Citation: Roman Koleňák, Igor Kostolný. Investigation of microstructure and wettability of selected lead-free solders for higher application temperatures[J]. AIMS Materials Science, 2018, 5(5): 889-901. doi: 10.3934/matersci.2018.5.889
[1] | Chidambaram V, Hattel J, Hald J (2011) High-temperature lead-free solder alternatives. Microelectron Eng 88: 981–989. doi: 10.1016/j.mee.2010.12.072 |
[2] | Kim S, Kim KS, Kim SS, et al. (2009) Improving the reliability of Si die attachment with Zn–Sn-based high-temperature Pb-free solder using a TiN diffusion barrier. J Electron Mater 38: 2668–2675. doi: 10.1007/s11664-009-0928-7 |
[3] | Suganuma K, Kim SJ, Kim KS (2009) High-tepmerature lead-free solders: Properties and possibilities. JOM 61: 64–71. |
[4] | Johnson RW, Wang C, Liu Y, et al. (2007) Power device packaging technologies for extreme environments. IEEE T Electron Pack 30: 182–193. doi: 10.1109/TEPM.2007.899158 |
[5] | Liu W, An R, Wang CQ, et al. (2015) Effect of Au–Sn IMCs' formation and morphologies on shear properties of laser reflowed micro-solder joints. Solder Surf Mt Tech 27: 45–51. doi: 10.1108/SSMT-07-2014-0016 |
[6] | Lalena JN, Dean NF, Weiser MW (2002) Experimental investigation of Ge-doped Bi–11Ag as a new Pb-free solder alloy for power die attachment. J Electron Mater 31: 1244–1249. doi: 10.1007/s11664-002-0016-8 |
[7] | Spinelli JE, Silva BL, Garcia A (2014) Microstructure, phases morphologies and hardness of a Bi–Ag eutectic alloy for high temperature soldering applications. Mater Design 58: 482–490. doi: 10.1016/j.matdes.2014.02.026 |
[8] | Kim S, Kim KS, Kim SS, et al. (2009) Interfacial reaction and die attach properties of Zn–Sn high-temperature solders. J Electron Mater 38: 266–272. doi: 10.1007/s11664-008-0550-0 |
[9] | Haque A, Lim BH, Haseeb ASMA, et al. (2012) Die attach properties of Zn–Al–Mg–Ga based high-temperature lead-free solder on Cu lead-frame. J Mater Sci Mater Electron 23: 115–123. doi: 10.1007/s10854-011-0511-x |
[10] | Takaku Y, Felicia L, Ohnuma I, et al. (2008) Interfacial reaction between Cu substrates and Zn–Al base high-temperature Pb-free solders. J Electron Mater 37: 314–323. |
[11] | Alibabaie S, Mahmudi R (2012) Microstructure and creep characteristics of Zn–3Cu–xAl ultra high-temperature lead-free solders. Mater Design 39: 397–403. doi: 10.1016/j.matdes.2012.03.005 |
[12] | Zeng G, McDonald S, Nogita K (2012) Development of high-temeprature solders: Review. Microelectron Reliab 52: 1306–1322. doi: 10.1016/j.microrel.2012.02.018 |
[13] | Song JM, Chuang HY, Wen TX (2007) Thermal and tensile properties of Bi–Ag alloys. Metall Mater Trans A 38: 1371–1375. doi: 10.1007/s11661-007-9138-1 |
[14] | Song JM, Chuang HY, Wu ZM (2007) Substrate dissolution and shear properties of the joints between Bi–Ag alloys and Cu substrates for high-temperature soldering applications. J Electron Mater 36: 1516–1523. doi: 10.1007/s11664-007-0222-5 |
[15] | Koleňák R, Martinkovič M, Koleňáková M (2013) Shear strength and DSC analysis of high-temperature solders. Arch Metall Mater 58: 529–533. doi: 10.2478/amm-2013-0031 |
[16] | Mahmudi R, Geranmayeh AR, Rezaee-Bazzaz A (2007) Impression creep behaviour of lead-free Sn–5Sb solder alloy. Mat Sci Eng A-Struct 448: 287–293. doi: 10.1016/j.msea.2006.10.092 |
[17] | Lee HT, Lin HS, Lee CS, et al. (2005) Reliability of Sn–Ag–Sb lead-free solder joints. Mat Sci Eng A-Struct 407: 36–44. doi: 10.1016/j.msea.2005.07.049 |
[18] | Lee HT, Chen MH, Jao HM, et al. (2004) Effect of adding Sb on microstructure and adhesive strength of Sn–Ag solder joints. J Electron Mater 33: 1048–1054. doi: 10.1007/s11664-004-0034-9 |