Citation: Amadou Kouyaté, Yapo Hermann Aristide Yapi, Aliou Pohan, Ange Privat Ahoussou, Albert Trokourey. Correlation between bioactivity and thermodynamic stability of glasses of the molar formula 20.15[(2.038 + x)SiO2-(1.457 - x)Na2O]-2.6P2O5-25.73CaO-1.22MgO[J]. AIMS Materials Science, 2020, 7(3): 323-337. doi: 10.3934/matersci.2020.3.323
[1] | Hench LL (1999) Bioactive glasses and glass-ceramics. Mater Sci Forum 293: 37-64. |
[2] | Kokubo T, Kim HM, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 21: 61-2175. |
[3] | Vitale-Brovarone C, Vernè E, Bosetti M, et al. (2005) Microstructural and in vitro characterization of SiO2-Na2O-CaO-MgO glass-ceramic bioactive scaffolds for bone substitutes. J Mater Sci-Mater M 16: 909-917. doi: 10.1007/s10856-005-4425-0 |
[4] | Xia W, Chang J (2008) Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass. J Non-Cryst Solids 354: 1338-1341. doi: 10.1016/j.jnoncrysol.2006.10.084 |
[5] | Rajendran V, Rajkumar G, Aravindan S, et al. (2010) Analysis of physical properties and hydroxyapatite precipitation in vitro of TiO2-containing phosphate-based glass systems. J Am Ceram Soc 93: 4053-4060. doi: 10.1111/j.1551-2916.2010.04009.x |
[6] | Rajkumar G, Aravindan S, Rajendran V (2010) Structural analysis of zirconia-doped calcium phosphate glasses. J Non-Cryst Solids 356: 1432-1438. doi: 10.1016/j.jnoncrysol.2010.05.003 |
[7] | Navarro M, Ginebra MP, Clement J, et al. (2003) Physico-chemical degradation of soluble phosphate glasses stabilized with TiO2 for medical applications. J Am Ceram Soc 86: 1345-1352. doi: 10.1111/j.1151-2916.2003.tb03474.x |
[8] | Catauro M, Raucci MG, de Gaetano F, et al. (2004) Antibacterial and bioactive silver-containing Na2O-CaO-2SiO2 glass prepared by sol-gel method. J Mater Sci-Mater M 15: 831-837. doi: 10.1023/B:JMSM.0000032825.51052.00 |
[9] | He LY, Zhang XM, Liu B, et al. (2016) Effect of magnesium ion on human osteoblast activity. Braz J Med Biol Res 49: 52-57. |
[10] | Watts SJ, Hill RG, O'Donnell MD, et al. (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356: 517-524. doi: 10.1016/j.jnoncrysol.2009.04.074 |
[11] | Hmood F, Goerke O, Schmid F (2018) Chemical composition refining of bioactive glass for better processing features, part I. Biomed Glasses 4: 82-94. |
[12] | Jha P, Singh K (2016) Effect of MgO on bioactivity, hardness, structural and optical properties of SiO2-K2O-CaO-MgO glasses. Ceram Int 42: 436-444. doi: 10.1016/j.ceramint.2015.08.128 |
[13] | Barrere F, van Blitterswijk CD, de Groot K, et al. (2002) Influence of ionic strength and carbonate on the Ca-P coating formation from SBF×5 solution. Biomaterials 23: 1921-1930. doi: 10.1016/S0142-9612(01)00318-0 |
[14] | Ducheyne P, Radin S, King L (1993) The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. J Biomed Mater Res 27: 25-34. doi: 10.1002/jbm.820270105 |
[15] | Strnad Z (1992) Role of the glass phase in bioactive glass-ceramics. Biomaterials 13: 317-321. doi: 10.1016/0142-9612(92)90056-T |
[16] | Hill R (1996) An alternative view of the degradation of bioglass. J Mater Sci Lett 15: 1122-1125. doi: 10.1007/BF00539955 |
[17] | Moya JS, Tomsia AP, Pazo A, et al. (1994) In vitro formation of hydroxylapatite layer in a MgO-containing glass. J Mater Sci-Mater M 5: 529-532. doi: 10.1007/BF00124885 |
[18] | Oliveira JM, Correia RN, Fernandes MH, et al. (2000) Influence of the CaO/MgO ratio on the structure of phase-separated glasses: A solid state 29Si and 31P MAS NMR study. J Non-Cryst Solids 265: 221-229. doi: 10.1016/S0022-3093(99)00957-6 |
[19] | Derrien AC, Oudadesse H, Martin S, et al. (2004) Mineralization kinetics of various implanted bioceramics. Nucl Instrum Meth B 226: 281-290. doi: 10.1016/j.nimb.2004.06.014 |
[20] | Kashyap S, Griep K, Nychka JA (2011) Crystallization kinetics, mineralization and crack propagation in partially crystallized bioactive glass 45S5. Mater Sci Eng C-Mater 31: 762-769. doi: 10.1016/j.msec.2010.06.019 |
[21] | Avadhesh Kumar Y, Chandkiram G, Prabhakar S (2012) Crystallization kinematics and dielectric behavior of (Ba, Sr)TiO3 borosilicate glass ceramics. NJGC 2: 126-131. doi: 10.4236/njgc.2012.23018 |
[22] | Kouyate A, Ahoussou AP, Rogez J, et al. (2013) Application of solution calorimetry to the prediction of 20.15[(2.038 + x)SiO2-(1.457 − x)Na2O]-2.6-P2O5-26.95CaO glass bioactivity. ACES 3: 123-129. |
[23] | Ahoussou AP, Rogez J, Kone A (2006) Enthalpy of mixing in 0.8[xB2O3-(1 − x)P2O5]-0.2Na2O glasses at 298 K. Thermochim Acta 441: 96-100. |
[24] | Ganteaume M, Coten M, Decressac M(1991) Un nouveau calorimètre de solution: Le calsol. Thermochim Acta 178: 81-98. |
[25] | Ahoussou AP, Rogez J, Kone A (2006) Enthalpy of mixing in 0.8[xB2O3-(1 − x)SiO2]-0.2K2O melts at 973K. Thermochim Acta 447: 109-111. |
[26] | Ahoussou AP, Rogez J, Kone A (2007) Thermodynamical miscibility in 0.8[xB2O3-(1 − x)P2O5]-0.2K2O glasses. J Non-Cryst Solids 353: 271-275. |
[27] | Ahoussou AP, Rogez J, Kone A (2007) Solution calorimetric study of mixing enthalpy in 0.8[xB2O3-(1 − x)SiO2]-0.2K2O glasses at 298 K. Mater Res Bull 42: 1577-1581. |
[28] | Yamasaki Y, Yoshida Y, Okazaki M, et al. (2002) Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 62: 99-105. doi: 10.1002/jbm.10220 |
[29] | Yamasaki Y, Yoshida Y, Okazaki M, et al. (2003) Action of FGMgCO3 Ap-collagen composite in promoting bone formation. Biomaterials 24: 4913-4920. doi: 10.1016/S0142-9612(03)00414-9 |
[30] | Andersson OH, Liu G, Karlsson KH, et al. (1990) In vivo behaviour of glasses in the SiO2-Na2O-CaO-P2O5-Al2O3-B2O3 system. J Mater Sci-Mater M 1: 219-227. |
[31] | Andersson OH, Karlsson KH, Kangasniemi K, et al. (1988) Models for physical properties and bioactivity of phosphate opal glasses. Glastech Ber-Glass 61: 300-305. |
[32] | Hench LL (1991) Bioceramics: From concept to clinic. J Am Ceram Soc 74: 1487-1510. doi: 10.1111/j.1151-2916.1991.tb07132.x |
[33] | Wallace KE, Hill RG, Pembroke JT, et al. (1999) Influence of sodium oxide content on bioactive glass properties. J Mater Sci-Mater M 10: 697. doi: 10.1023/A:1008910718446 |
[34] | Brink M (1997) The influence of alkali and alkaline earths on the working range for bioactive glasses. J Biomed Mater Res 36: 109-117. doi: 10.1002/(SICI)1097-4636(199707)36:1<109::AID-JBM13>3.0.CO;2-D |
[35] | Shelby JE (1994) Rare earths as major components in oxide glasses, Key Engineering Materials, Swizerland: Trans Tech Publications, 94-95: 1-42. |
[36] | Watts SJ, Hill RG, O'Donnell MD, et al. (2010) Influence of magnesia on the structure and properties of bioactive glasses. J Non-Cryst Solids 356: 517-524. doi: 10.1016/j.jnoncrysol.2009.04.074 |
[37] | Scholze H (1990) Glass: Nature, Structure and Properties, Springer-Verlag. |
[38] | Varshneya AK (1994) Fundamentals of Inorganic Glasses, Academic Press. |
[39] | Barbieri L, Corradi AB, Leonelli C, et al. (1997) Effect of TiO2 addition on the properties of complex aluminosilicate glasses and glass-ceramics. Mater Res Bull 32: 637-648. doi: 10.1016/S0025-5408(97)00029-9 |
[40] | Islam MT, Felfel RM, Abou Neel EA, et al. (2017) Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review. J Tissue Eng 8: 1-16. |