[1]
|
Abutbul R, Segev E, Zeiri L, et al. (2016) Synthesis and properties of nanocrystalline π-SnS-a new cubic phase of tin sulphide. RSC Adv 7: 5848-5855.
|
[2]
|
Rabkin A, Samuha S, Abutbul R, et al. (2015) New nanocrystalline materials: a previously unknown simple cubic phase in the SnS binary system. Nano lett 15: 2174-2179. doi: 10.1021/acs.nanolett.5b00209
|
[3]
|
Al-Shakban M, Matthews P, O'Brien P (2017) A simple route to complex materials: the synthesis of alkaline earth-transition metal sulfides. Chem Commun 53: 10058-10061. doi: 10.1039/C7CC05643E
|
[4]
|
Alqahtani T, Khan M, Kelly D, et al. (2018) Synthesis of Bi2-2xSb2xS3 (0 ≤ x ≤ 1) solid solutions from solventless thermolysis of metal xanthate precursors. J Mater Chem C 6: 12652-12659. doi: 10.1039/C8TC02374C
|
[5]
|
Al-Shakban M, Matthews P, Lewis E, et al. (2019) Chemical vapor deposition of tin sulfide from diorganotin (IV) dixanthates. J Mater Sci 54: 2315-2323. doi: 10.1007/s10853-018-2968-y
|
[6]
|
Al-Shakban M, Matthews P, et al. (2018) On the phase control of CuInS2 nanoparticles from Cu-/In-xanthates. Dalton T 47: 5304-5309. doi: 10.1039/C8DT00653A
|
[7]
|
Khalate S, Kate R, Deokate R (2018) A review on energy economics and the recent research and development in energy and the Cu2ZnSnS4 (CZTS) solar cells: A focus towards efficiency. Sol Energy 169: 616-633. doi: 10.1016/j.solener.2018.05.036
|
[8]
|
Du H, Yan F, Young Y, et al. (2014) Investigation of combinatorial coevaporated thin film Cu2ZnSnS4. I. Temperature effect, crystalline phases, morphology, and photoluminescence. J Appl Phys 115: 173502.
|
[9]
|
Olekseyuk I, Dudchak I, Piskach L (2004) Phase equilibria in the Cu2S-ZnS-SnS2 system. J Alloy Compd 368: 135-143. doi: 10.1016/j.jallcom.2003.08.084
|
[10]
|
Muska K, Kauk M, Altosaar M, et al. (2011) Synthesis of Cu2ZnSnS4 monograin powders with different compositions. Energy Procedia 10: 203-207. doi: 10.1016/j.egypro.2011.10.178
|
[11]
|
Jiang C, Liu W, Talapin D (2014) Role of precursor reactivity in crystallization of solution-processed semiconductors: the case of Cu2ZnSnS4. Chem Mater 26: 4038-4043. doi: 10.1021/cm502007d
|
[12]
|
Zutz F, Chory C, Knipper M, et al. (2015) Synthesis of Cu2ZnSnS4 nanoparticles and analysis of secondary phases in powder pellets. Phys Status Solidi A 212: 329-335. doi: 10.1002/pssa.201431055
|
[13]
|
Alvarez A, Exarhos S, Mangolini L (2016) Tin disulfide segregation on CZTS films sulfurized at high pressure. Mater Lett 165: 41-44. doi: 10.1016/j.matlet.2015.11.090
|
[14]
|
Sánchez T, Mathew X, Mathews N (2016) Obtaining phase-pure CZTS thin films by annealing vacuum evaporated CuS/SnS/ZnS stack. J Cryst Growth 445: 15-23. doi: 10.1016/j.jcrysgro.2016.03.039
|
[15]
|
Thankalekshmi R, Sidhu N, Rastogi A (2017) Non-Vacuum single step synthesis of large-grain size CZTS photo absorber for thin film solar cells by flux assisted chemical spray. IEEE 44th PVSC 3279-3284.
|
[16]
|
Shin B, Gunawan O, Zhu Y, et al. (2013) Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog Photovoltaics 21: 72-76.
|
[17]
|
Chalapathi U, Uthanna S, Sundara V (2013) Growth and characterization of co-evaporated Cu2ZnSnS4 thin films. J Renew Sustain Energ 5: 031610. doi: 10.1063/1.4808256
|
[18]
|
Park H, Hwang Y, Bae B (2013) Sol-gel processed Cu2ZnSnS4 thin films for a photovoltaic absorber layer without sulfurization. J Sol-Gel Sci Techn 65: 23-27. doi: 10.1007/s10971-012-2703-0
|
[19]
|
Zhang K, Su Z, Zhao L, et al. (2014) Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization. Appl Phys Lett 104: 141101. doi: 10.1063/1.4870508
|
[20]
|
Al-Shakban M, Matthews M, Savjani N, et al. (2017) The synthesis and characterization of Cu2ZnSnS4 thin films from melt reactions using xanthate precursors. J Mater Sci 52: 12761-12771. doi: 10.1007/s10853-017-1367-0
|
[21]
|
Ramasamy K., Malik M, O'Brien P (2011) The chemical vapor deposition of Cu2ZnSnS4 thin films. Chem Sci 2: 1170-1172. doi: 10.1039/c0sc00538j
|
[22]
|
Ahmadi S, Asim N, Alghoul N, et al. (2014) The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. Int J Photoenergy 2014: 198734.
|
[23]
|
Padinger F, Brabec C, Fromherz T, et al. (2000) Fabrication of large area photovoltaic devices containing various blends of polymer and fullerene derivatives by using the doctor blade technique. Opto-Electron Rev 8: 280-283.
|
[24]
|
Kontos A, Kontos A, Tsoukleris D, et al. (2008) Nanostructured TiO2 films for DSSCS prepared by combining doctor-blade and sol-gel techniques. J Mater Process Tech 196: 243-248. doi: 10.1016/j.jmatprotec.2007.05.051
|
[25]
|
Pani B, Singh P (2013) Preparation of Cu2ZnSnS4 thin film by a simple and cost effective route using metallic precursors and effect of selenization on these films. J Renew Sustain Ener 5: 053131. doi: 10.1063/1.4824415
|
[26]
|
Mokurala K, Mallick S, Bhargava P (2014) Low temperature synthesis and characterization of Cu2ZnSnS4 (CZTS) nanoparticle by solution based solid state reaction method. Energy Procedia 57: 73-78. doi: 10.1016/j.egypro.2014.10.010
|
[27]
|
Ramasamy K, Malik M, Raftery J, et al. (2010) Selective deposition of cobalt sulfide nanostructured thin films from single-source precursors. Chem Mater 22: 4919-4930. doi: 10.1021/cm1010345
|
[28]
|
Ramasamy K, Malik M, Helliwell M, et al. (2011) Thio-and dithio-biuret precursors for zinc sulfide, cadmium sulfide, and zinc cadmium sulfide thin films. Chem Mater 23: 1471-1481. doi: 10.1021/cm1030393
|
[29]
|
Ramasamy K, Kuznetsov V, Gopal K, et al. (2013) Organotin dithiocarbamates: single-source precursors for tin sulfide thin films by aerosol-assisted chemical vapor deposition (AACVD). Chem Mater 25: 266-276. doi: 10.1021/cm301660n
|
[30]
|
Kevin P, Lewis D, Raftery J, et al. (2015) Thin films of tin (II) sulphide (SnS) by aerosol-assisted chemical vapour deposition (AACVD) using tin (II) dithiocarbamates as single-source precursors. J Cryst Growth 415: 93-99. doi: 10.1016/j.jcrysgro.2014.07.019
|
[31]
|
Al-Dulaimi N, Lewis D, Zhong X, et al. (2016) Chemical vapour deposition of rhenium disulfide and rhenium-doped molybdenum disulfide thin films using single-source precursors. J Mater Chem C 4: 2312-2318. doi: 10.1039/C6TC00489J
|
[32]
|
Al-Dulaimi N, Lewis D, Savjani N, et al. (2017) The influence of precursor on rhenium incorporation into re-doped MoS2(Mo1-xRexS2) thin films by aerosol-assisted chemical vapour deposition (AACVD). J Mater Chem C 5: 9044-9052. doi: 10.1039/C7TC01903C
|
[33]
|
O'Brien P, Otway D, Park J (1999) Iron sulfide (FeS2) thin films from single-source precursors by aerosol-assisted chemical vapor deposition (AACVD). MRS OPL 606.
|
[34]
|
Kevin P, Malik M, O'Brien P (2015) The controlled deposition of Cu2(ZnyFe1-y)SnS4, Cu2(ZnyFe1-y)SnSe4 and Cu2(ZnyFe1-y)Sn(SxSe1-x)4 thin films by AACVD: potential solar cell materials based on earth abundant elements. J Mater Chem C 3: 5733-5741.
|
[35]
|
Khalid S, Ahmed E, Malik M, et al. (2015) Synthesis of pyrite thin films and transition metal doped pyrite thin films by aerosol-assisted chemical vapour deposition. New J Chem 39: 1013-1021. doi: 10.1039/C4NJ01461H
|
[36]
|
Kirubakaran D, Dhas C, Jain S, et al. (2019) Jet nebulizer-spray coated CZTS film as Pt-free electrocatalyst in photoelectrocatalytic fuel cells. Appl Surf Sci 463: 994-1000. doi: 10.1016/j.apsusc.2018.08.178
|
[37]
|
Kumar M, Kumar A, Abhyankar A (2015) Influence of texture coefficient on surface morphology and sensing properties of w-doped nanocrystalline tin oxide thin films. ACS Appl Mater Inter 7: 3571-3580. doi: 10.1021/am507397z
|
[38]
|
Seboui Z, Cuminal Z, Kamoun N (2013) Physical properties of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. J Renew Sustain Ener 5: 023113. doi: 10.1063/1.4795399
|
[39]
|
Muhunthan N, Singh O, Singh S, et al. (2013) Growth of CZTS thin films by cosputtering of metal targets and sulfurization in H2S. Int J Photoenergy 2013.
|
[40]
|
Ahmad R, Distaso M, Azimi H, et al. (2013) Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles. J Nanopart Res 15: 1886. doi: 10.1007/s11051-013-1886-9
|
[41]
|
Washio T, Nozaki H, Fukano T, et al. (2011) Analysis of lattice site occupancy in kesterite structure of Cu2ZnSnS4 films using synchrotron radiation X-ray diffraction. J Appl Phys 110: 074511. doi: 10.1063/1.3642993
|
[42]
|
Walsh A, Chen S, Wei S, et al. (2012) Kesterite thin-film solar cells: Advances in materials modelling of Cu2ZnSnS4. Adv Energy Mater 2: 400-409. doi: 10.1002/aenm.201100630
|
[43]
|
Valakh M, Dzhagan V, Babichuk I, et al. (2013) Optically induced structural transformation in disordered kesterite Cu2ZnSnS4. JETP lett 98: 255-258. doi: 10.1134/S0021364013180136
|
[44]
|
Grossberg M, Krustok J, Raudoja J, et al. (2012) The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy. Appl Phys Lett 101: 102102. doi: 10.1063/1.4750249
|