Review

Potassium sodium niobate (KNN) lead-free piezoceramics: A review of phase boundary engineering based on KNN materials

  • Received: 19 July 2023 Revised: 22 August 2023 Accepted: 29 August 2023 Published: 18 September 2023
  • Lead zirconia titanate (PZT) is the most often used piezoelectric material in various electronic applications like energy harvesters, ultrasonic capacitors and motors. It is true that PZT has a lot of significant drawbacks due to its 60% lead content, despite its outstanding ferroelectric, dielectric and piezoelectric properties which influenced by PZT's morphotropic phase boundary. The recently found potassium sodium niobate (KNN) is one of the most promising candidates for a new lead-free piezoelectric material. For the purpose of providing a resource and shedding light on the future, this paper provides a summary of the historical development of different phase boundaries in KNN materials and provides some guidance on how to achieve piezoelectric activity on par with PZT through a thorough examination and critical analysis of relevant articles by providing insight and perspective of KNN, which consists of detailed evaluation of the design, construction of phase boundaries and engineering for applications.

    Citation: Hidayah Mohd Ali Piah, Mohd Warikh Abd Rashid, Umar Al-Amani Azlan, Maziati Akmal Mohd Hatta. Potassium sodium niobate (KNN) lead-free piezoceramics: A review of phase boundary engineering based on KNN materials[J]. AIMS Materials Science, 2023, 10(5): 835-861. doi: 10.3934/matersci.2023045

    Related Papers:

  • Lead zirconia titanate (PZT) is the most often used piezoelectric material in various electronic applications like energy harvesters, ultrasonic capacitors and motors. It is true that PZT has a lot of significant drawbacks due to its 60% lead content, despite its outstanding ferroelectric, dielectric and piezoelectric properties which influenced by PZT's morphotropic phase boundary. The recently found potassium sodium niobate (KNN) is one of the most promising candidates for a new lead-free piezoelectric material. For the purpose of providing a resource and shedding light on the future, this paper provides a summary of the historical development of different phase boundaries in KNN materials and provides some guidance on how to achieve piezoelectric activity on par with PZT through a thorough examination and critical analysis of relevant articles by providing insight and perspective of KNN, which consists of detailed evaluation of the design, construction of phase boundaries and engineering for applications.



    加载中


    [1] Ringgaard E, Wurlitzer T, Wolny WW (2011) Properties of lead-free piezoceramics based on alkali niobates. Ferroelectrics 319: 97–107. http://doi.org/10.1080/00150190590965497 doi: 10.1080/00150190590965497
    [2] Cross E (2004) Lead-free at last. Nature 432: 24–25. https://doi.org/10.1038/nature03142 doi: 10.1038/nature03142
    [3] Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric Ceramics, Non-Metallic Solids, London: Academic Press. https://doi.org/10.1016/0022-460X(72)90684-0
    [4] Kumar P, Pattanaik M, Sonia (2013) Synthesis and characterizations of KNN ferroelectric ceramics near 50/50 MPB. Ceram Int 39: 65–69. http://doi.org/10.1016/j.ceramint.2012.05.093 doi: 10.1016/j.ceramint.2012.05.093
    [5] Takenaka T, Nagata H (2005) Current status and prospects of lead-free piezoelectric ceramics. J Eur Ceram Soc 25: 2693–2700. http://doi.org/10.1016/j.jeurceramsoc.2005.03.125 doi: 10.1016/j.jeurceramsoc.2005.03.125
    [6] Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: Alternatives for PZT? J Electroceramics 19: 111–124. http://doi.org/10.1007/s10832-007-9047-0 doi: 10.1007/s10832-007-9047-0
    [7] Rödel J, Jo W, Seifert KTP, et al. (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92: 1153–1177. http://doi.org/10.1111/j.1551-2916.2009.03061.x doi: 10.1111/j.1551-2916.2009.03061.x
    [8] Chen K, Zhang F, Li D, et al. (2016) Acceptor doping effects in (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics. Ceram Int 42: 2899–2903. http://doi.org/10.1016/j.ceramint.2015.11.016 doi: 10.1016/j.ceramint.2015.11.016
    [9] Jo W, Dittmer R, Acosta M, et al. (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications—Status and perspective. J Electroceram 29: 71–93. http://doi.org/10.1007/s10832-012-9742-3 doi: 10.1007/s10832-012-9742-3
    [10] Saito Y, Takao H, Tani T, et al. (2004) Lead-free piezoceramics. Nature 432: 84–87. http://doi.org/10.1038/nature03028 doi: 10.1038/nature03028
    [11] Kim JS, Ahn CW, Lee SY, et al. (2011) Effects of LiNbO3 substitution on lead-free (K0.5Na0.5)NbO3 ceramics: Enhanced ferroelectric and electrical properties. Curr Appl Phys 11: S149–S153. http://doi.org/10.1016/j.cap.2011.03.049 doi: 10.1016/j.cap.2011.03.049
    [12] Liang W, Wu W, Xiao D, et al. (2011) Effect of the addition of CaZrO3 and LiNbO3 on the phase transitions and piezoelectric properties of K0.5Na0.5NbO3 lead-free ceramics. J Am Ceram Soc 94: 4317–4322. http://doi.org/10.1111/j.1551-2916.2011.04660.x doi: 10.1111/j.1551-2916.2011.04660.x
    [13] Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric materials: Past, present, and future of phase boundaries. Chem Rev 115: 2559–2595. http://doi.org/10.1021/cr5006809 doi: 10.1021/cr5006809
    [14] Akmal MMT, Warikh ARM, Azlan UA (2015) Physical and electrical properties enhancement of rare-earth doped-potassium sodium niobate (KNN): A review. Ceram-Silikatty 59: 158–163.
    [15] Zuo R, Rödel J, Chen R, et al. (2006) Sintering and electrical properties of lead-free Na0.5K0.5NbO3 piezoelectric ceramics. J Am Ceram Soc 89: 2010–2015. http://doi.org/10.1111/j.1551-2916.2006.00991.x doi: 10.1111/j.1551-2916.2006.00991.x
    [16] Zuo R, Lv D, Fu J, et al. (2009) Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3-BiAlO3 ceramics. J Alloys Compd 476: 836–839. http://doi.org/10.1016/j.jallcom.2008.09.123 doi: 10.1016/j.jallcom.2008.09.123
    [17] Benabdallah F, Simon A, Khemakhem H, et al. (2011) Linking large piezoelectric coefficients to highly flexible polarization of lead free BaTiO3-CaTiO3-BaZrO3 ceramics. J Appl Phys 109: 124116. http://doi.org/1063/1.3599854 doi: 10.1063/1.3599854
    [18] Paul J, Nishimatsu T, Kawazoe Y, et al. (2007) Ferroelectric phase transitions in ultrathin films of BaTiO3. Phys Rev Lett 99: 077601. https://doi.org/10.1103/PhysRevLett.99.077601 doi: 10.1103/PhysRevLett.99.077601
    [19] Herber RP, Schneider GA, Wagner S, et al. (2007) Characterization of ferroelectric domains in morphotropic potassium sodium niobate with scanning probe microscopy. Appl Phys Lett 90: 2522905. http://doi.org/10.1063/1.2750395 doi: 10.1063/1.2750395
    [20] Wurfel P, Batra IP, Jacobs JT (1973) Polarization instability in thin ferroelectric films. Phys Rev Lett 30: 1218–1221. http://doi.org/10.1103/PhysRevLett.30.1218 doi: 10.1103/PhysRevLett.30.1218
    [21] Song HC, Kim HC, Kang CY, et al. (2009) Multilayer piezoelectric energy scavenger for large current generation. J Electroceramics 23: 301–304. https://doi.org/10.1007/s10832-008-9439-9 doi: 10.1007/s10832-008-9439-9
    [22] Abazari M, Akdoǧan EK, Safari A (2008) Effect of manganese doping on remnant polarization and leakage current in (K0.44, Na0.52, Li0.04) (Nb0.84, Ta0.10, Sb0.06) O3 epitaxial thin films on SrTiO3. Appl Phys Lett 92: 212903. http://doi.org/10.1063/1.2937000 doi: 10.1063/1.2937000
    [23] Yoo J, Lee K, Chung K, et al. (2006) Piezoelectric and dielectric properties of (LiNaK)(NbTaSb)O3 ceramics with variation in poling temperature. Jpn J Appl Phys 45: 7444–7448. https://dx.doi.org/10.1143/JJAP.45.7444 doi: 10.1143/JJAP.45.7444
    [24] Wang D, Cao M, Zhang S (2012) Investigation of ternary system PbHfO3-PbTiO3-Pb (Mg1/3 Nb2/3)O3 with morphotropic phase boundary compositions. J Am Ceram Soc 95: 3220–3228. https://doi.org/10.1111/j.1551-2916.2012.05300.x doi: 10.1111/j.1551-2916.2012.05300.x
    [25] Ahn CW, Jeong ED, Lee SY, et al. (2010) Enhanced ferroelectric properties of LiNbO3 substituted Na0.5K0.5NbO3 lead-free thin films grown by chemical solution deposition. Appl Phys Lett 93: 212905. http://doi.org/10.1063/1.3037214 doi: 10.1063/1.3037214
    [26] Hagh NM, Jadidian B, Ashbahian E, et al. (2008) Lead-free piezoelectric ceramic transducer in the donor-doped K1/2Na1/2NbO3 solid solution system. IEEE T Ultrason Ferr 55: 214–224. http://doi.org/10.1109/TUFFC.2008.630 doi: 10.1109/TUFFC.2008.630
    [27] Courths R, Steiner P, Höchst H, et al. (1980) Photoelectron-spectroscopy investigation and electronic properties of LiNbO3 crystal surfaces. Appl Phys 21: 345–352. https://doi.org/10.1007/BF00895926 doi: 10.1007/BF00895926
    [28] Lin D, Xiao D, Zhu J, et al. (2006) Piezoelectric and ferroelectric properties of lead-free [Bi1-y (Na1-xyLix)]0.5BayTiO3 ceramics. J Eur Ceram Soc 26: 3247–3251. https://doi.org/10.1016/j.jeurceramsoc.2005.09.038 doi: 10.1016/j.jeurceramsoc.2005.09.038
    [29] Reaney IM, Damjanovic D (1996) Crystal structure and domain-wall contributions to the piezoelectric properties of strontium bismuth titanate ceramics. J Appl Phys 80: 4223–4225. https://doi.org/10.1063/1.363301 doi: 10.1063/1.363301
    [30] Wu J, Tao H, Yuan Y, et al. (2015) Role of antimony in the phase structure and electrical properties of potassium-sodium niobate lead-free ceramics. RSC Adv 5: 14575–14583. https://doi.org/10.1039/C4RA14271C doi: 10.1039/C4RA14271C
    [31] Bernard J, Benčan A, Rojac T, et al. (2008) Low-temperature sintering of K0.5Na0.5NbO3 ceramics. J Am Ceram Soc 91: 2409–2411. https://doi.org/10.1111/j.1551-2916.2008.02447.x doi: 10.1111/j.1551-2916.2008.02447.x
    [32] Rubio-Marcos F, Romero JJ, Martín-Gonzalez MS, et al. (2010) Effect of stoichiometry and milling processes in the synthesis and the piezoelectric properties of modified KNN nanoparticles by solid state reaction. J Eur Ceram Soc 30: 2763–2771. https://doi.org/10.1016/j.jeurceramsoc.2010.05.027 doi: 10.1016/j.jeurceramsoc.2010.05.027
    [33] López-Juárez R, Novelo-Peralta O, González-García F, et al. (2011) Ferroelectric domain structure of lead-free potassium-sodium niobate ceramics. J Eur Ceram Soc 31: 1861–1864. https://doi.org/10.1016/j.jeurceramsoc.2011.02.031 doi: 10.1016/j.jeurceramsoc.2011.02.031
    [34] Shen ZY, Li JF, Wang K, et al. (2010) Electrical and mechanical properties of fine-grained Li/Ta-modified (Na, K)NbO3-based piezoceramics prepared by spark plasma sintering. J Am Ceram Soc 93: 1378–1383. https://doi.org/10.1111/j.1551-2916.2009.03542.x doi: 10.1111/j.1551-2916.2009.03542.x
    [35] Uršič H, Benčan A, Škarabot M, et al. (2010) Dielectric, ferroelectric, piezoelectric, and electrostrictive properties of K0.5Na0.5NbO3 single crystals. J Appl Phys 107: 033705. https://doi.org/10.1063/1.3291119 doi: 10.1063/1.3291119
    [36] Bobnar V, Bernard J, Kosec M. (2004) Relaxorlike dielectric properties and history-dependent effects in the lead-free K0.5Na0.5NbO3-SrTiO3 ceramic system. Appl Phys Lett 85: 994–996. http://doi.org/10.1063/1.1779947 doi: 10.1063/1.1779947
    [37] Wolny WW (2004) European approach to development of new environmentally sustainable electroceramics. Ceram Int 30: 1079–1083. https://doi.org/10.1016/j.ceramint.2003.12.025 doi: 10.1016/j.ceramint.2003.12.025
    [38] Uesu Y, Matsuda M, Yamada Y, et al. (2002) Symmetry of high-piezoelectric Pb-based complex perovskites at the morphotropic phase boundary: I. Neutron diffraction study on Pb(Zn1/3Nb2/3)O3-9%PbTiO3. J Phys Soc Jpn 71: 960–965. https://doi.org/10.1143/JPSJ.71.960 doi: 10.1143/JPSJ.71.960
    [39] Zuo R, Xu Z, Li L (2008) Dielectric and piezoelectric properties of Fe2O3-doped (Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3 lead-free ceramics. J Phys Chem Solids 69: 1728–1732. http://doi.org/10.1016/j.jpcs.2008.01.003 doi: 10.1016/j.jpcs.2008.01.003
    [40] Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82: 1804–1811. http://doi.org/10.1063/1.365983 doi: 10.1063/1.365983
    [41] Damjanovic D (1998) Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep Prog Phys 61: 1267–1324. http://doi.org/10.1088/0034-4885/61/9/002 doi: 10.1088/0034-4885/61/9/002
    [42] Kittel C (1946) Theory of the structure of ferromagnetic domains in films and small particles. Phys Rev 70: 965–971. http://doi.org/10.1103/PhysRev.70.965 doi: 10.1103/PhysRev.70.965
    [43] Egerton L, Dillon DM (1959) Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate. J Am Ceram Soc 42: 438–442. http://doi.org/10.1111/j.1151-2916.1959.tb12971.x doi: 10.1111/j.1151-2916.1959.tb12971.x
    [44] Noheda B, Cox DE, Shirane G, et al. (1999) A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Appl Phys Lett 74: 2059–2061. http://doi.org/10.1063/1.123756 doi: 10.1063/1.123756
    [45] Guo R, Cross LE, Park SE, et al. (2000) Origin of the high piezoelectric response in PbZr1-xTixO3. Phys Rev Lett 84: 5423–5426. http://doi.org/10.1103/PhysRevLett.84.5423 doi: 10.1103/PhysRevLett.84.5423
    [46] Kreisel J, Glazer AM, Jones G, et al. (2000) An X-ray diffraction and Raman spectroscopy investigation of A-site substituted perovskite compounds: The (Na1-xKx)0.5Bi0.5TiO3 (0 ≤ x ≤ 1) solid solution. J Phys Condens Matter 12: 3267–3280. http://doi.org/10.1088/0953-8984/12/14/305 doi: 10.1088/0953-8984/12/14/305
    [47] Singh AK, Pandey D (2003) Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3: A rietveld study. Phys Rev B 67: 064102. http://doi.org/10.1103/PhysRevB.67.064102 doi: 10.1103/PhysRevB.67.064102
    [48] Wang P, Li Y, Lu Y (2011) Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. J Eur Ceram Soc 31: 2005–2012. http://doi.org/10.1016/j.jeurceramsoc.2011.04.023 doi: 10.1016/j.jeurceramsoc.2011.04.023
    [49] Bilc DI, Orlando R, Shaltaf R, et al. (2008) Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys Rev B 77: 165107. http://doi.org/10.1103/PhysRevB.77.165107 doi: 10.1103/PhysRevB.77.165107
    [50] Karaki T, Yan K, Miyamoto T, et al. (2007) Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn J Appl Phys 46: L97. http://doi.org/10.1143/JJAP.46.L97 doi: 10.1143/JJAP.46.L97
    [51] Kakimoto KI, Akao K, Guo Y, et al. (2005) Raman scattering study of piezoelectric (N0.5K0.5)NbO3-LiNbO3 ceramics. Jpn J Appl Phys 44: 7064–7067. http://doi.org/10.1143/JJAP.44.7064 doi: 10.1143/JJAP.44.7064
    [52] Keeble DS, Benabdallah F, Thomas PA, et al. (2013) Revised structural phase diagram of (Ba0.7C0.3TiO3)(BaZr0.2Ti0.8O3). Appl Phys Lett 102: 092903. http://doi.org/10.1063/1.4793400 doi: 10.1063/1.4793400
    [53] Zhen Y, Li JF (2006) Normal sintering of (K, Na)NbO3-based ceramics: Influence of sintering temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 89: 3669–3675. http://doi.org/10.1111/j.1551-2916.2006.01313.x doi: 10.1111/j.1551-2916.2006.01313.x
    [54] Buhret CF (1962) Some properties of bismuth perovskites. J Chem Phys 36: 798–803. http://doi.org/10.1063/1.1732613 doi: 10.1063/1.1732613
    [55] Schönau KA, Schmitt LA, Knapp M, et al. (2007) Nanodomain structure of Pb[Zr1-xTix]O3 at its morphotropic phase boundary: Investigations from local to average structure. Phys Rev B 75: 184117. http://doi.org/10.1103/PhysRevB.75.184117 doi: 10.1103/PhysRevB.75.184117
    [56] Wylie VEB, Damjanovic D, Klein N, et al. (2010) Structural complexity of (Na0.5Bi0.5)TiO3-BaTiO3 as revealed by Raman spectroscopy. Phys Rev B 82: 104112. http://doi.org/10.1103/PhysRevB.82.104112 doi: 10.1103/PhysRevB.82.104112
    [57] Woodward DI, Knudsen J, Reaney IM (2005) Review of crystal and domain structures in the PbZrxTi1-xO3 solid solution. Phys Rev B 72: 104110. http://doi.org/10.1103/PhysRevB.72.104110 doi: 10.1103/PhysRevB.72.104110
    [58] Ye ZG, Dong M (2000) Morphotropic domain structures and phase transitions in relaxor-based piezo-/ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals. J Appl Phys 87: 2312–2319. http://doi.org/10.1063/1.372180 doi: 10.1063/1.372180
    [59] Liu SF, Park SE, Shrout TR, et al. (1999) Electric field dependence of piezoelectric properties for rhombohedral 0.955Pb(Zn1/3Nb2/3)O3-0.045PbTiO3 single crystals. J Appl Phys 85: 2810–2814. http://doi.org/10.1063/1.369599 doi: 10.1063/1.369599
    [60] Anton EM, Jo W, Damjanovic D, et al. (2011) Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics. J Appl Phys 110: 094108. http://doi.org/10.1063/1.3660253 doi: 10.1063/1.3660253
    [61] Noblanc O, Gaucher P, Calvarin G (1996) Structural and dielectric studies of Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric solid solutions around the morphotropic boundary. J Appl Phys 79: 4291–4297. http://doi.org/10.1063/1.361865 doi: 10.1063/1.361865
    [62] Xue D, Zhou Y, Bao H, et al. (2011) Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3-50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary. J Appl Phys 109: 054110. http://doi.org/10.1063/1.3549173 doi: 10.1063/1.3549173
    [63] Wu J, Wang Y, Xiao D, et al. (2007) Effects of Ag content on the phase structure and piezoelectric properties of (K0.44-xNa0.52Li0.04 Agx)(Nb0.91Ta0.05Sb0.04)O3 lead-free ceramics. Appl Phys Lett 91: 132914. http://doi.org/10.1063/1.2793507 doi: 10.1063/1.2793507
    [64] Matsubara M, Yamaguchi T, Kikuta K, et al. (2004) Sinterability and piezoelectric properties of (K, Na)NbO3 ceramics with novel sintering aid. Jpn J Appl Phys 43: 7159–7163. http://doi.org/10.1143/JJAP.43.7159 doi: 10.1143/JJAP.43.7159
    [65] Kounga AB, Zhang ST, Jo W, et al. (2008) Morphotropic phase boundary in (1-x)Bi0.5Na0.5TiO3-xK0.5Na0.5NbO3 lead-free piezoceramics. Appl Phys Lett 92: 222902. http://doi.org/10.1063/1.2938064 doi: 10.1063/1.2938064
    [66] Wang K, Li JF (2007) Analysis of crystallographic evolution in (Na, K)NbO3-based lead-free piezoceramics by X-ray diffraction. Appl Phys Lett 91: 262902. http://doi.org/10.1063/1.2825280 doi: 10.1063/1.2825280
    [67] Akdoǧan EK, Kerman K, Abazari M, et al. (2008) Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl Phys Lett 92: 112908. http://doi.org/10.1063/1.2897033 doi: 10.1063/1.2897033
    [68] Elkechai O, Manier M, Mercurio JP (1996) Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 (NBT-KBT) system: A structural and electrical study. Phys Stat Sol 157: 499–506. http://doi.org/10.1002/pssa.2211570234 doi: 10.1002/pssa.2211570234
    [69] Li F, Zhang S, Xu Z, et al. (2010) Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals. J Appl Phys 108: 034106. http://doi.org/10.1063/1.3466978 doi: 10.1063/1.3466978
    [70] Zuo R, Fu J (2011) Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics. J Am Ceram Soc 94: 1467–1470. http://doi.org/10.1111/j.1551-2916.2010.04256.x doi: 10.1111/j.1551-2916.2010.04256.x
    [71] Fisher JG, Benčan A, Holc J, et al. (2007) Growth of potassium sodium niobate single crystals by solid state crystal growth. J Cryst Growth 303: 487–492. http://doi.org/10.1016/j.jcrysgro.2007.01.011 doi: 10.1016/j.jcrysgro.2007.01.011
    [72] Jo W, Seifert KTP, Anton E, et al. (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92: 1153–1177. http://doi.org/10.1111/j.1551-2916.2009.03061.x doi: 10.1111/j.1551-2916.2009.03061.x
    [73] Zhang S, Xia R, Shrout TR (2007) Lead-free piezoelectric ceramics vs. PZT? J Electroceram 19: 251–257. http://doi.org/10.1007/s10832-007-9056-z doi: 10.1007/s10832-007-9056-z
    [74] Zuo R, Fu J, Lv D, et al. (2010) Antimony tuned rhombohedral-orthorhombic phase transition and enhanced piezoelectric properties in sodium potassium niobate. J Am Ceram Soc 93: 2783–2787. http://doi.org/10.1111/j.1551-2916.2010.03804.x doi: 10.1111/j.1551-2916.2010.03804.x
    [75] Wu J, Xiao D, Wang Y, et al. (2008) CaTiO3-modified[(K0.5Na0.5)0.94Li0.06](Nb0.94Sb0.06)O3 lead-free piezoelectric ceramics with improved temperature stability. Scripta Mater 59: 750–752. http://doi.org/10.1016/j.scriptamat.2008.06.011 doi: 10.1016/j.scriptamat.2008.06.011
    [76] Wu J, Xiao D, Wang Y, et al. (2008) Improved temperature stability of CaTiO3-modified [(K0.5Na0.5)0.96Li0.04](Nb0.91Sb0.05Ta0.04)O3 lead-free piezoelectric ceramics. J Appl Phys 104: 024102. http://doi.org/10.1063/1.2956390 doi: 10.1063/1.2956390
    [77] Leontsev SO, Eitel RE (2010) Progress in engineering high strain lead-free piezoelectric ceramics. Sci Technol Adv Mat 11: 044302. http://doi.org/10.1088/1468-6996/11/4/044302 doi: 10.1088/1468-6996/11/4/044302
    [78] Kosec M, Malič B, Benčan A, et al. (2008) KNN-based piezoelectric ceramics, In: Safari A, Akdoğan EK, Piezoelectric and Acoustic Materials for Transducer Applications, Boston: Springer. https://doi.org/10.1007/978-0-387-76540-2_5
    [79] Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103: 257602. http://doi.org/10.1103/PhysRevLett.103.257602 doi: 10.1103/PhysRevLett.103.257602
    [80] Jo W, Schaab S, Sapper E, et al. (2011) On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol BaTiO3. J Appl Phys 110: 074106. http://doi.org/10.1063/1.3645054 doi: 10.1063/1.3645054
    [81] Wang X, Wu J, Xiao D, et al. (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136: 2905–2910. http://doi.org/10.1021/ja500076h doi: 10.1021/ja500076h
    [82] Cheng X, Wu J, Lou X, et al. (2014) Achieving both giant d33 and high TC in potassium-sodium niobate ternary system. ACS Appl Mater Interfaces 6: 750–756. https://doi.org/10.1021/am404793e doi: 10.1021/am404793e
    [83] Cheng X, Wu J, Wang X, et al. (2013) Mediating the contradiction of d33 and TC in potassium-sodium niobate lead-free piezoceramics. ACS Appl Mater Interfaces 5: 10409–10417. http://doi.org/10.1021/am403448r doi: 10.1021/am403448r
    [84] Wang X, Wu J, Xiao D, et al. (2014) New potassium-sodium niobate ceramics with a giant d33. ACS Appl Mater Interfaces 6: 6177–6180. http://doi.org/10.1021/am500819v doi: 10.1021/am500819v
    [85] Cheng X, Wu J, Wang X, et al. (2014) New lead-free piezoelectric ceramics based on (K0.48Na0.52)(Nb0.95Ta0.05)O3-Bi0.5(Na0.7K0.2Li0.1)0.5ZrO3. Dalton Trans 43: 3434–3442. http://doi.org/10.1039/c3dt52603h doi: 10.1039/c3dt52603h
    [86] Liang W, Wang Z, Xiao D, et al. (2012) Effect of new phase boundary on the dielectric and piezoelectric properties of K0.5Na0.5NbO3-xBaZrO3-yBi0.5Na0.5TiO3 lead-free ceramics. Integr Ferroelectr 139: 63–74. http://doi.org/10.1080/10584587.2012.737221 doi: 10.1080/10584587.2012.737221
    [87] Zhang B, Wu J, Cheng X, et al. (2013) Lead-free piezoelectrics based on potassium-sodium niobate with giant d33. ACS Appl Mater Interfaces 5: 7718–7725. http://doi.org/10.1021/am402548x doi: 10.1021/am402548x
    [88] Liang W, Wu W, Xiao D, et al. (2011) Construction of new morphotropic phase boundary in 0.94(K0.42xNa0.6BaxNb1-xZrx)O3-0.06LiSbO3 lead-free piezoelectric ceramics. J Mater Sci 46: 6871–6876. http://doi.org/10.1007/s10853-011-5650-1 doi: 10.1007/s10853-011-5650-1
    [89] Munz D, Fett T (2000) Ceramics: Mechanical Properties, Failure Behaviour, Materials Selection, Heidelberg: Springer Berlin.
    [90] Han C, Wu J, Pu C, et al. (2012) High piezoelectric coefficient of Pr2O3-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 ceramics. Ceram Int 38: 6359–6363. http://doi.org/10.1016/j.ceramint.2012.05.008 doi: 10.1016/j.ceramint.2012.05.008
    [91] Kalyani AK, Senyshyn A, Ranjan R (2013) Polymorphic phase boundaries and enhanced piezoelectric response in extended composition range in the lead free ferroelectric BaTi1-xZrxO3. J Appl Phys 114: 014102. http://doi.org/10.1063/1.4812472 doi: 10.1063/1.4812472
    [92] Miclea C, Tanasoiu C, Miclea CF, et al. (2005) Effect of iron and nickel substitution on the piezoelectric properties of PZT type ceramics. J Eur Ceram Soc 25: 2397–2400. http://doi.org/10.1016/j.jeurceramsoc.2005.03.069 doi: 10.1016/j.jeurceramsoc.2005.03.069
    [93] Maurya D, Pramanick A, An K, et al. (2012) Enhanced piezoelectricity and nature of electric-field induced structural phase transformation in textured lead-free piezoelectric Na0.5Bi0.5TiO3-BaTiO3 ceramics. Appl Phys Lett 100: 172906. http://doi.org/10.1063/1.4709404 doi: 10.1063/1.4709404
    [94] Singh AK, Mishra SK, Ragini, et al. (2008) Origin of high piezoelectric response of Pb(ZrxTi1-x)O3 at the morphotropic phase boundary: Role of elastic instability. Appl Phys Lett 92: 022910. http://doi.org/10.1063/1.2836269 doi: 10.1063/1.2836269
    [95] Jo W, Daniels JE, Jones JL, et al. (2011) Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics. J Appl Phys 109: 014110. http://doi.org/10.1063/1.3530737 doi: 10.1063/1.3530737
    [96] Zheng T, Wu J, Cheng X, et al. (2014) High strain in (K0.40Na0.60)(Nb0.955Sb0.045)O3-Bi0.50Na0.50ZrO3 lead-free ceramics with large piezoelectricity. J Mater Chem C 2: 8796–8803. http://doi.org/10.1039/c4tc01533a doi: 10.1039/c4tc01533a
    [97] Zhu X, Xu J, Meng Z (1997) Dielectric and piezoelectric properties of Pb(Ni1/3Nb2/3)O3-PbTiO3-PbZrO3 ceramics modified with bismuth and zinc substitutions. J Mater Sci 32: 4275–4282. http://doi.org/10.1023/A:1018655419424 doi: 10.1023/A:1018655419424
    [98] Gan BK, Yao K, He X (2007) Complex oxide ferroelectric ceramics Pb(Ni1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 with a low sintering temperature. J Am Ceram Soc 90: 1186–1192. http://doi.org/10.1111/j.1551-2916.2007.01617.x doi: 10.1111/j.1551-2916.2007.01617.x
    [99] Liu Y, Li Q, Qiao L, et al. (2022) Achieving giant piezoelectricity and high property uniformity simultaneously in a relaxor ferroelectric crystal through rare-earth element doping. Adv Sci 9: 2204631. http://doi.org/10.1002/advs.202204631 doi: 10.1002/advs.202204631
    [100] Tellier J, Malic B, Dkhil B, et al. (2009) Crystal structure and phase transitions of sodium potassium niobate perovskites. Solid State Sci 11: 320–324. https://doi.org/10.1016/j.solidstatesciences.2008.07.011 doi: 10.1016/j.solidstatesciences.2008.07.011
    [101] Baker DW, Thomas PA, Zhang N, et al. (2009) Structural study of KxNa1-xNbO3 (KNN) for compositions in the range x = 0.24–0.36. Acta Cryst B 65: 22–28. http://doi.org/10.1107/S0108768108037361 doi: 10.1107/S0108768108037361
    [102] Sharma JP, Kumar D, Sharma AK (2021) Structural and dielectric properties of pure potassium sodium niobate (KNN) lead free ceramics. Solid State Commun 334–335. http://doi.org/10.1016/j.ssc.2021.114345 doi: 10.1016/j.ssc.2021.114345
    [103] Zheng T, Wu J, Xiao D, et al. (2015) Potassium-sodium niobate lead-free ceramics: Modified strain as well as piezoelectricity. J Mater Chem A 3: 1868–1874. http://doi.org/10.1039/c4ta05423g doi: 10.1039/c4ta05423g
    [104] Lv X, Wu J, Xiao D, et al. (2018) Structural evolution of the R-T phase boundary in KNN-based ceramics. J Am Ceram Soc 101: 1191–1200. http://doi.org/10.1111/jace.15266 doi: 10.1111/jace.15266
    [105] Wang R, Bando H, Katsumata T, et al. (2009) Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys Status Solidi-R 3: 142–144. http://doi.org/10.1002/pssr.200903090 doi: 10.1002/pssr.200903090
    [106] Li JF, Wang K, Zhu FY, et al. (2013) (K, Na)NbO3-based lead-free piezoceramics: Fundamental aspects, processing technologies, and remaining challenges. J Am Ceram Soc 96: 3677–3696. http://doi.org/10.1111/jace.12715 doi: 10.1111/jace.12715
    [107] Tennery VJ, Hang KW (1968) Thermal and X-ray diffraction studies of the NaNbO3 single bond sign KNbO3 system. J Appl Phys 39: 4749–4753. http://doi.org/10.1063/1.1655833 doi: 10.1063/1.1655833
    [108] Dai YJ, Zhang XW, Chen KP (2009) Morphotropic phase boundary and electrical properties of K1-xNaxNbO3 lead-free ceramics. Appl Phys Lett 94: 042905. http://doi.org/10.1063/1.3076105 doi: 10.1063/1.3076105
    [109] Karaki T, Katayama T, Yoshida K, et al. (2013) Morphotropic phase boundary slope of (K, Na, Li)NbO3-BaZrO3 binary system adjusted using third component (Bi, Na)TiO3 additive. Jpn J Appl Phys 52: 09KD11. http://doi.org/10.7567/jjap.52.09kd11 doi: 10.7567/jjap.52.09kd11
    [110] Chao X, Yang Z, Li Z, et al. (2012) Phase structures, electrical properties and temperature stability of (1-x)[(K0.458Na0.542)0.96Li0.04](Nb0.85Ta0.15)O3-xBiFeO3 ceramics. J Alloys Compd 518: 1–5. http://doi.org/10.1016/j.jallcom.2011.11.104 doi: 10.1016/j.jallcom.2011.11.104
    [111] Zhou JJ, Li JF, Cheng LQ, et al. (2012) Addition of small amounts of BiFeO3 to (Li, K, Na)(Nb, Ta)O3 lead-free ceramics: Influence on phase structure, microstructure and piezoelectric properties. J Eur Ceram Soc 32: 3575–3582. http://doi.org/10.1016/j.jeurceramsoc.2012.05.019 doi: 10.1016/j.jeurceramsoc.2012.05.019
    [112] Li X, Zhu J, Wang M, et al. (2010) BiScO3-modified (K0.475Na0.475Li0.05)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics. J Alloys Compd 499: L1–L4. http://doi.org/10.1016/j.jallcom.2010.01.129 doi: 10.1016/j.jallcom.2010.01.129
    [113] Zhang C, Chen Z, Ji WJ, et al. (2011) Crystal structures and electrical properties of (1-x)K0.5Na0.5NbO3-xBi0.8La0.2FeO3 lead-free ceramics. J Alloys Compd 509: 2425–2429. http://doi.org/10.1016/j.jallcom.2010.11.037 doi: 10.1016/j.jallcom.2010.11.037
    [114] Wu W, Xiao D, Wu J, et al. (2011) Polymorphic phase transition-induced electrical behavior of BiCoO3-modified (K0.48Na0.52)NbO3 lead-free piezoelectric ceramics. J Alloys Compd 509: L284–L288. http://doi.org/10.1016/j.jallcom.2011.05.004 doi: 10.1016/j.jallcom.2011.05.004
    [115] Yang H, Zhou C, Zhou Q, et al. (2013) Lead-free (Li, Na, K)(Nb, Sb)O3 piezoelectric ceramics: Effect of Bi(Ni0.5Ti0.5)O3 modification and sintering temperature on microstructure and electrical properties. J Mater Sci 48: 2997–3002. http://doi.org/10.1007/s10853-012-7078-7 doi: 10.1007/s10853-012-7078-7
    [116] Liu Y, Chu R, Xu Z, et al. (2011) Effects of BiAlO3 on structure and electrical properties of K0.5Na0.5NbO3-LiSbO3 lead-free piezoceramics. Mater Sci Eng B 176: 1463–1466. http://doi.org/10.1016/j.mseb.2011.09.002 doi: 10.1016/j.mseb.2011.09.002
    [117] Zuo R, Fang X, Ye C (2007) Phase structures and electrical properties of new lead-free (Na0.5K0.5)NbO3-(Bi0.5Na0.5)TiO3 ceramics. Appl Phys Lett 90: 092904. http://doi.org/10.1063/1.2710768 doi: 10.1063/1.2710768
    [118] Du H, Zhou W, Luo F, et al. (2008) High Tm lead-free relaxor ferroelectrics with broad temperature usage range: 0.04BiScO3-0.96(K0.5Na0.5)NbO3. J Appl Phys 104: 044104. http://doi.org/10.1063/1.2969773 doi: 10.1063/1.2969773
    [119] Du H, Zhou W, Luo F, et al. (2008) Polymorphic phase transition dependence of piezoelectric properties in (K0.5Na0.5)NbO3-(Bi0.5K0.5)TiO3 lead-free ceramics. J Phys D Appl Phys 41: 115413. http://doi.org/10.1088/0022-3727/41/11/115413 doi: 10.1088/0022-3727/41/11/115413
    [120] Jiang XP, Yang Q, Yu ZD, et al. (2010) Microstructure and electrical properties of Li0.5Bi0.5TiO3-modified (Na0.5K0.5)NbO3 lead-free piezoelectric ceramics. J Alloys Compd 493: 276–280. http://doi.org/10.1016/j.jallcom.2009.12.079 doi: 10.1016/j.jallcom.2009.12.079
    [121] Wang R, Xie RJ, Hanada K, et al. (2008) Enhanced piezoelectricity around the tetragonal/orthorhombic morphotropic phase boundary in (Na, K)NbO3-ATiO3 solid solutions. J Electroceramics 21: 263–266. http://doi.org/10.1007/s10832-007-9136-0 doi: 10.1007/s10832-007-9136-0
    [122] Park HY, Cho KH, Paik DS, et al. (2007) Microstructure and piezoelectric properties of lead-free (1-x)(Na0.5K0.5)NbO3-xCaTiO3 ceramics. J Appl Phys 102: 124101. http://doi.org/10.1063/1.2822334 doi: 10.1063/1.2822334
    [123] Kim MR, Song HC, Choi JW, et al. (2009) Synthesis and piezoelectric properties of (1-x)(Na0.5K0.5)NbO3-x(Ba0.95Sr0.05)TiO3 ceramics. J Electroceramics 23: 502–505. http://doi.org/10.1007/s10832-008-9519-x doi: 10.1007/s10832-008-9519-x
    [124] Chen Z, He X, Yu Y, et al. (2009) Piezoelectric and dielectric properties of (Na0.5K0.5)NbO3-(Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free piezoelectric ceramics. Jpn J Appl Phys 48: 030204. http://doi.org/10.1143/JJAP.48.030204 doi: 10.1143/JJAP.48.030204
    [125] Zuo R, Lv D, Fu J, et al. (2009) Phase transition and electrical properties of lead free (Na0.5K0.5)NbO3-BiAlO3 ceramics. J Alloys Compd 476: 836–839. http://doi.org/10.1016/j.jallcom.2008.09.123 doi: 10.1016/j.jallcom.2008.09.123
    [126] Du H, Zhou W, Luo F, et al. (2008) Design and electrical properties' investigation of (K0.5Na0.5) NbO3-BiMeO3 lead-free piezoelectric ceramics. J Appl Phys 104: 034104. https://doi.org/10.1063/1.2964100 doi: 10.1063/1.2964100
    [127] Tao H, Wu J, Zheng T, et al. (2015) New (1-x)K0.45Na0.55Nb0.96Sb0.04O3-xBi0.5Na0.5HfO3 lead-free ceramics: Phase boundary and their electrical properties. J Appl Phys 118: 044102. http://doi.org/10.1063/1.4927281 doi: 10.1063/1.4927281
    [128] Gao Y, Zhang J, Qing Y, et al. (2011) Remarkably strong piezoelectricity of lead-free (K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3 ceramic. J Am Ceram Soc 94: 2968–2973. http://doi.org/10.1111/j.1551-2916.2011.04468.x doi: 10.1111/j.1551-2916.2011.04468.x
    [129] Xu P, Jiang M, Liu X (2011) Effects of low concentration BiFeO3 additions on microstructure and piezoelectric properties of (K0.5Na0.5)NbO3 ceramics. Adv Mat Res 335–336: 968–975. http://doi.org/10.4028/www.scientific.net/AMR.335-336.968 doi: 10.4028/www.scientific.net/AMR.335-336.968
    [130] Deng Y, Wang J, Zhang C, et al. (2020) Structural and electric properties of MnO2-doped KNN-LT lead-free piezoelectric ceramics. Crystals 10: 1–8. http://doi.org/10.3390/cryst10080705 doi: 10.3390/cryst10080705
    [131] Zhang Y, Zhai J, Xue S (2020) Effect of three step sintering on piezoelectric properties of KNN-based lead-free ceramics. Chem Phys Lett 758: 137906. http://doi.org/10.1016/j.cplett.2020.137906 doi: 10.1016/j.cplett.2020.137906
    [132] Jiang J, Li H, Zhao C, et al. (2022) Broad-temperature-span and improved piezoelectric/dielectric properties in potassium sodium niobate-based ceramics through diffusion phase transition. J Alloys Compd 925: 166708. http://doi.org/10.1016/j.jallcom.2022.166708 doi: 10.1016/j.jallcom.2022.166708
    [133] Liu Y, Pan Y, Bai X, et al. (2021) Structure evolution and piezoelectric properties of K0.40Na0.60Nb0.95Sb0.05O3-Bi0.5K0.5HfO3-SrZrO3 ternary lead-free ceramics with R-O-T phase boundary. J Mater Sci Mater Electron 32: 9032–9043. http://doi.org/10.1007/s10854-021-05573-7 doi: 10.1007/s10854-021-05573-7
    [134] Jiang M, Liu X, Chen G (2009) Phase structures and electrical properties of new lead-free Na0.5K0.5NbO3-LiSbO3-BiFeO3 ceramics. Scripta Mater 60: 909–912. http://doi.org/10.1016/j.scriptamat.2009.02.017 doi: 10.1016/j.scriptamat.2009.02.017
    [135] Minhong J, Manjiao D, Huaxin L, et al. (2011) Piezoelectric and dielectric properties of K0.5Na0.5NbO3-LiSbO3-BiScO3 lead-free piezoceramics. Mater Sci Eng B 176: 167–170. http://doi.org/10.1016/j.mseb.2010.10.007 doi: 10.1016/j.mseb.2010.10.007
    [136] Li F, Tan Z, Xing J, et al. (2017) Investigation of new lead free (1−x)KNNS-xBKZH piezo-ceramics with R-O-T phase boundary. J Mater Sci Mater Electron 28: 8803–8809. http://doi.org/10.1007/s10854-017-6607-1 doi: 10.1007/s10854-017-6607-1
    [137] Li F, Gou Q, Xing J, et al. (2017) The piezoelectric and dielectric properties of sodium-potassium niobate ceramics with new multiphase boundary. J Mater Sci Mater Electron 28: 18090–18098. http://doi.org/10.1007/s10854-017-7753-1 doi: 10.1007/s10854-017-7753-1
    [138] Qiao L, Li G, Tao H, et al. (2020) Full characterization for material constants of a promising KNN-based lead-free piezoelectric ceramic. Ceram Int 46: 5641–5644. http://doi.org/10.1016/j.ceramint.2019.11.009 doi: 10.1016/j.ceramint.2019.11.009
    [139] Shi C, Ma J, Wu J, et al. (2020) Coexistence of excellent piezoelectric performance and high curie temperature in KNN-based lead-free piezoelectric ceramics. J Alloys Compd 846: 156245. http://doi.org/10.1016/j.jallcom.2020.156245 doi: 10.1016/j.jallcom.2020.156245
    [140] Pan D, Guo Y, Zhang K, et al. (2017) Phase structure, microstructure, and piezoelectric properties of potassium-sodium niobate-based lead-free ceramics modified by Ca. J Alloys Compd 693: 950–954. http://doi.org/10.1016/j.jallcom.2016.09.277 doi: 10.1016/j.jallcom.2016.09.277
    [141] Wang C, Fang B, Qu Y, et al. (2020) Preparation of KNN based lead-free piezoelectric ceramics via composition designing and two-step sintering. J Alloys Compd 832: 153043. http://doi.org/10.1016/j.jallcom.2019.153043 doi: 10.1016/j.jallcom.2019.153043
    [142] Politova ED, Kaleva GM, Mosunov AV, et al. (2020) Dielectric and local piezoelectric properties of lead-free KNN-based perovskite ceramics. Ferroelectrics 569: 201–208. http://doi.org/10.1080/00150193.2020.1822677 doi: 10.1080/00150193.2020.1822677
    [143] Brenda CJ, Armando RM, Villafuerte CME, et al. (2018) Piezoelectric, dielectric and ferroelectric properties of (1-x)(K0.48Na0.52)0.95Li0.05Nb0.95Sb0.05O3-xBa0.5(Bi0.5Na0.5)0.5ZrO3 lead-free solid solution. J Electron Mater 47: 6053–6058. http://doi.org/10.1007/s11664-018-6488-y doi: 10.1007/s11664-018-6488-y
    [144] Zhang K, Guo Y, Pan D, et al. (2016) Phase transition and piezoelectric properties of dense (K0.48Na0.52)0.95Li0.05SbxNb(1-x)O3-0.03Ca0.5(Bi0.5Na0.5)0.5ZrO3 lead free ceramics. J Alloys Compd 664: 503–509. http://doi.org/10.1016/j.jallcom.2015.12.256 doi: 10.1016/j.jallcom.2015.12.256
    [145] Wendari TP, Arief S, Mufti N, et al. (2020) Ratio effect of salt fluxes on structure, dielectric and magnetic properties of La, Mn-doped PbBi2Nb2O9 aurivillius phase. Ceram Int 46: 14822–14827. http://doi.org/10.1016/j.ceramint.2020.03.007 doi: 10.1016/j.ceramint.2020.03.007
    [146] Difeo M, Rubio-Marcos F, Gibbs F, et al. (2023) Effect of antimony content on transition behavior and electric properties of (K0.44Na0.52Li0.04)(Nb0.9-xTa0.10Sbx)O3 ceramics. Appl Sci 13: 992. https://doi.org/10.3390/app13020992 doi: 10.3390/app13020992
    [147] Wu J (2018) Advances in Lead-Free Piezoelectric Materials, Singapore: Springer Singapore. https://doi.org/10.1007/978-981-10-8998-5
    [148] Nandini RN, Krishna M, Suresh AV, et al. (2018) Effect of MWCNTs on piezoelectric and ferroelectric properties of KNN composites. Mater Sci Eng B 231: 40–56. http://doi.org/10.1016/j.mseb.2018.09.001 doi: 10.1016/j.mseb.2018.09.001
    [149] Shirane G, Newnham R, Pepinsky R (1954) Dielectric properties and phase transitions of NaNbO3 and (Na, K)NbO3. Phys Rev 96: 581–588. http://doi.org/10.1103/PhysRev.96.581 doi: 10.1103/PhysRev.96.581
    [150] Jaeger Re, Egerton L (1962) Hot pressing of potassium-sodium niobates. J Am Ceram Soc 45: 209–213. http://doi.org/10.1111/j.1151-2916.1962.tb11127.x doi: 10.1111/j.1151-2916.1962.tb11127.x
    [151] Zhang B, Wu J, Wang X, et al. (2013) Rhombohedral-orthorhombic phase coexistence and electrical properties of Ta and BaZrO3 co-modified (K, Na)NbO3 lead-free ceramics. Curr Appl Phys 13: 1647–1650. http://doi.org/10.1016/j.cap.2013.06.010 doi: 10.1016/j.cap.2013.06.010
    [152] Lv YG, Wang CL, Zhang JL, et al. (2009) Tantalum influence on physical properties of (K0.5Na0.5)(Nb1-xTax)O3 ceramics. Mater Res Bull 44: 284–287. http://doi.org/10.1016/j.materresbull.2008.06.019 doi: 10.1016/j.materresbull.2008.06.019
    [153] Zuo R, Ye C, Fang X (2007) Dielectric and piezoelectric properties of lead free Na0.5K0.5NbO3-BiScO3 ceramics. Jpn J Appl Phys 46: 6733–6736. http://doi.org/10.1143/jjap.46.6733 doi: 10.1143/JJAP.46.6733
    [154] Zhou C, Zhang J, Yao W, et al. (2018) Piezoelectric performance, phase transitions and domain structure of 0.96(K0.48Na0.52)(Nb0.96Sb0.04)O-0.04(Bi0.50Na0.50)ZrO3 ceramics. J Appl Phys 124: 164101. http://doi.org/10.1063/1.5048345 doi: 10.1063/1.5048345
    [155] Zhang Y, Li P, Shen B, et al. (2018) Effect of shifting orthorhombic-tetragonal phase transition on structure and properties of K0.5Na0.5NbO3-based lead-free ceramics. J Alloys Compd 735: 1328–1330. http://doi.org/10.1016/j.jallcom.2017.11.281 doi: 10.1016/j.jallcom.2017.11.281
    [156] Guo Y, Kakimoto KI, Ohsato H (2004) Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3-LiNbO3 ceramics. Appl Phys Lett 85: 4121–4123. http://doi.org/10.1063/1.1813636 doi: 10.1063/1.1813636
    [157] Guo Y, Kakimoto K, Ohsato H (2005) (Na0.5K0.5)NbO3-LiTaO3 lead-free piezoelectric ceramics. Mater Lett 59: 241–244. https://doi.org/10.1016/j.matlet.2004.07.057 doi: 10.1016/j.matlet.2004.07.057
    [158] Wang K, Li JF, Liu N (2008) Piezoelectric properties of low-temperature sintered Li-modified (Na, K)NbO3 lead-free ceramics. Appl Phys Lett 93: 092904. http://doi.org/10.1063/1.2977551 doi: 10.1063/1.2977551
    [159] Wang R, Bando H, Itoh M (2009) Universality in phase diagram of (K, Na)NbO3-MTiO3 solid solutions. Appl Phys Lett 95: 092905. http://doi.org/10.1063/1.3224196 doi: 10.1063/1.3224196
    [160] Wang R, Bando H, Kidate M, et al. (2011) Effects of A-site ions on the phase transition temperatures and dielectric properties of (1–x)(Na0.5K0.5)NbO3-xAZrO3 solid solutions. Jpn J Appl Phys 50: 09ND10. http://doi.org/10.1143/JJAP.50.09ND10 doi: 10.1143/JJAP.50.09ND10
    [161] Zheng T, Wu J, Cheng X, et al. (2014) Wide phase boundary zone, piezoelectric properties, and stability in 0.97(K0.4Na0.6)(Nb1-xSbx)O3-0.03Bi0.5Li0.5ZrO3 lead-free ceramics. Dalton Trans 43: 9419–9426. http://doi.org/10.1039/c4dt00768a doi: 10.1039/c4dt00768a
    [162] Fong DD, Kolpak AM, Eastman JA, et al. (2006) Stabilization of monodomain polarization in ultrathin PbTiO3 films. Phys Rev Lett 96: 127601. http://doi.org/10.1103/PhysRevLett.96.127601 doi: 10.1103/PhysRevLett.96.127601
    [163] Wang X, Wu J, Xiao D, et al. (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136: 2905–2910. http://doi.org/10.1021/ja500076h doi: 10.1021/ja500076h
    [164] Wang X, Wu J, Cheng X, et al. (2013) Compositional dependence of phase structure and electrical properties in (K0.50Na0.50)0.97Bi0.01(Nb1-xZrx)O3 lead-free ceramics. Ceram Int 39: 8021–8024. http://doi.org/10.1016/j.ceramint.2013.03.071 doi: 10.1016/j.ceramint.2013.03.071
    [165] Zheng T, Wu J, Cheng X, et al. (2014) New potassium-sodium niobate material system: A giant-d33 and high-TC lead-free piezoelectric. Dalton Trans 43: 11759–11766. http://doi.org/10.1039/c4dt01293c doi: 10.1039/c4dt01293c
    [166] Yang W, Li P, Wu S, et al. (2020) Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics. Ceram Int 46: 1390–1395. http://doi.org/10.1016/j.ceramint.2019.09.102 doi: 10.1016/j.ceramint.2019.09.102
    [167] Wong JYY, Zhang N, Ye ZG (2016) High-temperature solution growth and vapour transport equilibration of (1−x)K1−yNayNbO3-xLiNbO3 lead-free piezo-/ferroelectric single crystals. J Cryst Growth 452: 125–130. http://doi.org/10.1016/j.jcrysgro.2016.01.022 doi: 10.1016/j.jcrysgro.2016.01.022
    [168] Priya S, Nahm S (2013) Lead-Free Piezoelectrics, New York: Springer New York. https://doi.org/10.1007/978-1-4419-9598-8
    [169] Condurache OA, Radan K, Prah U, et al. (2019) Heterogeneity challenges in multiple-element-modified lead-free piezoelectric ceramics. Materials 12: 4049. https://doi.org/10.3390/ma12244049 doi: 10.3390/ma12244049
    [170] Chen R, Jiang L, Zhang T, et al. (2019) Eco-friendly highly sensitive transducers based on a new KNN-NTK-FM lead-free piezoelectric ceramic for high-frequency biomedical ultrasonic imaging applications. IEEE Trans Biomed Eng 66: 1580–1587. http://doi.org/10.1109/TBME.2018.2876063 doi: 10.1109/TBME.2018.2876063
    [171] Zhao Z, Lv Y, Dai Y, et al. (2020) Ultrahigh electro-strain in acceptor-doped KNN lead-free piezoelectric ceramics via defect engineering. Acta Mater 200: 35–41. http://doi.org/10.1016/j.actamat.2020.08.073 doi: 10.1016/j.actamat.2020.08.073
    [172] Zhang Y, Li JF (2019) Review of chemical modification on potassium sodium niobate lead-free piezoelectrics. J Mater Chem C 7: 4284–4303. http://doi.org/10.1039/c9tc00476a doi: 10.1039/c9tc00476a
    [173] Schütz D, Deluca M, Krauss W, et al. (2012) Lone-pair-induced covalency as the cause of temperature and field-induced instabilities in bismuth sodium titanate. Adv Funct Mater 22: 2285–2294. http://doi.org/10.1002/adfm.201102758 doi: 10.1002/adfm.201102758
    [174] Yin J, Zhao C, Zhang Y, et al. (2018) Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics. Acta Mater 147: 70–77. http://doi.org/10.1016/j.actamat.2018.01.054 doi: 10.1016/j.actamat.2018.01.054
    [175] Akmal MHM, Warikh ARM, Azlan UAA, et al. (2016) Structural evolution and dopant occupancy preference of yttrium-doped potassium sodium niobate thin films. J Electroceramics 37: 50–57. http://doi.org/10.1007/s10832-016-0039-9 doi: 10.1007/s10832-016-0039-9
    [176] Akmal MHM, Warikh ARM (2021) Electrical behaviour of yttrium-doped potassium sodium niobate thin film for piezoelectric energy harvester applications. J Aust Ceram Soc 57: 589–596. http://doi.org/10.1007/s41779-021-00569-2 doi: 10.1007/s41779-021-00569-2
    [177] Knauth P (2006) Ionic and electronic conduction in nanostructured solids: Concepts and concerns, consensus and controversies. Solid State Ionics 177: 2495–2502. http://doi.org/10.1016/j.ssi.2006.02.039 doi: 10.1016/j.ssi.2006.02.039
    [178] Maziati A, Umar A, Warikh M, et al. (2015) Enhanced structural and electrical properties of lead-free Y-doped (K, Na)NbO3 thin films. Jurnal Teknologi 77: 67–71. https://doi.org/10.11113/jt.v77.6609 doi: 10.11113/jt.v77.6609
    [179] Li Y, Chen W, Xu Q, et al. (2007) Piezoelectric and dielectric properties of CeO2-doped Bi0.5Na0.44K0.06TiO3 lead-free ceramics. Ceram Int 33: 95–99. http://doi.org/10.1016/j.ceramint.2005.08.001 doi: 10.1016/j.ceramint.2005.08.001
    [180] Deng A, Wu J (2020) Effects of rare-earth dopants on phase structure and electrical properties of lead-free bismuth sodium titanate-based ceramics. J Materiomics 6: 286–292. http://doi.org/10.1016/j.jmat.2020.03.005 doi: 10.1016/j.jmat.2020.03.005
    [181] Bathelt R, Soller T, Benkert K, et al. (2012) Neodymium doping of KNNLT. J Eur Ceram Soc 32: 3767–3772. http://doi.org/10.1016/j.jeurceramsoc.2012.05.025 doi: 10.1016/j.jeurceramsoc.2012.05.025
    [182] Akmal M, Hatta M, Warikh ARM, et al. (2016) Influence of yttrium dopant on the structure and electrical conductivity of potassium sodium niobate thin films. Mat Res 19: 1417–1422. https://doi.org/10.1590/1980-5373-MR-2016-0076 doi: 10.1590/1980-5373-mr-2016-0076
    [183] Lv X, Zhu J, Xiao D, et al. (2020) Emerging new phase boundary in potassium sodium-niobate based ceramics. Chem Soc Rev 49: 671–707. http://doi.org/10.1039/c9cs00432g doi: 10.1039/c9cs00432g
    [184] Lv X, Zhang J, Liu Y, et al. (2020) Synergetic contributions in phase boundary engineering to the piezoelectricity of potassium sodium niobate lead-free piezoceramics. ACS Appl Mater Interfaces 12: 39455–39461. http://doi.org/10.1021/acsami.0c12424 doi: 10.1021/acsami.0c12424
    [185] Ma ZY, Zheng HJ, Zhao L, et al. (2023) Comparison of impact from typical additives for phase structure in (K, Na)NbO3-based ceramics. Ceram Int 49: 18629–18637. http://doi.org/10.1016/j.ceramint.2023.02.239 doi: 10.1016/j.ceramint.2023.02.239
    [186] Dahiya A, Thakur OP, Juneja JK (2013) Sensing and actuating applications of potassium sodium niobate: Use of potassium sodium niobate in sensor and actuator. 2013 Seventh International Conference on Sensing Technology (ICST), New Zealand, 383–386.
    [187] Maziati Akmal MH, Warikh ARM, Azlan UAA, et al. (2017) The effects of different annealing temperatures and number of deposition layers on the crystallographic properties sodium niobate (KNN) thin films synthesized by sol-gel spin coating technique. J Adv Manuf Technol 11: 91–102. Available from: https://jamt.utem.edu.my/jamt/article/view/1232.
    [188] Akmal MHM, Warikh ARM, Azlan UAA, et al. (2018) Optimizing the processing conditions of sodium potassium niobate thin films prepared by sol-gel spin coating technique. Ceram Int 44: 317–325. https://doi.org/10.1016/j.ceramint.2017.09.175 doi: 10.1016/j.ceramint.2017.09.175
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2087) PDF downloads(235) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog