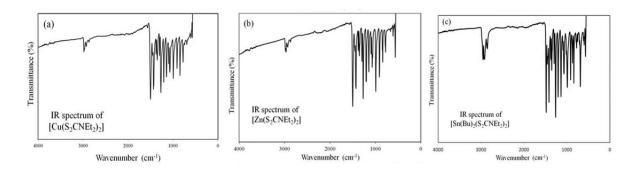


http://www.aimspress.com/journal/Materials

AIMS Materials Science, 7(3): 302–311.

DOI: 10.3934/matersci.2020.3.302

Received: 04 February 2020 Accepted: 03 June 2020 Published: 05 June 2020


Research article

Rapid facile synthesis of Cu₂ZnSnS₄ films from melt reactions

Mundher Al-Shakban^{1,*}, Naktal Al-Dulaimi^{2,3}, Thokozani Xaba⁴ and Ahmad Raheel⁵

- ¹ Department of Physics, College of Science, University of Misan, Maysan, Iraq
- ² Pharmaceutical Chemistry Department, Medical and Applied Science College, Charmo University, 46023 Chamchamal-Sulaimani, Kurdistan Region, Iraq.
- ³ Charmo Center for Research and Training, Charmo University, 46023 Chamchamal-Sulaimani, Kurdistan Region, Iraq
- ⁴ Department of Chemistry, Vaal University of Technology, P/Bag X021, Vanderbijlpark, South Africa
- ⁵ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 Pakistan
- * Correspondence: Email: mundher.al-shakban@uomisan.edu.iq; Tel: +9647728037980.

Supplementary

Figure S1. The FTIR spectra of the (a) $[Cu(S_2CNEt_2)_2]$, (b) $[Zn(S_2CNEt_2)_2]$ and (c) $[Sn(C_4H_9)_2(S_2CN(C_2H_5)_2)_2]$.

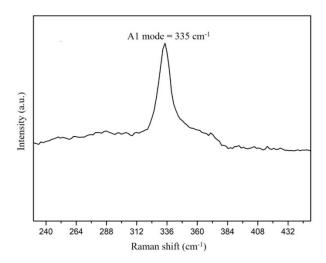

Complexes	M.W. gmol	Metal sulfides	M.W. gmol	% Calculated	% from TGA
Cu(S ₂ CNEt ₂) ₂	359.6	CuS	95.52	26.56	25.14
$Zn(S_2CNEt_2)_2$	361.46	ZnS	97.38	26.94	4.5
$Sn(C_4H_9)_2(S_2CN(C_2H_5)_2)_2$	528.9	SnS	150.68	28.49	9
7) 2 2 2 3 2 2		SnS_2	182.65	34.5	
		Sn_2S_3	333.34	63.02	

Table S1. TGA data analysis of dithiocarbamate complexes.

Table S2. Calculating texture coefficient (T_C) of CZTS films using equation: $T_{c(hkl)} =$

 $\frac{I_{(hkl)}/I_{o(hkl)}}{(1/N)[\sum_{N}I_{(nkl)}/I_{o(hkl)}]}$, where $T_{C(hkl)}$ is the texture coefficients of the (h k l) plane, I is the measured intensity, I_{o} is the ASTM standard intensity, N is the reflection number and $\Sigma I(hkl)$ is the summation of the intensities for the (1 1 2), (2 2 0) and (3 1 2) peaks of the CZTS films [1,2].

Sample	Annealing temperature (°C)	(112)	(220)	(321)	
a	375	1.479	0.122	1.402	
b	400	1.489	0.252	1.261	
c	425	1.423	0.263	1.316	
d	450	1.536	0.293	1.173	

Figure S2. Raman spectrum of CZTS film heated in an N₂ atmosphere at 375 °C for 5 min.

Table S3. The experimental conditions and compositional of Cu₂ZnSnS₄ films deposited by the blade technique from diethyldithiocarbamate precursors in 5 min annealing time.

Sample	Annealing temperature (°C)	N ₂ Gas flow rate (cm /min)	Average thickness (µm)	Cu(%)	Zn(%)	Sn(%)	S(%)	Cu/Zn+Sn	Zn/Sn	S/(Cu + Zn + Sn)
a	375	140	2.2	23.34	13.74	12.88	50.04	0.877	1.067	1.001
b	400	140	3.1	22.62	13.62	13.93	49.83	0.821	0.978	0.993
c	425	140	3.4	22.46	13.46	13.96	50.12	0.819	0.964	1.004
d	450	140	1.9	22.3	13.22	14.13	50.35	0.815	0.936	1.014

References

- 1. Kirubakaran D, Dhas C, Jain S, et al. (2019) Jet nebulizer-spray coated CZTS film as Pt-free electrocatalyst in photoelectrocatalytic fuel cells. *Appl Surf Sci* 463: 994–1000.
- 2. Moholkar A, Shinde S, Babar A, et al. (2011) Synthesis and characterization of Cu₂ZnSnS₄ thin films grown by PLD: solar cells. *J Alloy Compd* 509: 7439–7446.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)