of 7075 T651 aluminum alloys. Indian J Sci Technol 9: 1–11. doi: 10.17485/ijst/2016/v9i47/105273 |
[44] | Malopheyev S, Vysotskiy I, Kulitskiy V, et al. (2016) Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy. Mat Sci Eng A-Struct 662: 136–143. doi: 10.1016/j.msea.2016.03.063 |
[45] | Sun SJ, Kim JS, Lee WG, et al. (2017) Influence of friction stir welding on mechanical properties of butt joints of AZ61 magnesium alloy. Adv Mater Sci Eng 2017: 1–13. |
[46] | Sato YS, Arkom P, Kokawa H, et al. (2008) Effect of microstructure on properties of friction stir welded Inconel Alloy 600. Mat Sci Eng A-Struct 477: 250–258. doi: 10.1016/j.msea.2007.07.002 |
[47] | Song KH, Nakata K (2010) Effect of precipitation on post-heat-treated Inconel 625 alloy after friction stir welding. Mater Des 31: 2942–2947. doi: 10.1016/j.matdes.2009.12.020 |
[48] | Gamit D, Mishra RR, Sharma AK (2017) Joining of mild steel pipes using microwave hybrid heating at 2.45 GHz and joint characterization. J Manuf Process 27: 158–168. |
[49] | Sharma A, Sehgal S, Goyal D (2020) Effects of process parameters in joining of Inconel-625 alloy through microwave hybrid heating. Mater Today Proc 28: 1323–1327. doi: 10.1016/j.matpr.2020.04.590 |
[50] | Bagha L, Sehgal S, Thakur A, et al. (2017) Effects of powder size of interface material on selective hybrid carbon microwave joining of SS304–SS304. J Manuf Process 25: 290–295. doi: 10.1016/j.jmapro.2016.12.013 |
[51] | Badiger RI, Narendranath S, Srinath MS (2018) Optimization of parameters influencing tensile strength of inconel-625 welded joints developed through microwave hybrid heating. Mater Today Proc 5: 7659–7667. doi: 10.1016/j.matpr.2017.11.441 |
[52] | Pal M, Sehgal S, Kumar H (2020) Optimization of elemental weight % in microwave processed joints of SS304/SS316 using Taguchi philosophy. J Adv Manuf Syst 19: 543–565. doi: 10.1142/S0219686720500262 |
[53] | Samyal R, Bagha AK, Bedi R (2019) An experimental study to predict the exposure time for microwave based joining of different grades of stainless steel material. Mater Today Proc 27: 2449–2454. doi: 10.1016/j.matpr.2019.09.217 |
[54] | Kumar V, Sehgal S (2020) Joining of duplex stainless steel through selective microwave hybrid heating technique without using filler material. Mater Today Proc28: 1314–1318. doi: 10.1016/j.matpr.2020.04.509 |
[55] | Gupta P, Kumar S, Kumar A (2013) Study of joint formed by tungsten carbide bearing alloy through microwave welding. Mater Manuf Process 28: 601–604. doi: 10.1080/10426914.2013.763966 |
[56] | Singh S, Suri NM, Belokar RM (2015) Characterization of joint developed by fusion of aluminum metal powder through microwave hybrid heating. Mater Today Proc 2: 1340–1346. doi: 10.1016/j.matpr.2015.07.052 |
[57] | Richards NL, Nakkalil R, Chaturvedi MC (1994) The influence of electron-beam welding parameters on heat-affected-zone microfissuring in INCOLOY 903. Metall Mater Trans A 25: 1733–1745. doi: 10.1007/BF02668538 |
[58] | Zhang BG, Zhao J, Li XP, et al. (2014) Electron beam welding of 304 stainless steel to QCr0.8 copper alloy with copper filler wire. Trans Nonferrous Met Soc China 24: 4059–4066. |
[59] | Derakhshi MA, Kangazian J, Shamanian M (2019) Electron beam welding of inconel 617 to AISI 310: Corrosion behavior of weld metal. Vacuum 161: 371–374. doi: 10.1016/j.vacuum.2019.01.005 |
[60] | Iltaf A, Junaid M, khan FN, et al. (2020) Microstructure, mechanical properties, residual stresses and texture analysis of Ti–5Al–2.5Sn alloy weldments obtained using electron beam of different oscillation patterns. P I Mech Eng C-J Mec234: 3484–3496. |
[61] | Dinda SK, BasiruddinSk M, Roy GG, et al. (2016) Microstructure and mechanical properties of electron beam welded dissimilar steel to Fe–Al alloy joints. Mat Sci Eng A-Struct 677: 182–192. doi: 10.1016/j.msea.2016.09.050 |
[62] | Guo S, Peng Y, Cui C, et al. (2019) Forming and tensile fracture characteristics of Ti–6Al–4V and T2 Cu vacuum electron beam welded joints. Vacuum 165: 311–319. doi: 10.1016/j.vacuum.2019.04.018 |
[63] | Singh J, Shahi AS (2019) Metallurgical, impact and fatigue performance of electron beam welded duplex stainless steel joints. J Mater Process Tech 272: 137–148. doi: 10.1016/j.jmatprotec.2019.05.010 |
[64] | Gao P, Zhang KF, Zhang BG, et al. (2011) Microstructures and high temperature mechanical properties of electron beam welded Inconel 718 superalloy thick plate. Trans Nonferrous Met Soc China 21: s315–s322. doi: 10.1016/S1003-6326(11)61598-7 |
[65] | Sharma SK, Agarwal P, Majumdar JD (2017) Studies on electron beam welded Inconel 718 similar joints. Procedia Manuf 7: 654–659. doi: 10.1016/j.promfg.2016.12.097 |
[66] | Zhao L, Wang S, Jin Y, et al. (2018) Microstructural characterization and mechanical performance of Al–Cu–Li alloy electron beam welded joint. Aerosp Sci Technol 82: 61–69. doi: 10.1016/j.ast.2018.08.030 |
[67] | Oliveira JP, Zeng Z, Omori T, et al. (2016) Improvement of damping properties in laser processed superelastic Cu–Al–Mn shape memory alloys. Mater Design 98: 280–284. doi: 10.1016/j.matdes.2016.03.032 |
[68] | Oliveira JP, Schell N, Zhou N, et al. (2019) Laser welding of precipitation strengthened Ni-rich NiTiHf high temperature shape memory alloys: Microstructure and mechanical properties. Mater Design 162: 229–234. doi: 10.1016/j.matdes.2018.11.053 |
[69] | Zeng Z, Oliveira JP, Yang M, et al. (2017) Functional fatigue behavior of NiTi–Cu dissimilar laser welds. Mater Design 114: 282–287. doi: 10.1016/j.matdes.2016.11.023 |
[70] | Noh FS, Zin HM, Alnasser K, et al. (2017) Optimization of laser lap joining between stainless steel 304 and Acrylonitrile Butadiene Styrene (ABS). Procedia Eng 184: 246–250. doi: 10.1016/j.proeng.2017.04.092 |
[71] | Bideskan AS, Ebrahimzadeh P, Teimouri R (2020) Fabrication of bi-layer PMMA and aluminum 6061-T6 laminates by laser transmission welding: Performance prediction and optimization. Int J Lightweight Mater Manuf 3: 150–159. |
[72] | Liu FC, Dong P, Pei X (2020) A high-speed metal-to-polymer direct joining technique and underlying bonding mechanisms. J Mater Process Tech 280: 116610. doi: 10.1016/j.jmatprotec.2020.116610 |
[73] | Hao K, Liao W, Zhang T, et al. (2020) Interface formation and bonding mechanisms of laser transmission welded composite structure of PET on austenitic steel via beam oscillation. Compos Struct 235: 111752. doi: 10.1016/j.compstruct.2019.111752 |
[74] | Li S, Mi G, Wang C (2020) A study on laser beam oscillating welding characteristics for the 5083 aluminum alloy: Morphology, microstructure and mechanical properties. J Manuf Process 53: 12–20. doi: 10.1016/j.jmapro.2020.01.018 |
[75] | Mehrpouya M, Gisario A, Elahinia M (2018) Laser welding of NiTi shape memory alloy: A review. J Manuf Process 31: 162–186. doi: 10.1016/j.jmapro.2017.11.011 |
[76] | Katayama S, Kawahito Y (2008) Laser direct joining of metal and plastic. Scripta Mater 59: 1247–1250. doi: 10.1016/j.scriptamat.2008.08.026 |
[77] | Zhang LX, Chang Q, Sun Z, et al. (2019) Diffusion bonding of hydrogenated TC4 alloy and GH3128 superalloy using composite interlayers. J Mater Process Tech 274: 116266. doi: 10.1016/j.jmatprotec.2019.116266 |
[78] | Zhu F, Peng H, Li X, et al. (2018) Dissimilar diffusion bonding behavior of hydrogenated Ti2AlNb-based and Ti–6Al–4V alloys. Mater Des 159: 68–78. doi: 10.1016/j.matdes.2018.08.034 |
[79] | Wang Z, Li C, Qi J, et al. (2019) Characterization of hydrogenated niobium interlayer and its application in TiAl/Ti2AlNb diffusion bonding. Int J Hydrogen Energ 44: 6929–6937. doi: 10.1016/j.ijhydene.2019.01.133 |
[80] | Feng JC, Liu H, He P, et al. (2007) Effects of hydrogen on diffusion bonding of hydrogenated Ti6Al4V alloy containing 0.3 wt% hydrogen at fast heating rate. Int J Hydrogen Energ 32: 3054–3058. |
[81] | Wu H, Peng H, Li X, et al. (2019) Effect of hydrogen addition on diffusion bonding behavior of Ti-55 alloy. Mat Sci Eng A-Struct 739: 244–253. doi: 10.1016/j.msea.2018.10.032 |
[82] | He P, Wang J, Lin T, et al. (2014) Effect of hydrogen on diffusion bonding of TiAl-based intermetallics and Ni-based superalloy using hydrogenated Ti6Al4V interlayer. Int J Hydrogen Energ 39: 1882–1887. doi: 10.1016/j.ijhydene.2013.11.035 |
[83] | Shanthala K, Sreenivasa TN (2017) Non-conventional solid state joining of structural materials. Int J Res Eng Technol 6: 46–48. |
[84] | He P, Fan L, Liu H, et al. (2010) Effects of hydrogen on diffusion bonding of TiAl-based intermetallics using hydrogenated Ti6Al4V interlayer. Int J Hydrogen Energ 35: 13317–13321. doi: 10.1016/j.ijhydene.2010.09.040 |
[85] | Wang D, Cao J, Li W, et al. (2017) Zr hydrogenation by cathodic charging and its application in TC4 alloy diffusion bonding. Int J Hydrogen Energ 42: 6350–6359. doi: 10.1016/j.ijhydene.2016.11.170 |
[86] | Kore SD, Date PP, Kulkarni SV (2007) Effect of process parameters on electromagnetic impact welding of aluminum sheets. Int J Impact Eng 34: 1327–1341. doi: 10.1016/j.ijimpeng.2006.08.006 |
[87] | Pereira D, Oliveira JP, Pardal T, et al. (2018) Magnetic pulse welding: machine optimisation for aluminium tubular joints production. Sci Technol Weld Joi 23: 172–179. doi: 10.1080/13621718.2017.1355425 |
[88] | Pereira D, Oliveira JP, Santos TG, et al. (2019) Aluminium to carbon fibre reinforced polymer tubes joints produced by magnetic pulse welding. Compos Struct 230: 111512. doi: 10.1016/j.compstruct.2019.111512 |
[89] | Wang YT, Cheng YH, Lin CC, et al. (2020) Direct bonding of aluminum to alumina using a nickel interlayer for power electronics applications. Results Mater 6: 100093. doi: 10.1016/j.rinma.2020.100093 |
[90] | Chen S, Jiang X (2015) Microstructure evolution during magnetic pulse welding of dissimilar aluminium and magnesium alloys. J Manuf Process 19: 14–21. doi: 10.1016/j.jmapro.2015.04.001 |
[91] | Xu Z, Cui J, Yu H, et al. (2013) Research on the impact velocity of magnetic impulse welding of pipe fitting. Mater Des 49: 736–745. doi: 10.1016/j.matdes.2012.12.059 |
[92] | Raoelison RN, Buiron N, Rachik M, et al. (2012) Efficient welding conditions in magnetic pulse welding process. J Manuf Process 14: 372–377. doi: 10.1016/j.jmapro.2012.04.001 |
[93] | Lueg-Althoff J, Bellmann J, Hahn M, et al. (2020) Joining dissimilar thin-walled tubes by Magnetic Pulse Welding. J Mater Process Tech 279: 116562. doi: 10.1016/j.jmatprotec.2019.116562 |
[94] | Watanabe M, Kumai S, Hagimoto G, et al. (2009) Interfacial microstructure of aluminum/metallic glass lap joints fabricated by magnetic pulse welding. Mater Trans 50: 1279–1285. doi: 10.2320/matertrans.ME200835 |
[95] | Zhang W, Ao S, Oliveira JP, et al. (2018) Microstructural characterization and mechanical behavior ofNiTishape memory alloys ultrasonic joints using Cu interlayer. Materials 11: 1–14. |
[96] | Zhang W, Ao S, Oliveira JP, et al. (2020) On the metallurgical joining mechanism during ultrasonic spot welding of NiTi using a Cu interlayer. Scripta Mater 178: 414–417. doi: 10.1016/j.scriptamat.2019.12.012 |
[97] | Zhang W, Ao SS, Oliveira JP, et al. (2018) Effect of ultrasonic spot welding on the mechanical behaviour of NiTi shape memory alloys. Smart Mater Struct 27: 85020. doi: 10.1088/1361-665X/aacfeb |
[98] | Neppiras EA (1965) Ultrasonic welding of metals. Ultrasonics 3: 128–135. doi: 10.1016/S0041-624X(65)80003-8 |
[99] | Jeng YR, Horng JH (2001) Amicrocontact approach for ultrasonic wire bonding in microelectronics. J Tribol 123: 725–731. doi: 10.1115/1.1352744 |
[100] | Li H, Cao B (2019) Effects of welding pressure on high-power ultrasonic spot welding of Cu/Al dissimilar metals. J Manuf Process 46: 194–203. doi: 10.1016/j.jmapro.2019.07.018 |
[101] | Pati PR, Satpathy MP, Nanda BK, et al. (2020) Dissimilar joining of Al/SS sheets with interlayers by ultrasonic spot Welding: Microstructure and mechanical properties. Mater Today Proc 26: 1757–1760. doi: 10.1016/j.matpr.2020.02.369 |
[102] | Zhou L, Min J, He WX, et al. (2018) Effect of welding time on microstructure and mechanical properties of Al–Ti ultrasonic spot welds. J Manuf Process 33: 64–73. doi: 10.1016/j.jmapro.2018.04.013 |
[103] | Tsujino J, Sano T, Ogata H, et al. (2002) Complex vibration ultrasonic welding systems with large area welding tips. Ultrasonics 40: 361–364. doi: 10.1016/S0041-624X(02)00122-1 |
[104] | Krüger S, Wagner G, Eifler D (2004) Ultrasonic welding of metal/composite joints. Adv Eng Mater 6: 157–159. doi: 10.1002/adem.200300539 |
[105] | Thomas M, Nicholas ED, Needham JC, et al. (1991) Improvements relating to friction welding. PL Patent 615480 B1. |
[106] | Hou W, Ahmad Shah LH, Huang G, et al. (2020) The role of tool offset on the microstructure and mechanical properties of Al/Cu friction stir welded joints. J Alloy Compd 825: 154045. doi: 10.1016/j.jallcom.2020.154045 |
[107] | Hasan MM, Ishak M, Rejab MRM (2017) Influence of machine variables and tool profile on the tensile strength of dissimilar AA7075–AA6061 friction stir welds. Int J Adv Manuf Tech 90: 2605–2615. doi: 10.1007/s00170-016-9583-3 |
[108] | Aali M (2020) Investigation of spindle rotation rate effects on the mechanical behavior of friction stir welded Ti4Al2V alloy. J Weld Join 38: 81–91. doi: 10.5781/JWJ.2020.38.1.9 |
[109] | Li D, Yang X, Cui L, et al. (2015) Fatigue property of stationary shoulder friction stir welded additive and non-additive T joints. Sci Technol Weld Join 20: 650–654. doi: 10.1179/1362171815Y.0000000045 |
[110] | Bagha L, Shegal S, Thakur A (2016) Comparative analysis of microwave based joining/welding of SS304–SS304 using different interfacing materials. MATEC Web Conf 57: 03001. doi: 10.1051/matecconf/20165703001 |
[111] | Pal M, Sehgal S, Kumar H, et al. (2020) Use of nickel filler powder in joining SS304–SS316 through microwave hybrid heating technique. Met Powder Rep In press. |
[112] | Bagha L, Sehgal S, Thakur A, et al. (2019) Low cost joining of SS304–SS304 through microwave hybrid heating without filler-powder. Mater Res Express 1: 25035. |
[113] | Srinath M, Murthy P, Sharma A, et al. (2012) Simulation and analysis of microwave heating while joining bulk copper. Int J Eng Sci Technol 4: 152–158. |
[114] | Bhoi NK, Singh H, Pratap S (2019) A study on microwave susceptor material for hybrid heating. J Phys Conf Ser 1240: 012097 doi: 10.1088/1742-6596/1240/1/012097 |
[115] | Lingappa SM, Srinath MS, Amarendra HJ (2017) An experimental investigation to find the critical (coupling) temperature in microwave hybrid heating of bulk metallic materials. Mater Res Express 4: 106521. doi: 10.1088/2053-1591/aa931e |
[116] | Norrish J (2006) Advanced Welding Processes, Cambridge: Woodhead Publishing. |
[117] | Cary HB, Helzer SC (2004) Modern Welding Technology, 5Eds., New Jersey: Prentice Hall. |
[118] | Oliveira JP, Duarte JF, Inácio P, et al. (2017) Production of Al/NiTi composites by friction stir welding assisted by electrical current. Mater Design 113: 311–318. doi: 10.1016/j.matdes.2016.10.038 |
[119] | Al-Sayyad A, Bardon J, Hirchenhahn P, et al. (2018) Aluminum pretreatment by a laser ablation process: Influence of processing parameters on the joint strength of laser welded aluminum–polyamide assemblies. Procedia CIRP 74: 495–499. doi: 10.1016/j.procir.2018.08.136 |
[120] | Amend P, Pfindel S, Schmidt M (2013) Thermal joining of thermoplastic metal hybrids by means of mono- and polychromatic radiation. Phys Procedia 41: 98–105. doi: 10.1016/j.phpro.2013.03.056 |
[121] | Chen YJ, Yue TM, Guo ZN (2016) A new laser joining technology for direct-bonding of metals and plastics. Mater Des 110: 775–781. doi: 10.1016/j.matdes.2016.08.018 |
[122] | Xiao R, Zhang X (2014) Problems and issues in laser beam welding of aluminum–lithium alloys. J Manuf Process 16: 166–175. doi: 10.1016/j.jmapro.2013.10.005 |
[123] | Elrefaey A, Tillmann W (2009) Solid state diffusion bonding of titanium to steel using a copper base alloy as interlayer. J Mater Process Tech 209: 2746–2752. doi: 10.1016/j.jmatprotec.2008.06.014 |
[124] | Ma Y, Li H, Yang L, et al. (2018) Reaction-assisted diffusion bonding of Ti6Al4V alloys with Ti/Ni nanostructured multilayers. J Mater Process Tech 262: 204–209. doi: 10.1016/j.jmatprotec.2018.05.035 |
[125] | Deng Y, Sheng G, Xu C (2013) Evaluation of the microstructure and mechanical properties of diffusion bonded joints of titanium to stainless steel with a pure silver interlayer. Mater Des 46: 84–87. doi: 10.1016/j.matdes.2012.09.058 |
[126] | Sadiku MNO (2001) Elements of Electromagnetics, 6 Eds., New York: Oxford University Press. |
[127] | Jiang S, Shen J, Nagasaka T, et al. (2020) Interfacial characterization of dissimilar-metals bonding between vanadium alloy and Hastelloy X alloy by explosive welding. J Nucl Mater 539: 152322. doi: 10.1016/j.jnucmat.2020.152322 |
[128] | Wang PQ, Chen DL, Ran Y, et al. (2020) Electromagnetic pulse welding of Al/Cu dissimilar materials: Microstructure and tensile properties. Mat Sci Eng A-Struct 792: 139842. doi: 10.1016/j.msea.2020.139842 |
[129] | Li C, Zhou Y, Wang X, et al. (2020) Influence of discharge current frequency on electromagnetic pulse welding. J Manuf Process 57: 509–518. doi: 10.1016/j.jmapro.2020.06.038 |
[130] | Raoelison RN, Racine D, Zhang Z, et al. (2014) Magnetic pulse welding: Interface of Al/Cu joint and investigation of intermetallic formation effect on the weld features. J Manuf Process 16: 427–434. doi: 10.1016/j.jmapro.2014.05.002 |
[131] | Yu HP, Xu ZD, Jiang HW, et al. (2012) Magnetic pulse joining of aluminum alloy–carbon steel tubes. Trans Nonferrous Met Soc China 22: s548–s552. |
[132] | Shah U, Liu X (2020) Effect of ultrasonic energy on the spot weldability of aluminum alloy AA6061. Mater Des 192: 108690. doi: 10.1016/j.matdes.2020.108690 |
[133] | Bahl S, Bagha AK (2020) Finite element modeling and simulation of the fiber–matrix interface in fiber reinforced metal matrix composites. Mater Today Proc In press. |
[134] | Bagha AK, Bahl S (2020) Finite element analysis of VGCF/pp reinforced square representative volume element to predict its mechanical properties for different loadings. Mater Today Proc In press. |
[135] | Bahl S (2020) Axisymmetric finite element analysis of single fiber push-out test for stainless steel wire reinforced aluminum matrix composites. Mater Today Proc 28: 1605–1611. doi: 10.1016/j.matpr.2020.04.848 |
[136] | Bahl S (2020) Fiber reinforced metal matrix composites—a review. Mater Today Proc In press. |
[137] | Saini MK, Bagha AK, Kumar S, et al. (2020) Finite element analysis for predicting the vibration characteristics of natural fiber reinforced epoxy composites. Mater Today Proc In press. |
[138] | Bagha AK, Bahl S (2020) Strain energy and finite element analysis to predict the mechanical properties of vapor grown carbon fiber reinforced polypropylene nanocomposites. Mater Today Proc In press. |
[139] | Shah UH, Liu X (2019) Ultrasonic resistance welding of TRIP-780 steel. J Mater Process Tech 274: 116287. doi: 10.1016/j.jmatprotec.2019.116287 |
[140] | Tsujino J, Hidai K, Hasegawa A, et al. (2002) Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens. Ultrasonics 40: 371–374. doi: 10.1016/S0041-624X(02)00124-5 |
[141] | Wang SQ, Patel VK, Bhole SD, et al. (2015) Microstructure and mechanical properties of ultrasonic spot welded Al/Ti alloy joints. Mater Des 78: 33–41. doi: 10.1016/j.matdes.2015.04.023 |
[142] | Kalyan RK, Omkumar M (2020) Investigation and characterization of ultrasonically welded GF/PA6T composites. Mater Today Proc 26: 282–286. doi: 10.1016/j.matpr.2019.11.261 |