Citation: Clara Argerich, Ruben Ibáñez, Angel León, Anaïs Barasinski, Emmanuelle Abisset-Chavanne, Francisco Chinesta. Tape surface characterization and classification in automated tape placement processability: Modeling and numerical analysis[J]. AIMS Materials Science, 2018, 5(5): 870-888. doi: 10.3934/matersci.2018.5.870
[1] | Chinesta F, Leygue A, Bognet B, et al. (2014) First steps towards an advanced simulation of composites manufacturing by automated tape placement. Int J Mater Form 7: 81–92. doi: 10.1007/s12289-012-1112-9 |
[2] | Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the Proper Generalized Decomposition for solving multidimensional models. Arch Comput Method Eng 17: 327–350. doi: 10.1007/s11831-010-9049-y |
[3] | Chinesta F, Ladeveze P, Cueto E (2011) A short review in model order reduction based on Proper Generalized Decomposition. Arch Comput Method Eng 18: 395–404. doi: 10.1007/s11831-011-9064-7 |
[4] | Chinesta F, Keunings R, Leygue A (2014) The Proper Generalized Decomposition for advanced numerical simulations. A primer, Springer International Publishing. |
[5] | Chinesta F, Ladeveze P (2014) Separated representations and PGD based model reduction: Fundamentals and applications, CISM-Springer. |
[6] | Chinesta F, Huerta A, Rozza G, et al. (2016) Model Order Reduction, In: Encyclopedia of Computational Mechanics, 2Eds., Wiley. |
[7] | Bognet B, Leygue A, Chinesta F, et al. (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Method Appl M 201: 1–12. |
[8] | Bognet B, Leygue A, Chinesta F (2014) Separated representations of 3D elastic solutions in shell geometries. Adv Model Simul Eng Sci 1: 4. doi: 10.1186/2213-7467-1-4 |
[9] | Bordeu F, Ghnatios Ch, Boulze D, et al. (2015) Parametric 3D elastic solutions of beams involved in frame structures. Adv Aircr Spacecr Sci 2: 233–248. doi: 10.12989/aas.2015.2.3.233 |
[10] | Ghnatios Ch, Chinesta F, Binetruy Ch (2015) The squeeze flow of composite laminates. Int J Mater Form 8: 73–83. doi: 10.1007/s12289-013-1149-4 |
[11] | Chinesta F, Leygue A, Bordeu F, et al. (2013) Parametric PGD based computational vademecum for effcient design, optimization and control. Arch Comput Method Eng 20: 31–59. doi: 10.1007/s11831-013-9080-x |
[12] | Lee W, Springer G (1987) A model of the manufacturing process of thermoplastic matrix composites. J Compos Mater 21: 1057–1082. |
[13] | Levy A, Heider D, Tierney J, et al. (2014) Inter-layer thermal contact resistance evolution with the degree of intimate contact in the processing of thermoplastic composite laminates. J Compos Mater 48: 491–503. doi: 10.1177/0021998313476318 |
[14] | Coy J, Sidik S (1979) Two-dimensional random surface model for asperity contact in elastohydrodynamic lubrication. Wear 57: 293–311. doi: 10.1016/0043-1648(79)90104-2 |
[15] | Longuet-Higgins M (1957) Statistical properties of an isotropic random surface. Philos T R Soc A 250: 157–174. doi: 10.1098/rsta.1957.0018 |
[16] | Longuet-Higgins M (1957) The Statistical Analysis of a Random, moving surface. Philos T R Soc A 249: 321–387. doi: 10.1098/rsta.1957.0002 |
[17] | Nayak P (1973) Some aspects of surface roughness measurement. Wear 26: 165–174. doi: 10.1016/0043-1648(73)90132-4 |
[18] | Oden P, Majumdar A, Bhushan B, et al. (1992) AFM Imaging, roughness analysis and contact mechanics of magnetic tape and head surfaces. J Tribol 114: 666–674. doi: 10.1115/1.2920934 |
[19] | Sayles R, Thomas T (1976) Thermal conductance of a rough elastic contact. Appl Energ 2: 249–267. doi: 10.1016/0306-2619(76)90012-X |
[20] | Sayles R, Thomas T (1977) The spatial representation of surface roughness by means of the structure function: a practical alternative to correlation. Wear 42: 263–276. doi: 10.1016/0043-1648(77)90057-6 |
[21] | Yaglom A (1987) Correlation theory of stationary and related random function. Volume I: Basic Results, New York: Springer-Verlag. |
[22] | Borodich F, Mosolov A (1992) Fractal roughness in contact problems. J Appl Math Mech 56: 786–795. |
[23] | Ganti S, Bhushan B (1995) Generalized fractal analysis and its applications to engineering surfaces. Wear 180: 17–34. doi: 10.1016/0043-1648(94)06545-4 |
[24] | Mandelbrot B (1983) The fractal geometry of Nature, New York: W.H. Freeman and Company. |
[25] | Mandelbrot B, Van Ness J (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10: 422–437. doi: 10.1137/1010093 |
[26] | Mandelbrot B, Passoja D, Paullay A (1984) Fractal character of fracture surfaces of metals. Nature 308: 721–722. doi: 10.1038/308721a0 |
[27] | Mandelbrot B (2002) Gaussian self-affnity and fractals, New York: Springer-Verlag. |
[28] | Majumdar A, Tien C (1990) Fractal Characterization and simulation of rough surfaces. Wear 136: 313–327. doi: 10.1016/0043-1648(90)90154-3 |
[29] | Warren T, Majumdar A, Krajcinovic D (1996) A fractal model for the rigid-perfectly plastic contact of rough surfaces. J Appl Mech 63: 47–54. doi: 10.1115/1.2787208 |
[30] | Yang F, Pitchumani R (2001) A fractal cantor set based description of interlaminar contact evolution during thermoplastic composites processing. J Mater Sci 36: 4661–4671. doi: 10.1023/A:1017950215945 |
[31] | Leon A, Barasinski A, Nadal E, et al. (2015) High-resolution thermal analysis at thermoplastic pre-impregnated composite interfaces. Compos Interface 22: 767–777. doi: 10.1080/09276440.2015.1060734 |
[32] | Leon A, Barasinski A, Chinesta F (2017) Microstructural analysis of pre-impregnated tapes consolidation. Int J Mater Form 10: 369–378. doi: 10.1007/s12289-016-1285-8 |
[33] | Leon A, Argerich C, Barasinski A, et al. (2018) Effects of material and process parameters on in-situ consolidation. Int J Mater Form 1–13. |
[34] | Saoudi A, Leon A, Gregoire G, et al. (2017) On the interfacial thermal properties of two rough surfaces in contact in preimpregnated composites consolidation. Surf Topogr-Metrol 5: 045010. doi: 10.1088/2051-672X/aa9667 |
[35] | Helmus R, Kratz J, Potter K, et al. (2017) An experimental technique to characterize interply void formation in unidirectional prepregs. J Compos Mater 51: 579–591. doi: 10.1177/0021998316650273 |
[36] | Leon A, Barasinski A, Abisset-Chavanne E, et al. (2018) Wavelet-based multiscale proper generalized decomposition. CR Mecanique 346: 485–500. doi: 10.1016/j.crme.2018.04.013 |
[37] | Dagnall H (2014) Exploring Surface Texture, Taylor Hobson Publishing Ltd. |
[38] | Bhushan B (2001) Modern Tribology Handbook, CRC Press. |
[39] | Torquato S (2002) Statistical Description of Microstructures. Annu Rev Mater Res 32: 77–111. doi: 10.1146/annurev.matsci.32.110101.155324 |