Citation: Marek Konieczny. Transformation superplasticity of laminated CuAl10Fe3Mn2 bronze-intermetallics composites[J]. AIMS Materials Science, 2020, 7(3): 312-322. doi: 10.3934/matersci.2020.3.312
[1] | Wadsworth J, Lesuer DR (2000) Ancient and modern laminated composites-from the Great Pyramid of Gizeh to Y2K. Mater Charact 45: 289-313. doi: 10.1016/S1044-5803(00)00077-2 |
[2] | Vecchio KS (2005) Synthetic multifunctional metallic-intermetallic laminated composites. JOM 57: 25-31. doi: 10.1007/s11837-005-0178-y |
[3] | Bloyer DR, Venkateswara Rao KT, Ritchie RO (1997) Laminated Nb/Nb3Al composites: Effect of layer thickness on fatigue and fracture behavior. Mater Sci Eng A-Struct 239-240: 393-398. doi: 10.1016/S0921-5093(97)00608-4 |
[4] | Alman D, Dogan CP, Hawk JA, et al. (1995) Processing, structure and properties of metalintermetallic layered composites. Mater Sci Eng A-Struct 192-193: 624-632. doi: 10.1016/0921-5093(94)03300-5 |
[5] | Konieczny M, Dziadoń A (2007) Mechanical behavior of multilayer metal-intermetallic laminate composite synthesized by reactive sintering of Cu/Ti foils. Arch Metall Mater 52: 555-562. |
[6] | Konieczny M, Dziadoń A (2007) Strain behaviour of copper-intermetallic layered composite. Mater Sci Eng A-Struct 460-461: 238-242. doi: 10.1016/j.msea.2007.01.066 |
[7] | Konieczny M (2007) Deformation mechanisms in copper-intermetallic layered composite at elevated temperatures. Kovove Mater 45: 313-317. |
[8] | Konieczny M (2019) Mechanical properties of laminated CuAl10Fe3Mn2 aluminum bronzeintermetallics composites. IOP Conf Ser-MSE 461: 012042. |
[9] | Sankaran KK, Mishra RS (2017) Alloy design for advanced manufacturing processes, Metallurgy and Design of Alloys with Hierarchical Microstructures, 1 Ed., Elsevier, 407-449. |
[10] | Frary M, Schuh C, Dunand DC (2002) Kinetics of biaxial dome formation by transformation superplasticity of titanium alloys and composites. Metall Mater Trans A 33: 1669-1680. doi: 10.1007/s11661-002-0176-4 |
[11] | Li Q, Chen EY, Bice DR, et al. (2007) Transformation superplasticity of cast titanium and Ti-6Al-4V. Metall Mater Trans A 38: 44-51. doi: 10.1007/s11661-006-9020-6 |
[12] | Marvin JD, Dunand DC (2006) Transformation-mismatch plasticity in sub-millimetre iron wires. Mater Sci Eng A-Struct 421: 35-39. doi: 10.1016/j.msea.2005.10.014 |
[13] | Greenwood GW, Johnson RH (1965) The deformation of metals under small stresses during phase transformations. P Roy Soc A-Math Phy 283: 403-422. |
[14] | Ridley N, Xiao Guo Z, Higashi K (1990) An experimental investigation of the superplastic forming behavior of a commercial Al-bronze. Metall Mater Trans A 21: 2957-2966. doi: 10.1007/BF02647216 |
[15] | Dunlop GL, Taplin DM (1972) The tensile properties of a superplastic aluminium bronze. J Mater Sci 7: 84-92. doi: 10.1007/BF00549554 |
[16] | Kaplan M, Yildiz AK (2003) The effects of production methods on the microstructures and mechanical properties of an aluminum bronze. Mater Lett 57: 4402-4411. doi: 10.1016/S0167-577X(03)00332-X |
[17] | Massalski TB, Murray JL, Bennet LH, et al. (1992) Binary Alloy Phase Diagrams, Ohio: ASM International, 3: 82. |
[18] | Konieczny M, Mola R, Kargul M, et al. (2018) Microstructure evolution of laminated aluminum bronze-intermetallics composite. METAL 2018 Conference Proceedings, Ostrava: Tanger, 1587-1592. |
[19] | Lazurenko DV, Bataev IA, Mali VI, et al. (2018) Synthesis of metal-intermetallic laminate (MIL) composites with modified Al3Ti structure and in situ synchrotron X-ray diffraction analysis of sintering process. Mater Design 151: 8-16. doi: 10.1016/j.matdes.2018.04.038 |
[20] | Nieh TG, Wadsworth J, Sherby OD (1997) Superplasticity in Metals and Ceramics, Cambridge: Cambridge University Press, 245. |
[21] | Tsai HC, Higashi K, Sherby OD (1993) Superplasticity in an ultrahigh carbon steel-aluminum bronze laminated composite. Proceedings of the International Conference on Advanced Composite Materials, 1287-1293. |